
Predicting Haskell Type Signatures From Names

Bowen Wang

July 26, 2018

Abstract
Neural Program Synthesis has been a fast-growing field with many exciting advances such

as translating natural language into code. However, those applications often suffer from the
lack of high-quality data, as it is fairly difficult to obtain code annotated with natural language
that transcribes its functionality precisely. Therefore, we want to understand what information
we can automatically extract from source code to facilitate program synthesis, without explicit
supervision. Specifically, we study the problem of predicting type signatures given identifier
names. We focus on Haskell, a strongly typed functional language, and collect data from
Haskell repositories on GitHub. We use two different approaches: unstructured prediction,
which is based on the sequence-to-sequence model, and structured prediction, which models
the tree structure of the type signatures directly. The structured prediction model outperforms
the unstructured prediction model in terms of both signature accuracy (27.28% vs. 23.98%)
and structural accuracy (61.65% vs. 41.44%).

1 Introduction
Recent years have witnessed the great success of deep learning in various domains, including image
classification [8], machine translation [32], speech recognition [23] and so on. Such success has
inspired researchers in programming languages and natural language processing to apply deep
learning techniques to tackle program synthesis tasks previously deemed insurmountable, such as
synthesizing code from natural language specification alone [33, 22]. Even though the application
of deep learning to program synthesis has gained some success — we can now synthesize some
nontrivial programs from natural language alone [22] — we still face the biggest obstacle in any
application of deep learning: lack of data. In some sense, the task of program synthesis can be
viewed as translating human intent into code. While there are many different forms of human intent
used in programming — such as natural language, input-output examples, and partial specifications
— it is extremely hard to gather high-quality data for human intent along with the huge amount
of code available on the Internet. For example, even though programmers often write comments
when coding, they usually focus on high-level ideas rather than transcribing the functionality of
the code verbatim, thereby making it difficult to extract useful information for downstream tasks,
such as program synthesis.

The difficulty in collecting high-quality data for program synthesis pushes us to think from
another perspective: what useful information can we extract from programs per se for program
synthesis? This paper tries to provide a possible answer: names and type signatures.

While most modern programming languages provide some notion of type, the role of type
systems varies significantly across different languages. In strongly typed languages, i.e, languages
where typechecking is used to prevent runtime exceptions, type signatures often contain important
information that specify the behavior of an expression. In some cases, a type signature almost
uniquely defines the semantics of a function. For example, consider the following Haskell type
signature Maybe a → a. While placeholders like undefined and error could satisfy the given
type signature, the only nontrivial function of type Maybe a → a is fromJust, which has the
following definition:

fromJust :: Maybe a -> a
fromJust Nothing = errorWithoutStackTrace "Maybe.fromJust: Nothing"
fromJust (Just x) = x

Similarly, the only nontrivial function that has type signature (a, b) → a is fst, which has the
following definition:

1

fst :: (a,b) -> a
fst (x,_) = x

In addition to the importance of type signatures, we can often tell the corresponding type
signature from the name of an identifier, thanks to the rich information encoded in identifier
names. For instance, the name listDiff suggests that the function takes two lists and returns
their difference, and is thus likely to have the type signature [a] → [a] → [a].
Our Goals The connection between identifier names and their corresponding type signatures leads
us to the question: can we predict the type of an expression, given its name? A successful
model for this task could, in the future, be used as part of an interactive programming system that,
for example, automatically suggests type annotations while the user is typing, or flags identifiers
that are not semantically consistent with a user-defined type annotation.

Formally, let Σ be the space of identifier names and T be the space of type signatures. We
aim to learn a mapping f : Σ → T . However, such a naive formulation would not be applicable
in practice as such an f cannot take into consideration the new types defined by users. Therefore,
it would be better to predict the type signature given some context that contains the types that
appear in the type signature. As a result, f should be a function of Σ, parametrized by context c.

Challenges Even with context, predicting type signatures from identifier names is a quite chal-
lenging task. The four main challenges are:

1. Unlike a normal sequence-to-sequence task such as machine translation, the rigidity of type
signatures requires exact matches rather than approximations.

2. As mentioned before, users can, and often do, define new types as they wish, which makes
prediction even more daunting. While the NLP community has developed some methods
to deal with the notorious problem of out-of-vocabulary words [30, 6, 25], those methods
are often applied in settings where out-of-vocabulary words are rare. In our task, since
programmers who use strongly typed languages often define new types, there are often a
large number of out-of-vocabulary types in a codebase.

3. To make things worse, with respect to identifier names, not all programmers follow the naming
convention of a particular language and some might use names that are uninformative, such
as foo or bar, or names that are generic and thus ambiguous, such as applyFunc, get, and
toFun.

4. Furthermore, unlike some other tasks that leverage the semantics of natural language such
as machine translation, the semantic information functions in a different way in our task. In
normal sequence-to-sequence tasks like machine translation, the similarity and differences in
the semantics of input usually correspond to those of the output, i.e, two sentences of similar
meaning in English should be translated to sentences of similar meaning in Spanish. However,
in our tasks, the opposite sometimes holds. Consider the following two set functions:

intersect :: Set a -> Set a -> Set a
union :: Set a -> Set a -> Set a

In terms of names, they are opposite of each other, yet they share the same type signature.
This phenomenon appears quite often in various programs, suggesting a more complicated
semantic relationship between the input names and the output signatures.

Our Approach While our approach works for any strongly typed programming language, to
ground our task more concretely, we focus on predicting type signatures for Haskell [11], a functional
language with a powerful type system. In this work, to make data collection and processing simpler,
we only consider top-level function and variable definitions, although our approach can be extended
to non-top-level identifiers with some modifications of context.

We consider two different approaches to this problem, unstructured prediction and structured
prediction. Unstructured prediction treats both the name and type signatures as a sequence of
tokens and builds the model on top of the classic sequence-to-sequence model [28]. Structured
prediction explicitly models the tree structure of the type signatures and thus is guaranteed to
generate well-formed type signatures. Both models make use of context information, which in our

2

approach consists of some number of previous type annotations. We measure the performance of our
models on (a) signature accuracy, which measures the percentage of correct signature predictions,
and (b) structural accuracy, which measures the percentage of predictions that have the same
tree structure as the ground truth. The structured prediction model has both higher signature
accuracy (27.28%) and higher structural accuracy (61.65%), as expected. Both models beat the
strong baseline proposed in [9], which simply copies the previous signature in the same file.

2 Related Work

2.1 Neural Program Synthesis
With the advance in deep learning in recent years, neural program synthesis, which uses deep
learning to tackle traditional program synthesis problems, has become a rapidly growing field [12].
The application of deep learning to natural language processing brings about powerful language
models [16], thereby enabling researchers to leverage natural language information for program
synthesis. Thus, unlike some of the traditional program synthesis techniques like combinatorial
search [27], synthesis from input-output examples [7, 26], and type-directed synthesis [19, 20],
neural program synthesis makes much more use of natural language. Several recent works focus on
synthesizing code from natural language descriptions [5, 14, 33, 22] and mostly take the approach
of structured prediction to better model the structure of a program. Dong and Lapata propose
the sequence-to-tree (seq2Tree) model, which uses a sequence-to-sequence model to generate tree
output by adding special tokens to model depth-first tree generation [5]. Ling et al. propose
latent predictor network to allow character-level generation of code pieces [14]. Yin and Neubig
use a generation model that follows the grammar for Python abstract syntax trees (ASTs) [33].
Rabinovich et al. use a modular neural network to generate output according to the abstract
syntax description language [22], an approach most similar to ours. However, there are some
crucial differences between our approach and the approaches mentioned above: (1) our task does
not require external labels and thus has abundant data available; and (2) none of the approaches
above considers context, which is an essential component of our model.

