
Deuce: Direct Manipulation Source Program Editor

 Bachelor’s Thesis
Advisor: Ravi Chugh

Winter 2017

Grace Lu
The University of Chicago

gracelu@uchicago.edu

Abstract

Commonly used text editors today often
require users to manipulate code in a lin-
ear fashion. These editors, such as Sub-
lime and vim, provide limited features
for users to easily and quickly restructure
code. Users therefore manually edit code
by adding and deleting text or copying
and pasting lines to make changes. The
goal of Deuce as a direct manipulation
text editor is to provide tools to help pro-
grammers improve the readability and
maintainability of code with minimal ef-
fort, especially as code bases grow in
size. Such tools rely on being able to in-
teract with the program beyond simply
rewriting or reorganizing text. Deuce in-
troduces new methods of interacting with
the text through keyboard and mouse, in-
cluding selection of text and drag-and-
drop of code elements. These direct ma-
nipulation text editing features are made
possible by the editor keeping track of
information beyond just the text that
makes up the program. This requires an
editor that is structure-aware. Deuce is
not a standalone text editor but rather a
layer on top of text editors to make cer-
tain classes of editing and refactoring
tasks easier to perform and less prone to
errors. This layer gives users the option
to switch back and forth between tradi-
tional text editing and interactive pro-
gram manipulation. Furthermore, this ed-
itor is unique in that it focuses on provid-
ing features for refactoring functional
code, which lacks the rigid formatting of
other programming paradigms.

1 Introduction

Sketch-n-Sketch (Resources #1, References [1]
and [2]) is a direct manipulation programming
system written in Elm that automatically gener-
ates code when interacting with the system. This
allows a user to generate a program with mini-
mal text editing. Figure 1 depicts the interface of
this system. The left side is the text editor or
code box; the right side is the output canvas. Us-
ers are able to draw shapes including lines, rec-
tangles, ellipses, and polygons in the output can-
vas. After drawing the shape, Sketch-n-Sketch
automatically generates the code that renders
these shapes, as seen in the code box. Sketch-n-
Sketch supports programs written in a simple
lisp-like programming language called Little
(#3). Users are able to write Little programs in
the code box that will generate shapes when the
program is run, or interact with the output can-
vas to have code be automatically written. The
interface provides additional features in the out-
put canvas such as editing the size and color of
shapes without needing to manipulate variables
through text editing in the code box. Users are
able to invoke these features by clicking on se-
lection zones and using sliders on the shapes.
Higher-level features include being able to set
variables of shapes equal to each other (Make
Equal), such as making the x coordinate of the
rectangle equal to the x coordinate of the line, or
creating a relation between multiple shapes, such
as one shape being half the width of another (Re-
late).

Figure 1. Sketch-n-Sketch interface. The left side
depicts the code box in which users can view and
edit the text of Little programs. The right side
depicts the output canvas in which users can
draw and manipulate shapes, after which the
system automatically generates or changes the
code that renders the shapes on the left.

The Sketch-n-Sketch text editor seen on the left
side of the interface uses the Ace code editor
(#4) written in JavaScript. Ace provides many
built-in features such as line numbers and scroll-
ing. This editor provides the foundation for the
Deuce interactive layer.

Deuce is a layer built on the text editor portion
of Sketch-n-Sketch as an extension of Ace. Simi-
lar to the direct manipulation program generator,
Deuce aims to minimize time spent text editing
to create a more fluid experience when interact-
ing with the program text. This layer allows us-
ers to interact with the text through mouse fea-
tures including selection and dragging in addi-
tion to traditional text editing. Therefore, Deuce
is not considered a replacement for text editors
but rather an extension. With these new interac-
tion elements, users will be able to more easily
edit and refactor complex code.

2 Related Work

2.1 DNDRefactoring

Researchers at the University of Illinois at Urba-
na-Champaign created a tool called Drag-and-
Drop Refactoring (DNDRefactoring) in the
Eclipse IDE (integrated development environ-
ment) to support the restructuring of code
through mouse movements [4]. Their work ap-
plies specifically to the Java programming lan-
guage and focuses on common code restructur-
ing tasks seen in object-oriented programming.
While the Eclipse editor itself does provide re-
factoring tools, users often experience difficulty
finding, invoking, and configuring the features to
work as intended. To overcome the proliferation

