PLATEAU

15th Annual Workshop at the
Intersection of PL and HCI

1.1
Organizers:
Jon Bell, Sarah Chasins,
Elena Glassman, and Joshua
Sunshine

This work is licensed under a
Creative Commons
Attribution 4.0 International
License.

Code Style Sheets
Sam Cohen! and Ravi Chugh!

IThe University of Chicago

Abstract

Program text is rendered using impoverished typographic styles. Beyond choice of fonts and syntax-
highlighting colors, code editors and related tools utilize very few text decorations.

information that we might want to show alongside program text as it is written, read, or run. Scopes, types,

Yet, there is much

and runtime values, for example, are all relevant to the task of programming, but we lack mechanisms to
uniformly present them. In this work, we present a motivating example for a work-in-progress framework,
Code Style Sheets, and demonstrate how it can be used to visualize multivarious program analyses.*

Keywords: Code Style Sheets, CSS, Text Layout, Program Visualization, Structure Editors.

The text and figures below are exerpted from a draft manuscript [1].

A Motivating Scenario

Imagine a programming environment that offered a flexible framework for styling and rendering pro-
grams, incorporating both textual and graphical elements (e.g., blocks). Multivarious, configurable
kinds of information about programs could be conveyed as users and usage scenarios change. For
example, consider a programmer working to debug a “CLOC" program, written in Haskell, that aims
to count the number of non-comment lines of code in a given source file.

-- Anonymous Authors

Input e Main where € Blocks Style Sheet
main =
-- Print a greeting
main = getContents

putStrLn "Hello, PLATEAU!"

]

a Syntax Highlighting Style Sheet

main = - : = =
getContents $ |1sPref1xOf -- I
>>= print
. length
. filter $ isPrefixOf "--"
. lines

d Blocks Style Sheet
b Type Error Style Sheet

main =
main = getContents
getContents :
) >>= |print
>>= print length
length
e] filter (isPrefixof "--")]
. filter|| $ |isPrefixOf "--"
. lines
. lines

Figure 1. Count Lines of Code (CLOC) Program with Type Error and Blocks Style Sheets

Debugging a Binary Operation Error

Figure 1 ‘a shows an initial version of the program, which fails to compile with a type error. In addition
to the error message itself, the compiler provides a code style sheet, used to decorate the program
with a color-coded visualization of the involved types and expressions (Figure 1 'b'). Unsure of why
the function is failing, but beginning to suspect something to do with the usage of binary operators,
the programmer decides to apply a “blocks style sheet” to help debug (Figure 1 ic). The programmer
sees that the line of code filter $ isPrefix0f "--"is not contained within a box, suggesting that

1/5

maybe the infix function application operator ($) has lower precedence than the function composition
operator (.). So, they add parentheses around the call to isPrefix0f. Edits made, the programmer
views the blocks style sheet again to confirm that the change worked (Figure 1 d).

1.2 Debugging a Filter Predicate Error

Satisfied that the program now compiles, they run it but observe that the resulting number (two, not
shown in Figure 1) is not what they expect (four). The programmer decides to add calls to trace—
a standard debugging mechanism in Haskell—to inspect the run-time values that flow through the
program. The style sheet in Figure 2 ‘e shows a projection boxes—like display [2] of values that flowed
through the trace expression. Seeing that the two resulting string values are commented (rather
than non-commented) lines, the programmer quickly identifies a common (and forgivable) mistake:
misremembering the behavior of filter, which keeps (rather than discards) values that satisfy the
given predicate. To fix the issue, they compose the boolean predicate with not to negate its result,
and re-run the tests (not shown).

€ Projection Boxes Style Sheet

main =
getContents
>>= print
. length
. (\1s -> trace ((filter (isPrefixOf "--")) 1s) { value 1)
["-- Anonymous Authors"
, "-- Print a greeting" 17
. lines