More recently, researchers started to combine traditional synthesis techniques, such as searching
and programming by examples, with neural networks in hope of further extending neural program
synthesis capabilities. Robust Fill [4] combines structured prediction with searching based on
examples to synthesize spreadsheet programs. More recently, Polosukhin and Skidanov propose
tree beam search to refine the seq2Tree generation results [21]. Murali et al. combine neural
program generation with combinatorial search by training on program sketches [17].

The problem studied in this paper, which falls into the realm of neural program synthesis, was
first proposed by Hempel [9]. To improve the performance of the model, we gathered a larger
dataset (1932 repos vs. 1000 repos, 401,882 vs. 304,272 signatures). In terms of methodology,
unlike the simple encoder-decoder model considered in [9] which ignores the structure of type
signatures, we propose the structured prediction model to capture the tree structure of Haskell
type signatures. We also make much better use of context information through attention and
copying and our models have much better performance than the model discussed in [9].

2.2 Multi-attention
Attention [2] in the encoder-decoder model allows the decoder to focus on certain parts of the
encoder output at each step of decoding and has proved to be highly effective at sequence-to-
sequence tasks [2, 15, 29]. The complexity of our structured prediction model, however, requires
us to combine hidden states from and compute attention on multiple modules. Zoph and Knight
concatenate hidden states when computing attention from multiple sources [35] while Zadeh et al.
first compute multiple attentions for different hidden states and combine them at the end [34]. We
mostly follow the approach used in [35] to attend to multiple different sources.

2.3 Copying
Dealing with out-of-vocabulary (OOV) words has always been an obstacle in NLP applications
such as text summarization and machine translation. To address this problem, researchers have
considered copying OOV words from input. Vinyals et al. propose the pointer network to copy

3

Frequency of Type in Signatures #Types #Signatures

10193 1 10193
1000 - 3613 17 33106
100 - 1000 192 43947
10 - 100 3644 76239
2 - 10 50333 150140
1 161294 161294

Table 1: Distribution of types in the dataset. For a given row, the first column denotes a range
[n,m). The second column denotes the size of the set T of types t that appear in between n and
m signatures. The third column denotes the number of signatures x :: t such that t ∈ T .

from input according to the attention probability [30]. Later work such as [6] and [25] allow both
generation and copying by computing the probability of generation at each time step. We generally
follow the mechanism proposed by See et al. [25] to copy types from context. However, unlike
the text summarization task studied in [25], our prediction task may actually benefit from token
repetitions, especially in the structured prediction model, as signatures like Int → Int and a →
a → a are quite common. Therefore, we do not use the coverage loss proposed in [25] to punish
repetitions.

3 Data Pipeline
As is true with every deep learning application, the data pipeline is of paramount importance. In
this section, we describe how we collect and preprocess data for our task.

3.1 Data Collection
To construct the dataset, we crawled all the existing Haskell repositories on with 10 or more stars
on github. We ended up with 1932 repositories and, using a standard 80/10/10 split (i.e, 80% data
for training, 10% for validation, and 10% for testing), we had 1546 repositories for training, 193
for validation and 193 for testing. All the .hs files in the repositories were passed to a Haskell
parser and we ended up with 401,882 signatures for training, 39,040 signatures for validation, and
33,997 signatures for testing. The dataset has 192,606, 18,149, and 18,212 unique types in training,
validation, and testing set, respectively. Among all types in the dataset, the most common one is
IO (), which appears 10,193 times.

Table 1 gives a more detailed view of the distribution of types in the dataset. Most types appear
in fewer than 10 signatures in the dataset and 161,294 types appear only once in the dataset. The
data shown in Table 1 are from the entire dataset, including training, validation, and testing. Note
that the data describe types after normalization, as will be discussed in section 3.2.1.

3.2 Data Preprocessing
Now we discuss how we process the dataset to prepare for training.

3.2.1 Normalize Signatures

Multi-signatures are de-sugared to consecutive single-signatures. For example, if we have multi-
signature

union, intersection :: Set a -> Set a -> Set a

we de-sugar it to

union :: Set a -> Set a -> Set a
intersection :: Set a -> Set a -> Set a

4

To simplify the task a bit further, we remove the qualification of types. For example, Prelude.Maybe
is simplified to Maybe.

We also normalize the type variables to lower case letters (i.e, the first type variable is renamed
to a, the second to b, etc) to avoid unnecessary noise in the data. A good example is the lookup
function in Data.Map, which has signature

lookup :: k -> Map k a -> Maybe a

where k indicates that the type variable is the key type. The signature is then normalized to

lookup :: a -> Map a b -> Maybe b

where k is normalized to a and a is normalized to b.

3.2.2 Type Classes

One of the important features unique to Haskell are typeclasses, which allows types that share a
common set of operations (methods), as described explicitly with types and implicitly with intended
invariants [31]. For example, one might want to overload the (+) operator on a number of different
types including Int, Float, Double and so on. Haskell programmers deal with overloading in a
principled way by creating the Num typeclass, which has (+) as a method. Then for each type
that (+) is applicable, one just needs to implement an instance of (+) for that particular type.
In this way, Haskell programmers can easily extend operators like (+) to user-defined types by
implementing the Num class instance. However, explicitly modeling typeclasses would add more
complexity (make type signatures longer and thus harder to predict, for example) and reduce the
generalizability of our model to other functional languages that do not employ typeclass. Therefore,
as in Hempel [9], we choose to remove typeclass constraints from type signatures. For example,
the signature of the operator (+), which is Num a ⇒ a → a → a, would simply be a → a →
a after removing typeclass constraints. The signature of lookup function discussed in section
3.2.1 also has typeclass constraint removed. The original signature is Ord k ⇒ k → Map k a →
Maybe a.

3.2.3 Token Streams and ASTs

We treat the input (identifier names) and the target (type signatures) differently. For input names,
since Haskell programmers usually follow the camel case naming convention (over 99% names in our
dataset do), we segment the names into tokens accordingly. 1 To achieve better generalizability, we
also stem each token using the NLTK library [3]. The stemmer converts upper case letters to lower
case letters to avoid superficial differences such as that between “md5" and “MD5". It also stems
verbs and nouns to the original form. For example, “Zoned" is stemmed to “zone" and “Suffixes"
is stemmed to “suffix". Stemming reduces the number of unique identifier tokens in the training
set from 44,543 to 30,361.

