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Abstract

Computer vision and graphics technologies have been
used extensively in developing golf instruction and enter-
tainment systems. In this project, we work towards con-
structing the trajectory of a golf swing from high quality
video, since this information can enable many of these types
of applications. We build on previous work that estimates a
2D spatio-temporal trajectory model from video, and we ex-
plore different ways of improving the estimation procedure.
We also identify the importance of incorporating multiple
camera angles to construct full 3D trajectory models.

1. Introduction

Innovations in computer graphics and computer vision
have been applied in various golf-related applications –
motion capture systems to provide detailed swing analy-
sis, video systems to supplement golf instruction, high-
precision launch monitors to track club and ball physics,
and video games that continue to look more and more real-
istic. The ability to digitally analyze a golfer’s swing can be
used in both of these major applications: analyzing a golf
swing and producing a 3D animation of a golf swing.

In this project, we work towards reconstructing the tra-
jectory of a golf swing from video. Motion capture can be
used to create very precise 3D models of a golfer’s swing,
but few have access to such studios. Most golfers have ac-
cess to digital cameras, however – and many golfers record
their swings to analyze and share with others – so work
towards extracting swing information from videos may be
useful to many golfers.

Most affordable cameras record video at a maximum of
30 frames per second. Because the golf club often travels
over 100 miles per hour, there can be severe motion blur in
videos recorded at this frame rate. We would like to eventu-
ally analyze videos of this quality, but for the scope of this
project we will work with higher quality data. Although we
had access to high quality cameras that record up to 200
frames per second, we use the following alternate approach

that simulates video from a high frame rate camera: we cap-
ture a golf swing at a much slower speed than normal. Fig-
ure 1 shows a golfer making three similar swings with the
same club that take two seconds (normal speed), four sec-
onds, and eight seconds. The latter two serve as a simula-
tion for the the quality of data from cameras that record ap-
proximately 60 and 120 frames per second. We will work
exclusively with swings made at quarter speed (about 120
frames per second).

Our approach is based heavily on methods outlined in
[3], which tracks golf clubs in video data from the face-on
angle. We will describe how our approach differs in cer-
tain aspects and how we are continuing to try to make our
approach more robust. We also begin considering how to
make use of additional camera angles to extract a swing tra-
jectory in 3D space.

2. Related Work
Several papers use the golf swing motion as a test case

for evaluating various tracking algorithms. Lepetit et al.
[4] argue that approaches that recursively predict motion at
time t (based only on the position at t − 1) suffer from 1)
sensitivity to a small number of bad predictions and 2) mo-
tion that is hard to represent. They propose an approach to
tracking that considers an interval of frames before and after
time t in making a local prediction for time t. They demon-
strate their approach to track the motion of a bouncing ten-
nis ball and the club head of a golf swing. They use four
model parameters to represent the golf swing based on the

Figure 1. A golf swing that took about two seconds captured with a
point-and-shoot camera that records 29 fps. Similar swings made
with the golfer taking four and eight seconds, thus simulating the
approximate quality of 60 and 120 fps cameras.
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widely-taught “double pendulum” golf swing theory, and
they are able to achieve online tracking with a slight delay
(to account for interval size).

Gehrig et al. [3] model the trajectory of the club head
through simple polar, polynomial approximations. Using
empirical evidence, they found that a typical upswing can be
accurately and stabally modeled by a 4th degree polar curve,
and a typical downswing by a 6th degree one. After a se-
ries of processing steps to identify hypotheses for where the
clubhead is in each frame, they use a RANSAC-like method
to approximate these polar least-squares curves. They use a
similar robust fitting to estimate the speed of the clubhead
over time as well. Our work in this project is based largely
on the approach described in this paper, and we will address
how each step in our approach compares.

Using data from a video capture sequence to generate
animated 3D models has also been explored in graphics and
vision. [1] presents a data-driven method that uses a pose
deformation model and a separate model of variation (based
on body shape) to construct a 3D surface model with re-
alistic muscle deformation for different people in different
poses. Balan et. al [2] apply the previous method to gen-
erate 3D human body models from image data. Utilizing
this SCAPE model [1], the parameters of the 3D body mesh
is estimated directly through a cost function that measures
the model’s accuracy given image observations. A human
tracking algorithm is used to initialize a stochastic search
that helps optimize fitting the body shape and pose from the
data.