Figure 2. Projection Boxes Style Sheet

1.3 Resolving a Point-Free Pipeline Warning f Point-Free Pipeline Style Sheet
The program meets its specification, but as de-

picted in Figure 3 f the linter applies a new mal;et(tontents

style sheet to convey a warning: The program >>= [print

chains together two binary operators, (>>=) and length

(.), which propagate data in opposite “directions.” filter (not . isPrefixOf "--")
Whereas mx >>= f denotes (a kind of) left-to- N ,

right function application, £ . g denotes right-to-

left function composition. The style sheet chooses & Foint-Free Pipeline Style Sheet

a different color for each of the two directions that f>>g=\a->g (f a)
data flows through the pipeline of operators, high- _
lighting those expressions on either side of a tran- ma;thontents
sition from left-to-right or right-to-left. >>= lines
The programmer agrees that maintaining a sin- >>> filter (not . isPrefixOf "--")
gle direction will be more readable, so they reorder :: ii:gih

functions using the left-to-right composition oper-
ator (>>>), resolving the warning (Figure 3). Figure 3. Point-Free Pipeline Style Sheet

1.4 Updating User Preferences

The programmer appreciates the suggestion about the flow of data through the operator pipeline:
When rewriting code for clarity, they lack a reliable heuristic for deciding about when to use left-
to-right versus right-to-left function application and composition operators. They believe proactively
seeing the directionality information of these binary operators may help when reading and writing
other code fragments. So, they wish to repurpose some of the linter's styles to incorporate into their
own, personal style sheet for styling by default—in the absence of overriding styles produced by the
compiler or editor.

Cohen and Chugh | PLATEAU | February 2025 2/5

They identify the selector and attributes used by
the point-free pipeline style sheet to effect the two- ‘h User-Customized Style Sheet
coloring. They copy the rules into their default style

main =
sheet, modifying them slightly so that the styles are ap- getContents
plied only to the relevant operators rather than the en- lines
tire binary operation expressions. The resulting styles filter (not |. isPrefixOf "--")
for the final CLOC program are shown in Figure 4 ‘h. length

print
2 Research Directions
In this section, we describe several research directions Figure 4. User-Customized Style Sheet
that might help us to achieve the vision presented in
the motivating example. We have explored some of these areas by building prototypes, while others

are left entirely for future work.

2.1 Layout: Rendering Structured Text with Style

Most of the editors that programmers commonly use to write programs, like VS Code [3] or CodeMir-
ror [4], are what we might describe as “flat" editors because they can only show one layer of structure
at a time (often in the form of squiggly underlines or text highlights). Several systems (e.g. [5]-[8])
are structure editors—editors for which edits are primarily on the syntax tree of the program, not its
textual “view.” For these editors, a flat code view is often insufficient because it does not visually
surface the objects that the user manipulates. Many editors use boxes to represent nested structures
because they can be easily composed. However, forcing each term into a box often leads to unatural
layouts which don't resemble their corresponding textual view.

In Code Style Sheets, we attempt to bridge the gap between raw unstructured text and boxes
by proposing a primitive called stylish blocks or s-blocks which surface structure while attempting to
leave the text layout undisturbed. The shape of these blocks is inspired by the shape of text selections
in most graphical text editors. All of the examples shown in the motivating scenario use s-blocks.

S-blocks succeed in producing structured visualizations which resemble their unstructured “flat”
counterparts, but they also have some limitations: We might want to find tight-fitting boundaries
around expressions, or maintain the vertical alignment of columns, even after some spans of text have
been wrapped in outlines. These are important preferences if we want visually-compact, readable, and
unobtrusive code visualizations. Yet s-blocks do not have ready solutions to these problems.

We are exploring some other layout primitives that promise
to solve the aforementioned issues. One such primitive is the (def
ragged-block or rock, which allows the boundaries of a text span (rect fill x y w h))
to be tight-fitting. This allows for more compact text layouts,
and more flexibility in determining text alignment and spacing. Figure 5. In Deuce [7], text selections

Rocks, however, produce outlines with many corners, and it is .o tight-fitting (like rocks), but can’t
often necessary to simplify them in order to achieve a visually be nested (unlike rocks).

simple layout. There is clearly a wide domain of primitives and

algorithms for rendering structured text, each with tradeoffs, and it seems worthwhile to explore this
design space more thoroughly.

2.2 Applications: Beyond Visualizing Parse Information
The examples above preview mainly syntactic visualizations, but code visualizations are not limited
to showing only the parse tree of a program. We might, for example, visualize a program according
to its types after a type error has occured.