For type signatures, we considered two different approaches: viewing type signatures as a
sequence of string tokens without considering any structures (section 5) or exploiting the tree
structure underlying Haskell type signatures (section 6). For example, under the former approach,
the type Int → (Int , Int) is a sequence of seven tokens 2: <Int; →; (; Int; ,; Int;)>
whereas under the latter approach, the type Int → (Int , Int) is a tree shown below.

→

Int (,) Int Int

Notice that type application (,) Int Int remains as is, since we only treat arrow as a special
type constructor and construct the tree structure accordingly. However, if there is an arrow
contained with in the type application — consider (,) (Int → Int) Int for example — then
the subtree Int → Int will be modeled as a tree.

1Our segmentor can also handle other naming conventions.
2We use the notation <a; →; b> to represent type signature a → b.

5

3.2.4 Qualified Identifier Names

To gain more information than contained in identifier names alone, we also consider two ways of
qualifying an identifier name: prepending the identifier name with module name or the entire path
to the file containing the identifier. For example, if the function fromJust is defined in the Maybe
module, and the Maybe module is a file in the Prelude directory, then the module-qualified name
of fromJust is <Maybe; fromJust>, whereas the path-qualified name of fromJust is <Prelude;
Maybe; fromJust>. When the identifier names are qualified by module names, they may still not
be unique. In the above example, there could be another directory MyPrelude that contain the
same Maybe module. On the other hand, when identifier names are qualified by the entire path
leading to the file that contains the identifier, it is almost globally unique. 3

4 Overview of Two Approaches
We generally view the task of predicting type signatures given (qualified) identifier names as a
machine translation problem with the identifier names being the source and the type signatures
being the target. In section 5, we ignore the structure of type signatures and use a sequence-to-
sequence (seq2seq) model similar to the classic seq2seq model [28]. In section 6, we explicitly model
the type signatures as binary trees and the model is, in principle, a sequence-to-tree model similar
to the seq2Tree model proposed in [5]. However, the information encoded in the identifier names
alone may not be sufficient to decode their type signatures and thus we also incorporate context
information (names and type signatures that appear in the same file) in both the unstructured
prediction model and the structured prediction model to achieve better accuracy. Unlike [9], which
merges context and identifier names to feed to the encoder, we use separate encoders for context
in both models.

5 Unstructured Prediction
We begin with unstructured prediction, i.e., predicting the type signature as if it were a sequence.
As mentioned in section 3.2, this requires us to segment the type signature into tokens and treat
the type signature as a sequence of tokens. In this setting, the backbone of the model is the seq2seq
model proposed in [28]. Later in this section, we discuss how we add attention and copying to the
model as we take context into consideration.

5.1 Encoder
As described in 3.2, we segment and stem the function name s into a sequence of tokens (xi)1≤i≤n.
To encode the input sequence, we use a bidirectional LSTM. LSTM (Long Short-Term Memory)
is a type of recurrent neural network that uses gated connection to allow better gradient flow [10].
Bidirectional LSTM [24] is a variation of LSTM that has both forward and backward hidden states.
The update at time step t is given by

−→
ht ,
←−
ht = LSTM(

−−→
ht−1,

←−−
ht−1, et)

where et is the embedding of xt. We concatenate the forward and backward final hidden states to
obtain the initial hidden state for the decoder.

5.2 Decoder
The decoder mainly consists of a one-layer feed-forward network on top of an LSTM. At time step
t, the decoder produces the prediction by first computing the update

ht = LSTM(ht−1, et)

where et is the embedding of the previous prediction token, and then feeding ht to a softmax layer
on top of the feed-forward network to obtain the probability distribution p(w) of the output tokens
(types). The prediction token is then given by yt = argmax(p(w)).

3With the exception that two different project owners might have exactly the same path names.

6

5.3 Attention
Attention has proved to be highly successful at improving the performance of sequence-to-sequence
tasks [2]. In essence, attention allows the decoder to “focus” on different parts of the input sequence
based on the current hidden state, thereby achieving higher accuracy. We mostly follow the
attention mechanism proposed by Loung et al. [15].

The attention alignment vector at is computed from the decoder hidden state ht and each of
the encoder hidden states h̄s as

at(s) =
exp(score(ht, h̄s)∑
s′ exp(score(ht, h̄s′))

where score(ht, h̄s) is a scoring function that measures how much ht aligns with h̄s. We choose the
scoring function to be

score(ht, h̄s) = hTt Wah̄s

for generality (Wa is a learnable parameter matrix), as suggested in [15].
From the alignment vector at we can compute the context vector

ct =
∑
s

at(s)hs,

which summarizes the attention information based on the current decoder hidden state. Given
the context vector ct and the decoder hidden state ht, we compute the attentional hidden state
h̃t = tanh(Wc[ct;ht]) where Wc is a matrix of weight parameters. Later in section 5.4 when we
include context type signatures, h̃t becomes tanh(Wc[ct; c

′
t;ht]) where c′t is the context vector for

context type signatures.
To obtain the output probability for each type at time step t, we compute

pvocab = p(yt|y<t, x) = softmax(Wsh̃t) (1)

where Ws is another parameter matrix.

5.4 Incorporating Context
One of the key insights we have is that there should be connections between the type signatures of
functions defined in the same file. Indeed, Hempel shows that if the prediction model simply copies
the previous type signature in the same file, it can achieve more than 20% accuracy [9], which is a
quite high accuracy considering all the difficulties in predicting the correct signature mentioned in
section 1 such as the requirement for exact match and ambiguity in the names. In addition, there
are over 25% type signatures in the test set that contain out-of-vocabulary types, which means
that the prediction accuracy can be at most 75% if we do not consider any unseen types that
users defined or imported from other files or libraries. (This could of course be done, but that
requires integrating the system with each project’s build system, which we try to avoid to keep the
project simple and self-contained.) Consider the following example: we are trying to predict the
type signature of an identifier tAvgPx, in the module FIX40. The correct type signature is FIXTag,
which is not in the vocabulary gathered from the training set. However, all the identifiers in this
file have the same type signature. 4 Thus, if we are able to copy type signatures from context,
it is very likely that we can predict the type signature of tAvgPx correctly. By incorporating
context into our prediction model, we hope to gather more information to enhance prediction and
circumvent the notorious out-of-vocabulary word problem.

There are many ways to give a precise definition of context of an identifier. We take a naive
approach and define the context of a top-level identifier f as the N preceding type signatures that
appear in the same file as f , where N is a hyperparameter. If there are less than N such type
signatures in the file, we simply take all the signatures that precede f . Of course there are more
refined ways of considering the context for f . For example we could consider the types of identifiers
used in the definitions of preceding top-level expressions. Such considerations are left for future
work.

4There is a number of such files in the dataset, some of which look like auto-generated files.

7

5.4.1 Context Signature Encoder

We first turn the context signatures into a sequence of tokens by simply turning each type signature
in the context into a sequence of tokens and concatenate the sequences. An end token is added at
the end of each signature to serve as a delimiter. A natural way to process the resulting sequence
is to add another encoder. Similar to the encoder for the input sequence, we use a bidirectional
LSTM to encode the context.