Probabilistic approaches have also been applied to re-
covering 3D models from 2D data. Sigal and Black [5] esti-
mate 3D human poses from monocular images by utilizing
a hierarchical Bayesian inference framework that processes
body part detections and computes a probability distribution
over the different body poses comprised by these parts. The
2D poses are then probabilistically mapped onto a 3D pose
through belief propagation, which infers 2D limb poses that
are consistent with human body models.

3. Hypothesis Generation
The first major component of our project is the identifi-

cation of the golf club in each frame. The pipeline for this
component is summarized in Figure 2.

3.1. Motion Detection

We use a similar approach to the one described in [3] to
identify the changing pixels in each frame, which assumes
that the background is constant. We first scan each pair of
consecutive frames to identify the pixels that differ, accord-
ing to a color distance threshold. The difference between
each pair of frames fi and fj is stored as a binary image
dij . For a sequence of n frames, n − 1 such “diff” images

Figure 2. The three major steps in guessing where the club head is
in each frame. First, the moving pixels in each image are identi-
fied. Then, line segments in these areas are detected, and the best
guess for the club shaft is selected. Finally, the endpoint of each
segment that is most likely the club head is identified.

are computed. We then consider each pair of consecutive
diff images dij and djk to identify those pixels that corre-
spond to motion at time j by pixel-wise ANDing dij and
djk. The resulting binary image mj is a mask that identi-
fies the moving pixels in fj , which will contain the moving
parts we are interested in: the golfer and the club. Note that
there are n − 2 binary mask images. Figure 3 shows the
construction of a mask from a particular sequence of three
frames.

These binary masks suffer from two problems. The first
is that even though we are working with synthetically high
frame rate data, the club travels so fast that motion blur
sometimes prevents the club from being detected in the diff
images (and therefore also the masks). The second problem
is that even though we are using a fixed camera, there are
sometimes slight variations in background pixels, and these
are evident in the masks. To address these problems, we

Figure 3. For each triple of consecutive frames, we compute a bi-
nary mask of the moving pixels by differencing the two pairs of
consecutive frames and then ANDing these differences.



follow the method in [3] of applying a morphological clos-
ing on the masks to eliminate some of the noise and smooth
out possibly-disconnected signal. Figure 4 demonstrates the
kind of improvement that a closing can provide.

3.2. Club Shaft Detection

Next we try to identify the shaft of the golf club in each
frame, following [3]. To do this, we look for line segments
in the moving parts of each frame. We apply the mask mi

to the frame fi to isolate the moving pixels in that frame.
We convert this image to grayscale and use Canny edge de-
tection to identify the boundaries of moving objects.

The Hough transform is then applied in order to identify
line segments among the set of edges found by Canny. In
the ideal case, there is exactly one line segment detected
by Hough and it corresponds to the club shaft. In practice,
however, the results from the Hough transform are a major
source of difficulty. If we use a strict threshold, most frames
do not have any Hough lines. The frames that do, however,
are likely to have a small number that correspond to the
club shaft. If we use a loose threshold, most frames have a
lot Hough lines, the vast majority of which are unrelated to
the club. Figure 5 provides an example of the Hough lines
for a particular frame using two different thresholds.

Because neither threshold alone provides enough infor-
mation, our approach is to employ the results from both.
For each frame, we collect Hough lines found with a strict
threshold (we refer to these lines as GOOD lines) and
Hough lines found with a looser threshold (BAD lines).
Then, to hypothesize where the club shaft is in each frame,
we run the following abstract procedure:

1. If there is a GOOD segment, choose it.

2. Otherwise, choose the best BAD segment, if any.

Step 1. We have observed that GOOD segments fall into
several categories: 1) there is one segment that is co-linear

Figure 4. Before and after applying a morphological closing to a
binary motion mask. In this case, it succeeds in smoothing out the
region for the club shaft, but it also exposes more of the image.
This is a tradeoff between creating the opportunity to identify the
actual club shaft as well as potentially more erroneous segments.