Figure 6 shows a program with a type error. The visualization is inspired by the error messages
produced by Pyret [9], where colors in the error message correspond to highlights in the code. Even in
the case of nested type errors (as Figure 6 demonstrates), it is possible to disambiguate between the
errors, and show all expressions of interest, independent of their formatting or position in the AST.

Cohen and Chugh | PLATEAU | February 2025 3/5

Future work could explore whether s-blocks | $ hasskell factorial.hs
in Brown expression, could not unify Int and Int > Int
in Red expression, could not unify Int and Int > Int

provenance of type errors (e.g. [10], [11]).
([] []) isEven n = Iif E] ==
2.3 A Style Sheet Language for Code then

Our motivating scenario presented a workflow else 1is0dd

would be a useful visual aid for explaining the

which involved using different visualizations for

different tasks. But, how are these visualiza- isodd n = if n == 0
then 0

tions specified? In the design of a system for else isEven (n - 1)

styling code, it seems necessary to give some
consideration to the description of styles as well Figure 6. Type Error Style Sheet
as the styles themselves.

Just as with the choice of layout primitive, there are some tradeoffs to consider when designing a
style description language (or style sheet). On one hand, we could describe style sheets as arbitrary
programs which take as input an AST, and return as output an HTML document (or image, or
any other visual representation we can imagine). This approach offers the utmost expressivness and
flexibility, but writing style sheets as arbitrary programs has some disadvantages. If we have no
uniform interface for describing what can be selected and how it can be styled, then we have no hope
of composing style sheets. That is, to compose style sheets, the style sheets must agree on which
elements in the AST can be selected, and once we have a selected element, how to denote that styles
have been applied.

In Code Style Sheets, we use a language inspired by Cascading Style Sheets (CSS [12]) to style
programs. Instead of selecting HTML elements by tag or class, our style language selects values in an
AST with pattern matching. Importantly, the language of selectors operates over the original program,
not its view. This means that rules from multiple style sheets may be freely composed, since style
sheet rules designed for one view will work with another.

2.4 Code Style Sheets in the Editor

So far we've shown examples of static (“read-only”) code displays, but one of the most attractive
applications of structured text displays are interactive editors. Structure editors, in particular, often
expose interactions that operate not over the program text, but over terms in the program. However,
some systems, like Tylr [13] and Sandblocks [5], go to great lengths to make text edits feel intuitive,
while other systems, such as Scratch [14], do away with text edits entirely, or switch between text
and structure edits, but don't allow them simultaneously (e.g. [15], [16]).

S-blocks or rocks could be opportune user interface frameworks for designing these kinds of editors
since they can visualize structure, but are invariant to the formatting of the underlying text. This
could help make both structural and text edits feel intuitive.

References
[1] S. Cohen and R. Chugh, Code Style Sheets: CSS for Code, 2024.

[2] S. Lerner, “Projection Boxes: On-the-fly Reconfigurable Visualization for Live Programming,” in Confer-
ence on Human Factors in Computing Systems (CHI), 2020. por: 10.1145/3313831.3376494. [Online].
Available: https://doi.org/10.1145/3313831.3376494.

[3] Microsoft, Visual Studio Code, 2024. [Online]. Available: https://code.visualstudio.com/.
[4] M. Haverbeke, CodeMirror: Extensible Code Editor, 2024. [Online]. Available: https://codemirror.net/.

[5] T. Beckmann, P. Rein, S. Ramson, J. Bergsiek, and R. Hirschfeld, “Structured Editing for All: Deriving
Usable Structured Editors from Grammars,” 2023. por: 10.1145/3544548.3580785. [Online]. Available:
https://doi.org/10.1145 /3544548.3580785.

[6] C. Omar, I. Voysey, M. Hilton, J. Aldrich, and M. A. Hammer, “Hazelnut: A Bidirectionally Typed
Structure Editor Calculus,” in Symposium on Principles of Programming Languages (POPL), 2017.
DOI: 10.1145/3009837.3009900. [Online]. Available: https://doi.org/10.1145/3009837.3009900.