The final architecture we used is shown in figure 1. We use g to combine the final hidden states
from the input name encoder and the context signature encoder to obtain the initial hidden state
for the decoder. g is defined as follows:

g(he, hc) = tanh(Wd[he;hc])

where Wd is a learnable parameter matrix and [a; b] denotes the concatenation of a and b.

Encoder

Context	Encoder

Input	(names)

Context	(type	signatures)

ℎ"

ℎ#

Decoder𝑔
ℎ%&

Figure 1: Model for incorporating context.

5.4.2 Copying From Context

As mentioned earlier, one of the advantages of incorporating context is that type signatures in the
context provide a way of coping with the out-of-vocabulary types. Out-of-vocabulary prediction
has always been one of the major difficulties in NLP applications and there have been numerous
attempts at resolving this issue [30, 6, 25], most of which proposed some way of copying unknown
words from certain context. We mostly follow the approach used by See et al. [25]. However,
there are some crucial differences: the pointer-generator network proposed by See et al. [25] is
used in the context of text summarization where the out-of-vocabulary words are copied directly
from the input text. In our case, however, the out-of-vocabulary types live in a different space
from the identifier names. Therefore, our copying mechanism are necessarily more complicated, as
it involves dealing with two disparate kinds of data: names, which are text, and type signatures,
which consist of types.

To properly model generation and copying, we explicitly compute the probability of generation
at time step t by agglomerating information from input name encoder and context encoder. More
specifically, let c∗t be the context vector computed from attention on the hidden states of the
context encoder, and h∗t be the context vector on the hidden states of the input name encoder.
Then the probability of generation is given be

pgen = σ(wT
h∗h
∗
t + wT

c∗c
∗
t + wT

h ht + wT
x xt + b)

8

where wh∗ , wc∗ , wh, wx and b are learnable parameters and xt is the embedding of the decoder
input.

Since the decoder either generates a token or copies a token from context, the final probability
distribution over the extended vocabulary is given by

p(w) = pgen · pvocab(w) + (1− pgen)
∑

i:wi=w

at(i),

where pvocab is given by equation 1 and at(i) is the amount of attention on the ith word of the
context for the current output step t.

5.4.3 Loss Function

As with many sequence-to-sequence models, the unstructured prediction model use the negative
log-likelihood loss, which has the following form

loss =
1

T

T∑
t=0

− log(p(yt))

where yt is the ground-truth token at time step t.

6 Structured Prediction
Unstructured prediction, which treats the type signatures as sequences of tokens, fails to exploit
syntactic and semantic structure underlying Haskell type signatures, thereby generating many ill-
formed type signatures. To move towards syntactic and semantic soundness in type signature
generation, we explicitly model the binary tree structure of Haskell type signatures.

More specifically, a Haskell type can be described by the following grammar:

Type = NonArrowType
| Arrow Type Type

where NonArrowType refers to types whose type constructor is not arrow. For example, Maybe
(Int → Int) is a non-arrow type even though it contains an arrow. In contrast, Int → Int
is an arrow type. One might argue that the grammar presented above seems arbitrary in that
it distinguishes arrow from other type constructors. While it is certainly true that → is a type
constructor, it has a unique position in the Haskell type system: a type represents a function if
and only if it has arrow as its type constructor. We consider such distinction to be essential and
therefore choose to explicitly model the arrow type constructor.

6.1 Type Constructors And Kinds
The rich type system of Haskell allows users to freely define new types with type constructors. For
example, type Maybe is defined by:

data Maybe a = Just a
| Nothing

with type constructor Maybe and data constructors Just and Nothing. Here Maybe is a type
constructor with kind ∗ → ∗, which means it maps a ground type (of kind ∗) to another ground
type.

We explicitly model the kind of each type constructor by augmenting the type constructors with
their kinds to avoid collapsing type constructor with different arity to the same name. For example,
if there are two Maybes in the dataset with kinds ∗ and ∗ → ∗, the first Maybe is represented as
Maybe#0 while the second Maybe is represented as Maybe#1.

6.2 Model Architecture
To model Haskell type signatures as binary trees according to the grammar presented in section 6,
our model consists of several modules, each with its own functionality. The final model is shown
in Figure 2.

9

Name Name	
Encoder

Context Context	
Encoder

Selector

Non-arrow	Type	
Module

Arrow	Type	Module

Com
biner

ℎ"#$%&'()

Decoder

ℎ* left
right

Figure 2: Structured prediction model. Given input name and context, the model produces
the input name hidden state hname, context name hidden state hcname, context signature final
state hcsig, and context signature hidden states hcstates. The combiner combines hname, hcname,
and hcsig to produce the combined hidden state hcombined for decoder to decode from. The decoder
selects which module to use according to the output of the module selector and starts generating
output accordingly.

6.2.1 Name Encoder

The name encoder processes the qualified function names and returns a vector representation of
the given name. Similar to the input encoder used in section 5.1, the name encoder consists of a
bidirectional LSTM.

6.2.2 Context Encoder

The context encoder has two parts: context name encoder Ecname and context signature encoder
Ecsig. Ecname is, similar to the name encoder, a bidirectional LSTM. Ecsig, on the other hand,
is a tree LSTM encoder similar to that used in [5]. It parses the type signature as a binary tree
and processes each node in depth-first search order. Given a context containing n name-signature
pairs, Ecname processes the names and outputs the hidden state hcname. Notice that, unlike the
unstructured prediction model which concatenates all context signatures due to the sequence-to-
sequence modeling, Ename processes each signature separately and averages the hidden states at the
end to produce the context name hidden state hcname. Similarly, Ecsig takes in the type signatures
as trees and outputs two things: hcsig, the average final hidden states of the type signatures, and
hcstates, the hidden states of all the nodes in the n type signatures. hcstates will later be used to
compute the attention mask for the decoder.

6.2.3 Combiner

The combiner module, similar to that proposed in [35], combines the hidden states produced by
the different encoders to obtain a single hidden state for the decoder to decode from.

The combiner, given the hidden states hname, hcname, hcsig, produces the combined hidden
state hcombined. We consider two different ways of combining the hidden states:

1. (Weighted Sum)

hcombined = tanh(Wnamehname +Wcnamehcname +Wcsighcsig)

where Wname, Wcname, and Wcsig are learnable parameters.

10

2. (Projection)
hcombined = tanh(W [hin;hcname;hcsig])

where W is a matrix of learnable parameters and [a; b] denotes the concatenation of a and b.

6.2.4 Decoder Overview

Compared to the relatively simple encoder modules, the decoder is much more complex. The
grammar presented in section 6.1 suggests a natural two-module decoder: one module for handling
non-arrow types and one module for handling arrow types. Since the decoder needs to know,
at each step of generation, which module to use, we have another module dedicated to module
selection.

6.2.5 Module Selector

At each step of generation with previous node token xt and previous hidden state ht, the selector
first computes an embedding et of xt and then compute the probability for selecting each module
by pbase, parrow = softmax(fT (et, ht)) where fT is a two-layer feed-forward network with ReLU
(rectified linear unit) nonlinearity. The module with larger probability is chosen for the next step
of generation.