Figure 5. Hough transform lines using two different thresholds.
The strict threshold does not identify as many segments, but when
it does they usually correspond to the club shaft. The looser thresh-
old on the other hand usually identifies many segments that are
unrelated to the club.

with some part of the shaft; 2) there are two segments that
are co-linear with either edge of the shaft; 3) there are three,
four, or more segments that are co-linear with either edge
of the shaft; and 4) there are several segments that do not
necessarily correspond to the shaft.

We have empirically found that the first two cases are the
most common with the particular strict threshold we use, so
our simple approach to choosing GOOD segments caters to
these cases. If there is exactly one segment, we choose it. If
there are two segments, we merge them into one by averag-
ing their endpoints and choose it. Otherwise, we conclude
that there is no GOOD hypothesis for this frame. An im-
provement on this algorithm would be to consider the case
where there are more than two segments and look for par-
allel and co-linear segments that could be merged and used
as a hypothesis.

Step 2. For the looser threshold we use, the majority of
the line segments are unrelated to the club, but we have ob-
served that there are usually at least some segments that do
correspond to the club. We therefore try to identify the most
likely BAD segment that corresponds to the club by choos-
ing the one that minimizes a simple error metric. We define
this error to be a combination of the difference in slope and
distance of endpoints as compared to the hypothesis for the
previous frame. The BAD segment that minimizes this error
is chosen as the hypothesis for the frame.

3.3. Club Head Detection

The final step in our hypothesis generation is to predict
which end of each hypothesis corresponds to the club head
and which end corresponds to the golfer’s hands. We take
advantage of the fact that the golfer’s hands are above the
clubhead at the beginning of the swing to define a refer-
ence point: in the first GOOD segment we find, we choose
the endpoint with the smaller y coordinate (higher in the
picture). Then, because we know the golfer’s hands will
(almost) always be closer to this initial hand position than



Figure 6. The green segments correspond to GOOD segments
when there are any, and the red ones correspond to the best BAD
segments. The white dots indicate the club head hypothesis in
each frame. These hypotheses are used in the next phase to es-
timate polynomials that describe the swing trajectory in time and
space.

the club, we guess that the club head in each frame is the
endpoint of the segment furthest from this reference point.

Figure 6 shows results from hypothesis generation.

It is worth discussing the differences in our approach com-
pared to that of [3]. Our approach to generating hypothe-
ses diverges from theirs after we compute motion masks.
Whereas their approach allows multiple hypotheses per
frame, we try to choose the best segment as the single hy-
pothesis for a given frame. In their paper, they discuss is-
sues with inaccurate candidate hypotheses, and they try to
improve them in a couple of ways. First, they eliminate
segments that correspond to physically impossible club po-
sitions. Second, they try to improve some hypotheses that
are too short by extending them in either direction by using
color information.

In contrast, our approach to choosing the best BAD seg-
ment (based on slope and position) corresponds loosely to
removing physically impossible hypotheses. Our approach
employs no means for extending segments, however; we
have observed that there are typically enough accurate hy-
potheses along the club head trajectory so as not to warrant
it.

4. Trajectory Estimation

The second major component is taking the club head hy-
potheses and estimating a model for them in time and space.
For this, we follow the approach taken in [3]. The pipeline
for this component is summarized in Figure 7.

Figure 7. The upswing and downswing are processed separately,
after obtaining the transition frame either automatically or from
the user. Each part of the swing is fit with a polar curve using a
RANSAC-like process. The inliers of each of the models are then
used to estimate the trajectory as another polar function in time.

4.1. Transition Identification

We first need to identify which frames correspond to the
upswing and which to the downswing. [3] evaluates the
average y coordinate over time to conclude where the tran-
sition between upswing and downswing occurs. We use a
slightly different approach. We consider the change in slope
of hypotheses in consecutive frames, and we look for places
where the derivative is zero, since the club must come to a
stop when transitioning. Out of the candidate frames with
zero (or close to it) derivative, we use an error metric to
guess which is the transition. The error metric includes
proximity to the middle of the video and use of GOOD seg-
ments over BAD. We have found our approach to identify-
ing the transition to be fragile, however, so it might be worth
trying the approach taken in [3]. As a temporary solution,
we ask the user to provide the frame in which the transition
from upswing to downswing occurs.