Cohen and Chugh | PLATEAU | February 2025 4/5

https://doi.org/10.1145/3313831.3376494
https://doi.org/10.1145/3313831.3376494
https://code.visualstudio.com/
https://codemirror.net/
https://doi.org/10.1145/3544548.3580785
https://doi.org/10.1145/3544548.3580785
https://doi.org/10.1145/3009837.3009900
https://doi.org/10.1145/3009837.3009900

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

B. Hempel, J. Lubin, G. Lu, and R. Chugh, “Deuce: A Lightweight User Interface for Structured Editing,”
in International Conference on Software Engineering (ICSE), 2018. por: 10.1145/3180155.3180165.
[Online]. Available: https://doi.org/10.1145/3180155.3180165.

JetBrains, MPS (Meta Programming System), 2011-2024. [Online]. Available: https://en.wikipedia.
org/wiki/JetBrains_MPS.

Brown PLT, Picking Colors for Pyret Error Messages, 2018. [Online]. Available: https://blog.brownplt.
org/2018/06/11/philogenic-colors.html.

I. Bhanuka, L. Parreaux, D. Binder, and J. I. Brachthauser, “Getting into the Flow: Towards Better
Type Error Messages for Constraint-Based Type Inference,” Proceedings of the ACM on Programming
Languages (PACMPL), no. OOPSLA, 2023. por: 10.1145/3622812. [Online]. Available: https://doi.
org/10.1145/3622812.

E. Zhao, R. Maroof, A. Dukkipati, A. Blinn, Z. Pan, and C. Omar, “Total Type Error Localization and
Recovery with Holes,” Proceedings of the ACM on Programming Languages (PACMPL), no. POPL,
2024. por: 10.1145/3632910. [Online]. Available: https://doi.org/10.1145/3632910.

World Wide Web Consortium (W3C), Cascading Style Sheets (CSS) 3, 2024. [Online]. Available: https:
//www.w3.org/Style/CSS/.

D. Moon, A. Blinn, and C. Omar, “Gradual Structure Editing with Obligations,” in Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 2023. por: 10.1109/VL-HCC57772.2023.00016.
[Online]. Available: https://doi.org/10.1109/VL-HCC57772.2023.00016.

M. Resnick, J. Maloney, A. Monroy-Hernandez, et al., “Scratch: Programming for All,” Communications
of the ACM (CACM), 2009. por: 10.1145/1592761.1592779. [Online]. Available: https://doi.org/10.
1145/1592761.1592779.

T. Ball, A. Chatra, P. de Halleux, S. Hodges, M. Moskal, and J. Russell, “Microsoft MakeCode: Em-
bedded Programming for Education, in Blocks and TypeScript,” in Proceedings of the 2019 ACM
SIGPLAN Symposium on SPLASH-E, 2019. por: 10.1145/3358711.3361630. [Online]. Available: https:
//doi.org/10.1145/3358711.3361630.

D. Bau, D. A. Bau, M. Dawson, and C. S. Pickens, “Pencil Code: Block Code for a Text World,"”
in International Conference on Interaction Design and Children (IDC), 2015. por: 10.1145/2771839.
2771875. [Online]. Available: https://doi.org/10.1145/2771839.2771875.

Cohen and Chugh | PLATEAU | February 2025 5/5

https://doi.org/10.1145/3180155.3180165
https://doi.org/10.1145/3180155.3180165
https://en.wikipedia.org/wiki/JetBrains_MPS
https://en.wikipedia.org/wiki/JetBrains_MPS
https://blog.brownplt.org/2018/06/11/philogenic-colors.html
https://blog.brownplt.org/2018/06/11/philogenic-colors.html
https://doi.org/10.1145/3622812
https://doi.org/10.1145/3622812
https://doi.org/10.1145/3622812
https://doi.org/10.1145/3632910
https://doi.org/10.1145/3632910
https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/
https://doi.org/10.1109/VL-HCC57772.2023.00016
https://doi.org/10.1109/VL-HCC57772.2023.00016
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/3358711.3361630
https://doi.org/10.1145/3358711.3361630
https://doi.org/10.1145/3358711.3361630
https://doi.org/10.1145/2771839.2771875
https://doi.org/10.1145/2771839.2771875
https://doi.org/10.1145/2771839.2771875

	A Motivating Scenario
	Debugging a Binary Operation Error
	Debugging a Filter Predicate Error
	Resolving a Point-Free Pipeline Warning
	Updating User Preferences

	Research Directions
	Layout: Rendering Structured Text with Style
	Applications: Beyond Visualizing Parse Information
	A Style Sheet Language for Code
	Code Style Sheets in the Editor