6.2.6 Non-arrow Type Module

The non-arrow type module first computes the new hidden state ht = LSTM(ẽt−1, ht−1) where

ẽt−1 = attn(et−1, hname, hcname, hcsig)

is the attention output of the previous embedding et−1. The attention mechanism is similar to
that used in [35]. We concatenate hname, hcname and hcsig to feed into the attention module and
compute the attention accordingly. Based on ht, the module computes pvocab = softmax(fT (ht))
where fT represents a feed-forward network. Then, depending on whether there is context available,
the module behaves differently.

When context is available, the module has two modes: generation and copy. Thus, it needs to
compute the generation probability, which, similar to that in [25], is given by

pgen = sigmoid(whht + wnhcname + wshcsig + weet−1)

where wh, wn, ws and we are learnable parameters. The copy probability of tokens, pcopy, is given
by the normalized attention score of ht on hcstates (see section 6.2.2). Thus, the final probability
over the tokens is given by

p(w) = pvocab ∗ pgen + pcopy ∗ (1− pgen).

When the context is not available, the module computes the output token probability in a
similar fashion to the decoder in unstructured prediction: the probability is computed as the
softmax output of a feed-forward network on the attention output of ht on the input hidden states
hin.

With the final probability over tokens p(w) available, the next token anext is selected as
argmax(p(w)). If anext is not a ground type, we recursively call the decoder with the corresponding
number of steps to make sure a valid type is generated.

6.2.7 Arrow Type Module

The arrow type module is in charge of generating a type using the Arrow Type Type production
rule. It first computes the new hidden state ht = LSTM(et−1, ht−1) where et−1 is the embedding
of the previous token generated by the decoder and ht−1 is the previous hidden state. Then the
module recursively generates the left subtree and the right subtree by calling the decoder with new
hidden state and the arrow embedding, i.e,

Treeleft, hleft = Decoder(ht, earrow)

hright = tanh(W [hleft, ht])

Treeright, hfinal = Decoder(hleft, earrow)

11

where earrow is the embedding for the arrow token. 5 The generation starts with a special start
token. Notice that the hidden state for generating the right tree is a combination of the left hidden
state and the parent hidden state. This arrangement follows the idea of parent feeding used in [5]
and also allows the model to carry information from the left subtree to facilitate the generation
of the right subtree, since the left subtree often contains information vital for the generation of
the right subtree. For example, consider the type signature (a → b) → a → b, which has the
following tree structure:

→

→

a b

→

a b

The left subtree a to b contains the types that the right tree a → b needs and therefore we believe
that carrying such information over is conducive to generating better type signatures.

6.2.8 Controlling Recursion Depth

Unlike the classic sequence-to-sequence model [28], our model does not use a special end token
to signal the end of generation. Instead, the generation stops when a complete tree has been
generated. However, due to the recursive nature of the decoder, it is possible that, when not
well-trained, the decoder could keep generating subtrees infinitely. To prevent this, we add a
hyperparameter rec_depth to control the recursion depth of the decoder. We set rec_depth to 6
in practice as there is only a small fraction (1.8%) of type signatures that have depth larger than
6.

6.2.9 Loss Function

Unlike the relatively simple unstructured prediction model that only use the negative log-likelihood
loss on the target tokens, the structured prediction also incorporates a topology loss, similar to
that proposed in [1],

lossttopo = − log(p(mt
i))

where p(mi) denotes the probability of choosing module i (i = 0, 1) at time step t. The structural
loss pushes the model to learn the structure of type signatures. The final loss for each step t is

losst = lossttoken + λlossttopo

where lossttoken is the usual negative log-likelihood loss and λ is a hyperparameter. Note here that
we follow [1] and add a λ multiplier on the topology loss, although combining the two loss functions
with a weighted sum, i.e, λlosstoken + (1− λ)losstopo might also be worth considering.

7 Evaluation
We conducted multiple experiments for both unstructured prediction model and the structured
prediction model to study the influence of some critical hyperparameters such as the number of
context names and signatures, as well as different choices for module structures in the structured
prediction model. However, due to time and resource limitations, we were unable to tune some
hyperparameters. Throughout the experiments, we use a embedding size of 128 and hidden size
of 256. The LSTMs all have one layer. We use Adam [13] to optimize for both unstructured and
structured models. These hyperparameters are chosen according to [22] and [33]. The learning rate

5Note that we do not explicitly generate the arrow token as it is embedded in the tree structure of the output.

12

Model Signature Accuracy (%) Structural Accuracy (%) Well-formedness (%)

Hempel [9] 10.00 – –

Baseline 23.39 49.78 100
Unstructured 23.98 41.44 62.15
Structured 27.28 61.65 100

Human 25.33 57.33 100

Table 2: Overview of final results.

for unstructured prediction model is set to 3×10−4 and is reduced to half of its value when the dev
loss plateaus, i.e, when the dev loss does not decrease for two epochs. For structured prediction
model, we use a fixed learning rate of 2 × 10−4. The models are implemented in PyTorch [18]
and the whole implementation has roughly 3000 lines. The code and dataset are available at
https://github.com/bowenwang1996/predictTypeSignature.

We measure the performance of our models on the following three criteria:

1. Signature accuracy refers to the percentage of correct signature predictions. A predicted
signature must match the ground truth exactly to be considered correct.

2. Structural accuracy refers to the percentage of predicted signatures that have the same
tree structure as the ground truth under the grammar presented in section 6.1. For example,
if the ground truth is Int → Int and the prediction is String → Int, the prediction is
structurally correct.

3. Well-formedness refers to the percentage of the predicted signatures that follow the gram-
mar presented in section 6.1. Note that this only applies to the unstructured prediction
model, as structured prediction model is guaranteed to generate well-formed type signatures.

7.1 Summary of Results
An overview of the final results is presented in Table 2. Table 2 also includes the results reported
in [9], which does not measure structural accuracy and well-formedness. 6

The results mostly align with our expectations: the structured prediction model performs the
best in all measures. To better understand the performance of each model, we study the prediction
results from the following perspectives:
Overlap between baseline, unstructured prediction, and structured prediction. Figure
3 shows that there are 4962 correct predictions shared by all three models, which account for more
than 50% of the correct predictions of each model.
Performance of models based on frequency of type signatures. We also investigated the
performance of each model based on the frequency of type signatures in the dataset (see Table 1).
The result is shown in Table 3. Note that, in Table 3, the numbers refer to the occurrences of type
signatures in a certain category. If a type signature belongs to, say, category 2, and it occurs 500
times in the test set, it is counted as 500 towards #Signatures instead of 1.

Somewhat surprisingly, both unstructured prediction model and structured prediction model
are able to predict some number of category 6 type signatures correctly, which means that both
models have learned, to some extent, how to generate type signatures without context information.
It is also worth noting that both unstructured prediction model and structured prediction model
are much better at predicting IO () than the baseline, which again reveals that the two models
have learned some semantic information for names like main.
Performance of models based on depth and length of type signatures We also study the
distribution of number of correct predictions according to the size of type signatures. Here we
consider two measures of size: depth and length. Depth refers to the depth of a type signature as
a tree. For example, Int has depth 1 and Int → Int has depth 2. The distribution of correct
predictions according to depth is shown in Figure 4a. Length, on the other hand, refers to the
number of tokens a type signature has when considered as a sequence of tokens. For example, Int

6The dataset used in [9] is different but similar enough for comparison.