4.2. Computing Space Models

Once we have the transition, we process the upswing
and downswing frames independently. As empirically de-
termined in [3], we seek to fit a 4th degree polar curve to
the upswing hypotheses and a 6th degree polar curve to the
downswing ones. For this we convert all hypotheses from
Cartesian to polar coordinates, but we use the standard di-
rection of the θ axis, unlike the one used in [3].

We use a RANSAC approach to estimating these curves
by randomly sampling a subset of hypotheses. The sample
size is two more than the parameters of the polynomial (five
points for the upswing and seven points for the downswing)
to overconstrain the curve to prevent unstable behavior. For
each randomly selected subset of points, their least squares
fit is computed. Once these parameters are computed, each
hypothesis is checked to see if it is within some error thresh-
old away from the value predicted by the curve. This pro-
cess is repeated many times, and the model with the highest
number of inliers is selected.

Figure 8 shows the trajectories estimated on both parts of
a swing. The results vary on our set of sample videos. The



Figure 8. A fourth degree polar curve estimated for the upswing
and a sixth degree polar curve estimated for the downswing using
a RANSAC procedure.

upswing fitting is generally pretty good, but the downswing
results are largely inaccurate.

4.3. Improving Downswing Fitting

There are two major problems with downswing fitting:

• There are typically few good club head hypotheses in
the last part of the downswing, after the golfer’s hands
pass from the second quadrant into the first quadrant.

• When passing from the second quadrant to the first
quadrant, the angles of our hypotheses need to be off-
set by 2π.

Our current procedure for addressing the second of these
concerns is fragile and is susceptible to failure when we
have bad hypotheses around the 2π portion of the swing.
The first problem results from particularly bad segment
identification in that portion of the downswing.

We have decided to eliminate these problems by simply
considering the downswing only until the club head reaches
2π. Although we will eventually return to fitting the entire

Figure 9. After obtaining the frame in which the downswing
crosses over 2π, we fit this portion of the downswing with a fourth
degree polar curve.

downswing, we have made this simplification to make fur-
ther progress on at least a large portion of the downswing.

We show the user our club shaft and head hypotheses
for each frame and the reference point we use as the origin,
and we ask the user to supply the frame in which the club
crosses 2π. We then fit the upswing and the downswing up
until this frame. Because the portion of the downswing we
are considering is similar in shape to the upswing, we use a
4th degree polar curve to model it.

Figure 9 shows an example where this process works
fairly well for the downswing. But in general, this process
still fails to provide consistently accurate models.

We have noticed that on all of our videos and for both
upswings and downswings, the extreme hypothesis in every
direction (up, down, left, right) over the course of the swing
portion is in fact an actual location of the club head. These
hypotheses are unfortunately often not well-fit by the model
that RANSAC chooses. Put another way, we have never
observed any outliers that are beyond the reach of the swing
trajectory; they are all inside it.

This observation suggests that we want to try and fit the
outermost hypotheses more than the inner ones. We tried a
simple weighting scheme in the counting of inliers during
the RANSAC procedure. We allowed the error threshold to
increase as the distance from the origin increases, but this
approach does not produce accurate results. More points
end up agreeing with the final model, but usually because
of the increase in error threshold and not because of a good
fit.

Our next approach was to bias the samples that
RANSAC selects to compute models. Because we want the
extreme points to heavily influence the resulting model, we
require that RANSAC choose all four of them as part of
its sample. It then randomly selects two more points and
then computes a model as usual. It is important to note that



Figure 10. The best model return by guiding RANSAC with the
four superdelegates – the extreme hypotheses in every direction,
whose votes count for more than the other points.

although each sample contains the four extreme points, the
best model does not necessarily fit each of these points well;
it is simply more likely that it will. This approach does in
fact improve the quality of the best model on most videos,
but there are still some with undesirable results.