13

https://github.com/bowenwang1996/predictTypeSignature

1185

1459463

777
4962

861

1951

B

SU

Figure 3: Overlap of correct prediction between baseline (B), unstructured prediction (U), and
structured prediction (S).

Category
Model Baseline Unstructured Structured #Signatures

Category 1 (10193) 108 666 726 866
Category 2 (1000 - 3613) 481 543 558 957
Category 3 (100 - 1000) 3403 3438 3607 4978
Category 4 (10 - 100) 1945 2081 2405 5674
Category 5 (2 - 10) 2030 1396 1824 11397
Category 6 (1) 0 29 113 10125

Total 7967 8153 9233 33997

Table 3: Number of correct predictions based on frequency of type signatures.

has length 1 while Int → Int has length 3. The distribution of correct predictions according to
length is shown in Figure 4b. In both Figure 4a and Figure 4b, rows where none of the prediction
models gets anything right are redacted; this is why the total number of signatures are less than
33997, the size of the test set.

The general trend, as shown in Figure 4a and Figure 4b, is that the larger (deeper or longer)
the type signature is, the harder it is for the model to make a correct prediction.

14

Depth
Model Baseline Unstructured Structured #Signatures

1 5058 5352 5583 10042
2 1916 2011 2656 11802
3 688 666 889 7745
4 212 111 92 2791
5 68 8 13 948
6 16 3 0 383
7 3 1 0 146
8 5 1 0 68
9 1 0 0 38

Total 7967 8153 9233 33963

(a) Distribution of correct predictions according to depth of type signatures.

Length
Model Baseline Unstructured Structured #Signature

1 3156 3190 3200 4633
2 1419 1839 2086 3567
3 860 701 859 3606
4 923 1377 1750 4914
5 380 206 259 2764
6 329 475 638 3230
7 194 82 153 2235
8 169 81 106 1571
9 101 59 52 1400
10 93 37 38 950
11 69 19 12 1022
12 54 14 13 685
13 28 8 6 635
14 74 35 35 434
15 40 22 20 464
16 27 3 0 333
17 13 2 4 285
18 6 0 0 166
19 10 2 2 197
20 6 0 0 138
21 1 0 0 133
22 0 1 0 76
23 2 0 0 85
24 4 0 0 63

26 1 0 0 42
27 1 0 0 49
28 1 0 0 33
29 1 0 0 34

34 1 0 0 12

42 2 0 0 6

51 1 0 0 3

54 1 0 0 2

Total 7967 8153 9233 33767

(b) Distribution of correct predictions according to length of type signatures.

Figure 4: Distribution of correct predictions according to size of type signatures.

15

Performance of models based on the length of identifier names. We also consider the
influence of the length of identifier names on the prediction results. In particular, we consider
the distribution of correct predictions according to the length of module-qualified identifier names.
Here, the length refers to the length of the list of segmented and stemmed tokens contained in an
identifier name. The result is shown in Table 4.

Length
Model Baseline Unstructured Structured #Signature

2 667 838 1029 4001
3 2676 2502 2869 10764
4 1873 1551 1896 8920
5 1348 1530 1696 5756
6 676 859 904 2616
7 362 429 429 1090
8 173 206 195 451
9 71 103 99 214
10 63 72 64 101
11 22 28 22 42
12 14 13 8 16
13 14 14 14 18
14 8 8 8 8

Total 7967 8153 9233 33997

Table 4: Distribution of correct predictions according to length of module-qualified identifier names.

Now that we have discussed the general results, we shall turn to analyze the performance of
each model.

7.1.1 Strong Baseline: Copy-Previous-Signature

As mentioned in section 5.4, there is a very strong rule-based baseline: copying the previous
signature in the same file. In the case that there is no preceding type signatures, this baseline
predicts nothing. The baseline is able to achieve 23.39% signature accuracy and 49.78% structural
accuracy on the test set.

It is worth emphasizing the effectiveness of the rule-based baseline that simply copies the
previous type signature. As shown in Table 2, our machine-learning-based model barely beats
such a naive baseline. Considering that our model uses context that contains up to three type
annotations whereas the baseline only needs one annotation, the simple baseline works surprisingly
well. Again, the performance of the baseline indicates the connection between type annotations
that are spatially close to each other and the importance of context information.

7.1.2 Unstructured Prediction

As shown in Table 2, the best result we obtained for unstructured prediction is 23.98% signature
accuracy, 41.44% structural accuracy, and 62.15% well-formedness (we rank the result in terms of
signature accuracy, as it is the most important measure). In addition, we also study the influence
of context on the performance of the model (on the test set), as context is an important component
of the model. The result is presented in Table 5. It is clear from Table 5 that the use of context
makes a huge difference. Even if we just use one type signature as context, the signature accuracy
jumps from 5.15% to 17.13%. It is also worth noting that the best performance is achieved with 3
context type signatures and adding more type signatures to context only lowers the performance.

7.1.3 Structured Prediction

As shown in Table 2, the best result for unstructured prediction is 27.28% signature accuracy,
61.65% structural accuracy. The structured prediction model is guaranteed to have 100% well-
formedness. Similar to the structured prediction model, we are interested in how the amount of
context information available affects the performance of the model. Since the loss function for

16

Unstructured Structured

Context Num Sig. Acc. (%) Struct. Acc. (%) Sig. Acc. (%) Struct. Acc. (%)

0 5.15 20.45 6.84 49.52
1 17.13 30.48 24.96 62.04
2 23.01 39.07 27.04 61.73
3 23.98 41.44 27.28 61.65
4 23.03 40.79 23.98 61.51
5 22.62 39.22 25.52 61.00

Table 5: Performance of prediction models, by number of annotations in the context.

λ Signature Accuracy (%) Structural Accuracy (%)

0.5 26.40 61.75
1 27.28 61.65
5 26.56 61.60
10 24.86 61.56
100 24.41 62.12

Table 6: Structured prediction model performance, by λ.

structured prediction model consists of both the token loss and the topology loss, i.e, (loss =
losstoken + λlosstopo), we are interested in how the hyperparameter λ affects the performance of
the model.

First we keep λ = 1 and vary the number of context annotations. The result is shown in Figure
5. As with unstructured prediction model, the usefulness of context is again manifest.

Then we keep the number of context annotations used to 3 and vary λ. The result is show in
Table 6.
Somewhat surprisingly, varying λ does not impact the performance of the model significantly. It
remains to be seen what might cause such unexpected behavior.

7.2 A Human Perspective
In addition to tackling the prediction task using machine learning techniques, we are also curious
how a Haskell programmer, given the same information, would perform on the same task. More
specifically, we had one researcher (the author) complete 300 predictions. For each prediction task,
the researcher was given the module name, the identifier name, and three previous annotations
(including both name and signature). The tasks were randomly selected from the test set used for
the machine learning models. The resulting signature accuracy and structural accuracy are 25.33%
and 57.33%, respectively. 7

In terms of signature accuracy, the human performance (25.33%) is the second highest in Table
2. However, it should be noted that the human benchmark is produced by a single researcher who
also designed the models on a small test set consisting of only 300 type annotations. Therefore, it is
expected that the numbers we collected here cannot accurately represent how Haskell programmers
in general would perform on this task. Nevertheless, the human benchmark provides some insight
into the difficulty of the task — even the author who is very familiar with the task and understands
the effectiveness of the baseline, i.e, copying the previous signature, only achieved 25% signature
accuracy, which is not much higher than the performance of the baseline.

7.3 Additional Analysis
7.3.1 Context

As mentioned in section 5.4, the context information is crucial because it not only provides in-
formation about new types that are not seen in the training data, but also allows one to boost

7We didn’t measure the performance of baseline, unstructured prediction model, and structured prediction model
on the 300 examples, primarily because we expect the numbers to be similar to the ones shown in Table 2.

17

the probability of the types that appear close to the current type annotation through attention.
Indeed, the usefulness of context information is clearly shown in Table 5. Table 5 reveals that, if
we do not include any context, both unstructured and structured prediction model perform quite
poorly (5.15% and 6.84% signature accuracy, respectively). In contrast, even if we just use the
previous type annotation as context, the performance of both models improve dramatically (5.15%
→ 17.13% for unstructured prediction model, 6.84% → 24.96% for structured prediction model),
again indicating the effectiveness of context information. However, we also notice that the perfor-
mance starts to decrease once the number of context annotations reaches three. We suspect that
this is because the previous three type signatures are usually sufficient for the model to see the
new types and understand what types are “important” for the prediction; having more signatures
in the context makes it harder to the model to learn to copy the correct types.

We investigated the relationship between number of signatures in the test set that contain
unseen types and the number of context annotations used (types that appear in the context are
considered known types). The results are shown in Table 7.

Context Num % signatures containing unseen types

0 25.43
1 12.16
2 10.69
3 10.06
4 9.66
5 9.39

Table 7: Relationship between number of context annotations and number of unseen types.

It is clear that adding context greatly reduces the number of signatures that have unseen types.
The results also reveal that, when the number of context annotations reach two, adding more
context information has diminishing returns, which echoes with the performance of the models
shown in Table 5.

7.3.2 Name Qualifications

As mentioned in section 3.2.4, we consider two ways of qualifying identifier names — module-
qualified name and full-path qualified name. We investigate whether the two ways of qualification
have an impact on the performance of the model. The result is shown in Table 8. For both
unstructured prediction and structured prediction, using qualification yields better results and
module-qualified names perform better than path-qualified names.

7.4 Case Studies
In this section, we choose several examples from the test set and dissect the performance of the
models on those examples.

7.4.1 Example 1

In the example below, the structured prediction model correctly predicts the signature while the
unstructured prediction model fails. It is clear that both unstructured prediction model and struc-
tured prediction model learn something from the context — they both generate the Str -> part.
The difference is that, unlike the structured prediction model, the unstructured prediction model
does not take the structure of the type signatures into consideration, thereby risking generating
ill-formed signatures like Str ->. In comparison, the structured prediction model is able to cor-
rectly generate the whole signature, which also reveals that it has learned to not only copy from
context, but also generate types according to the connotations of the name (null relates to Bool).

Full Path: hoogle/src/General/Str.hs
Module: Str
Context:
strUnpack :: Str -> String
strReadFile :: FilePath -> IO Str

18

Model Qualification Signature Accuracy (%) Structural Accuracy (%)

Unstructured No qualification 21.22 38.02
Unstructured Module-qualified 23.71 42.23
Unstructured Path-qualified 22.66 42.35

Structured No qualification 26.01 61.75
Structured Module-qualified 27.28 61.65
Structured Path-qualified 25.23 60.06

Table 8: Impact of different ways of qualification on the performance of prediction models.

strSplitInfix :: Str -> Str -> Maybe (Str , Str)

Name: StrNull

Prediction (unstructured): Str ->
Prediction (Structured): Str -> Bool

7.4.2 Example 2

In the example below, all the type signatures in the context are the same. The context, combined
with the identifier name that is reasonably similar to the names in the context, leads us to think that
the identifier testClassParserTypeParameterImplements has type Test and indeed it does. In
this case, all predictions (unstructured, structured, and human) are correct, which again reinstates
the importance of context.

Full Path: cobalt/compiler/test/tests/cobalt/parsers/expr_parsers/ClassParserTest.hs
Module: ClassParserTest
Context:
testClassParserTypeParameter :: Test
testClassParserTypeParameterExtends :: Test
testClassParserTypeParameterExtendsImplements :: Test

Name: testClassParserTypeParameterImplements

Prediction (unstructured): Test
Prediction (Structured): Test
Prediction (Human): Test

7.4.3 Example 3

However, context is not always helpful. In the example below, if we just look at the context, we
might tend to think that whatever comes next should also have type signature Int. That is not the
case, however, as the identifier name is convertToBool’, which is unlikely to have type signature
Int because of the ToBool part. As a result, none of the predictions is correct and the ground
truth is [Int] → [Bool].

Full Path: xmonad-contrib/XMonad/Layout/ImageButtonDecoration.hs
Module: ImageButtonDecoration
Context:
minimizeButtonOffset :: Int
maximizeButtonOffset :: Int
closeButtonOffset :: Int

Name: convertToBool

Prediction (unstructured): Int

19

Prediction (Structured): Int -> Int
Prediction (Human): Int -> Bool

7.4.4 Example 4

The example below illustrates the difference between human prediction and machine prediction.
From a human perspective, it is relatively easy to observer that strUnpack is semantically opposite
of strPack and should thus have the reverse signature Str → String. Both prediction models,
however, fail to produce the correct answer.

Full Path: hoogle/src/General/Str.hs
Module: Str
Context:
parseLogLine :: (String -> Bool) -> LBS.ByteString -> Maybe (Day , SummaryI)
logSummary :: Log -> IO [Summary]
strPack :: String -> Str

Name: strUnpack

Prediction (unstructured): String -> String
Prediction (Structured): Str -> Str
Prediction (Human): Str -> String

8 Conclusion & Future Work
In this paper, we study the problem of predicting type signatures from identifier names. We use two
different approaches: unstructured prediction, which ignore the structure of type signatures and
treat both identifier names and type signatures as sequences of tokens, and structured prediction,
which considers both the syntax and the semantics of type signatures. The structured prediction
model is better in terms of both signature accuracy (27.28% vs. 23.98%) and structural accuracy
(61.66% vs. 41.44). For both of our models, we study the influence of context information, which
consists of previous type annotations of the signature to be predicted. Our experiments show that,
for both structured and unstructured prediction, the use of context information greatly improves
the performance of the models. In addition, we also obtain a human benchmark by randomly
selecting 300 tasks from the test set and letting one researcher (the author) manually predict
the type signatures. We find that the human benchmark (25.33% signature accuracy, 57.33%
structural accuracy) is actually worse than the performance of the structured prediction model,
which illustrates both the difficulty of the task and the power of the structured prediction model.