The last way in which we guide RANSAC towards a bet-
ter solution builds upon the previous one. Not only do we
require RANSAC to use the extreme points in computing
models, we also give more weight to them when they agree
with a model. We consider the extreme points to be “su-
perdelegates” because when they agree with a model, they
have more influence over whether the model will be kept
than all other points that agree with the model.

The danger in biasing RANSAC in these two ways is
that the popular vote solution computed by random consen-
sus may be overturned in favor of a model that is possibly
overfit to these four extreme points. However, on the set
of sample videos we have used, this guided RANSAC ap-
proach produces consistently acceptable results. Figure 10
shows one such result.

4.4. Computing Time Models

Once we have estimated the magnitude of the club head
as functions of angle, we then estimate the angle of the club
head as functions of time. As in [3], we use the inliers
for each of these curves to compute the least squares fits
for the desired time models. Examples of complete spatio-
temporal models can be found on the project website.

5. Additional Camera Angles

The approach we have described produces a 2D estima-
tion of the golf swing. What we would like to produce, how-
ever, is an estimation of the swing in 3D. Having a complete
representation of the swing in space would be useful for

applications to golf instruction and to animating a golfer’s
swing. To produce a 3D estimate, additional camera angles
are needed. In addition to the face-on angle we have been
dealing with, the down-line (directly behind the golfer on
the target line) and up-line (directly in front of golfer on the
target line) are the other two popular camera angles for golf
swing instruction and analysis.

To demonstrate the additional information provided by
the down-line angle, for instance, in Figure 11 we show
three different positions at the top of the swing from the
face-on and down-line angles.

We have run the early stages of our pipeline – motion
detection and line segment detection – on videos from these
two perspectives, and the quality of the line segments we
have observed are encouraging. We leave it to future work
to identify which end of the segments correspond to the club
head and how to estimate the motion of these club head hy-
potheses as functions of time and space.

Figure 11. Three different positions at the top of the backswing.
Although they look similar from the face-on view, the down-
line view reveals significant differences. Thus, analyzing addi-
tional perspectives is crucial for constructing 3D trajectory mod-
els. Note: the images for the face-on and down-line view were
taken separately, while the golfer re-enacted the same positions.



6. Conclusion

We have made progress towards our goal of reconstruct-
ing a golfer’s 3D swing trajectory out of videos from multi-
ple camera angles. Our approach to tracking the club from
the face-on view is based heavily on previous work in [3],
but our algorithm for identifying and selecting hypotheses
for the club head is fundamentally difficult. Our results are
preliminary but promising, and improving the robustness of
several steps in our pipeline is likely to produce very good
results in the face-on view.

An aspect that requires further consideration is the end of
the downswing, the portion that occurs in the first quadrant.
We have excluded this section for simplicity, but separately
fitting points in this region sometimes produces very good
results, as in Figure 12. Future work may choose to con-
tinue fitting the downswing in these two separate parts or
return to the approach that tries to fit the entire downswing
at once.

Whereas [3] spent more effort in improving the qual-
ity of hypotheses, we focused more effort on overcoming
the presence of many bad hypotheses in the fitting process.
The guided RANSAC approach we employ demonstrates
encouraging results, but as we have mentioned, second-
guessing RANSAC can lead to models that are overfit to
the superdelegates.

Future work may explore “safer” ways of guiding
RANSAC. For instance, we have noticed that the mo-
tion history image summarizing all moving pixels over the
course of a video provides a very good approximation for
the span of the swing. One approach may be to use the
boundary of such a motion history to seed RANSAC with
more hypotheses. Figure 13 shows a way to approximate

Figure 12. Results from guided RANSAC fits for an upswing and
both parts of a downswing. In this example, fitting a second de-
gree polynomial to the second part of the downswing produces a
good result. More work is needed to reliably fit the second part
of the downswing or to return to the approach that fits the entire
downswing at once.

this boundary using a Radon transform.
Finally, we have also identified some possibilities for

club tracking from the down-line and up-line views, which
can be used to reconstruct a complete 3D swing trajectory.
Much of the future work for this project lies in this area.
When successfully completed, 3D trajectory information
will enable technology for use in swing analysis and in ani-
mation.
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