Despite the relative success of the structured prediction model, there are multiple ways we can
further improve the signature accuracy of our prediction model. More specifically, the signature
accuracy can be potentially improved by resolving aliases and checking the types that are in scope.
In the data processing phase, we consider aliases to be different types to simplify the problem, but
this makes the embedding for types larger and harder to learn, as we often see aliases that are not
semantically close to each other in natural language (Name = String for example). Also, when
predicting the type signatures, we do not check to make sure the predicted types are actually in
scope. Doing so is possible but requires much more effort to wrangle the Haskell compiler for our
use. In addition, we can also combine rule-based prediction (main should have type IO (), for
example) and model-based prediction to further improve signature accuracy. From a programmer’s
perspective, arranging identifiers with the same type signature close to each other can certainly
help improve the accuracy of our prediction models. Avoiding using uninformative names and
following the naming convention of the language used would also help.

Our evaluation metrics can also be augmented. In this work, we only consider hard measures
like signature accuracy and structural accuracy. We could also include more “soft” measures like the
top-k accuracy, i.e, whether the ground truth is in the top-k candidates produced by the model, and
token error rate, i.e, the edit distance between the prediction and the ground-truth. Furthermore,
when breaking down the prediction results according to various metrics of identifiers and type

20

signatures, we did not use the size of the expression itself as a metric, which is mainly caused by
the fact that the body of expressions were discarded at the data collection stage. Measuring the
size of expression AST can shed light on whether the prediction is correlated with the size of the
expression.

More broadly, future work can also investigate the same task for different languages, especially
those with different naming conventions to understand the applicability of our models.

A more interesting direction is to consider how the predicted type signatures can help with
program synthesis in general. Our results are clearly not good enough for the models to be used
for downstream tasks like synthesizing a whole program. However, if we were able to achieve a much
higher accuracy, we can imagine an interactive system that auto-completes the type signature as
the user types in the name. Then from the name and the type signature, as well as some additional
specifications like comments or I/O examples, the system can start to synthesize the function body
itself. Another possible application, provided that we can achieve a better accuracy on this task,
is that the suggested type signature can be used as a metric of user’s choice of identifier names.
If the auto-completed type signature is not what the user expects, then it implies that the user
might need to choose a better name.

References
[1] David Alvarez-Melis and Tommi S Jaakkola. Tree-structured decoding with doubly-recurrent

neural networks. In Proc. ICLR, 2017.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. In Proc. ICLR, 2015.

[3] Steven Bird and Edward Loper. Nltk: the natural language toolkit. In Proc. ACL on Inter-
active poster and demonstration sessions, 2004.

[4] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed,
and Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In Proc. ICML,
2017.

[5] Li Dong and Mirella Lapata. Language to logical form with neural attention. In Proc. ACL,
2016.

[6] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. Incorporating copying mechanism in
sequence-to-sequence learning. In Proc. ACL, 2016.

[7] Sumit Gulwani. Automating string processing in spreadsheets using input-output examples.
In Proc. POPL, 2011.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proc. CVPR, 2016.

[9] Brian Hempel. Context-sensitive prediction of haskell type signatures from names.
2017. http://people.cs.uchicago.edu/~brianhempel/context-sensitive_prediction_
of_haskell_type_signatures_from_names.pdf.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
1997.

[11] Simon Peyton Jones. Haskell 98 language and libraries: the revised report. Cambridge Uni-
versity Press, 2003.

[12] Neel Kant. Recent advances in neural program synthesis. In arXiv preprint arXiv:1802.02353,
2018.

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[14] Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ, Andrew Senior,
Fumin Wang, and Phil Blunsom. Latent predictor networks for code generation. In Proc.
ACL, 2016.

21

http://people.cs.uchicago.edu/~brianhempel/context-sensitive_prediction_of_haskell_type_signatures_from_names.pdf
http://people.cs.uchicago.edu/~brianhempel/context-sensitive_prediction_of_haskell_type_signatures_from_names.pdf

[15] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to
attention-based neural machine translation. In Proc. EMNLP, 2015.

[16] Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural
language models. In Proc. ICLR, 2018.

[17] Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri, and Chris Jermaine. Neural sketch
learning for conditional program generation. In Proc. ICLR, 2018.

[18] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[19] Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman. Type-directed completion
of partial expressions. In Proc. PLDI, 2012.

[20] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program synthesis from poly-
morphic refinement types. In Proc. PLDI, 2016.

[21] Illia Polosukhin and Alexander Skidanov. Neural program search: Solving programming tasks
from description and examples. In Proc. ICLR (Workshop Track), 2018.

[22] Maxim Rabinovich, Mitchell Stern, and Dan Klein. Abstract syntax networks for code gener-
ation and semantic parsing. In Proc. ACL, 2017.

[23] George Saon, Hong-Kwang J Kuo, Steven Rennie, and Michael Picheny. The ibm 2015 english
conversational telephone speech recognition system. In arXiv preprint arXiv:1505.05899, 2015.

[24] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE Trans-
actions on Signal Processing, 1997.

[25] Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with
pointer-generator networks. In Proc. ACL, 2017.

[26] Rishabh Singh. Blinkfill: Semi-supervised programming by example for syntactic string trans-
formations. In Proc. VLDB, 2016.

[27] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat.
Combinatorial sketching for finite programs. In Proc. ASPLOS, 2006.

[28] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Proc. NIPS, 2014.

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, 2017.

[30] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Proc. NIPS, 2015.

[31] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc. In Proc.
POPL, 1989.

[32] Mingxuan Wang, Zhengdong Lu, Jie Zhou, and Qun Liu. Deep neural machine translation
with linear associative unit. In arXiv preprint arXiv:1705.00861, 2017.

[33] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code
generation. In Proc. ACL, 2017.

[34] Amir Zadeh, Paul Pu Liang, Soujanya Poria, Prateek Vij, Erik Cambria, and Louis-Philippe
Morency. Multi-attention recurrent network for human communication comprehension. In
Proc. AAAI, 2018.

[35] Barret Zoph and Kevin Knight. Multi-source neural translation. In Proc. NAACL, 2016.

22

	Introduction
	Related Work
	Neural Program Synthesis
	Multi-attention
	Copying

	Data Pipeline
	Data Collection
	Data Preprocessing
	Normalize Signatures
	Type Classes
	Token Streams and ASTs
	Qualified Identifier Names

	Overview of Two Approaches
	Unstructured Prediction
	Encoder
	Decoder
	Attention
	Incorporating Context
	Context Signature Encoder
	Copying From Context
	Loss Function

	Structured Prediction
	Type Constructors And Kinds
	Model Architecture
	Name Encoder
	Context Encoder
	Combiner
	Decoder Overview
	Module Selector
	Non-arrow Type Module
	Arrow Type Module
	Controlling Recursion Depth
	Loss Function

	Evaluation
	Summary of Results
	Strong Baseline: Copy-Previous-Signature
	Unstructured Prediction
	Structured Prediction

	A Human Perspective
	Additional Analysis
	Context
	Name Qualifications

	Case Studies
	Example 1
	Example 2
	Example 3
	Example 4

	Conclusion & Future Work