of menu buttons and configuration options, the
DNDRefactoring editor provides the user with
the ability to select drag sources and drop targets
to easily interact with the text program. This
drag-and-drop feature allows users to perform
program transformations with a single move-
ment as opposed to clicking through menu op-
tions and selecting configurations. Therefore,
users are able to directly interact with variables,
expressions, statements, methods, and other ele-
ments in a program [4]. DNDRefactoring sup-
ports two classes of refactorings—within the
Java editor or between the Package Explorer and
Outline View. Editor refactorings with drag-and-
drop include promoting local variable to field,
extracting temp variable, introducing parameter,
extracting method, and moving methods or
members; refactorings between and within the
Package Explorer and Outline View include
moving methods, moving types to files or pack-
ages, converting types, and extracting classes.
To test the performance of the DNDRefactoring
tool, the researchers conducted user studies. In
these user studies, the researchers timed how
long it took participants to perform refactorings
with and without the DNDRefactoring tool. Re-
sults shows the participants were able to perform
almost all common refactorings faster in the
DNDRefactoring editor than in the regular
Eclipse interface. In fact, refactorings were per-
formed on average 3 times faster, showing drag-
and-drop to be a more efficient tool for code re-
structuring [4].

2.2 Barista

Similarly, Ko and Myers of Carnegie Mellon
University created a programming environment
called Barista to overcome limitations of plain
text editors. Barista provides data structures, al-
gorithms, and interactive techniques to augment
traditional text editors [3]. These new tools and
interactions will improve usability and utility of
code editors to increase programmer productivi-
ty. This framework allows users to move back
and forth between structured and unstructured
versions of the code. Barista uses a model-view-
controller architecture in which the model is an
abstract syntax tree composed of structures and
tokens, the view is a tree of interactive views,
and the controller is the event handlers. An ab-
stract syntax tree representation of the code is
created internally to be able to maintain the
structure of a program and also provides a visual
user interface to enable interactive editing fea-
tures. With the abstract syntax tree, users of

Barista are able to match delimiters and quickly
see errors in code such as improper scoping of
variables since these are easily identifiable when
the program structure is determined. For
frontend features, the framework allows for rich
annotation metadata to be displayed and pro-
vides focused views on specific blocks of code.
In addition, the environment supports a drag-
type feature to help with movement of code
blocks. This feature is implemented with the
keyboard, with users holding down a modifier
key near statements or delimiters and using the
arrow keys to select the target location.

3 Deuce

Deuce (#2) aims to accomplish many of the
same goals as DNDRefactoring and Barista in
creating a more interactive program editor that
provides refactoring features beyond normal
plain text editing. These additional features that
augment traditional text manipulation aim to
make refactoring easier and more reliable.

Similar to Barista, the Deuce project is split into
two parts: the frontend user interface and the
backend program transformations. The program
transformations rely on the user interface to be
able to trigger backend changes to the code. Sec-
tion 4 describes the creation of the Deuce user
interface and the features it provides; Section 5
details the program transformations that are
made possible by the frontend.

The focus of the completed work has been the
user interface discussed in Section 4. This inter-
active interface is necessary for the program
transformations discussed in Section 5 to be im-
plemented.

4 Deuce: User Interface

Since Deuce is an added layer built on top of
Ace, the state of Deuce is kept track of in the
backend Elm code in a model. This model main-
tains information about the code box and its con-
tents. With this information, the code box can be
displayed as intended.

Code items that Deuce keeps track of include
expressions, patterns, and target positions. Tar-
get positions are spaces before and after expres-
sions and patterns.

4.1 Item Identification

The first step in creating a direct manipulation
text editor is indexing elements within the pro-
gram. This means attaching identifiers to expres-
sions, patterns, and target positions in the pro-
gram. This information is needed to be able to
select elements and also move them around
within a program. Deuce therefore is a structure-
aware editor. Plain text editors such as Ace do
not keep track of the structure of the program.

Deuce keeps track of expressions, patterns, and
target positions when parsing through code. IDs
for these items are kept track of in the model.
Furthermore, a dependence graph of variables in
the code is created. This allows Deuce to keep
track of dependencies between parts of the pro-
gram to determine which transformations are
valid and which are out of scope. This is similar
to the abstract syntax tree structure Barista cre-
ates.

4.2 Item Selection: Initial Design

To enable the user to interact with the program
beyond text manipulation, a selection feature
was introduced into the Deuce editor. The first
iteration involved the user being able to select an
item such as an expression, pattern, or target po-
sition based on the mouse position of the click,
and then the item would be highlighted using
Ace editor highlights as seen in Figure 2. Initial-
ly, the Ace mouse position was used to identify
click positions. Later on, a function was written
to calculate the exact row and column position of
a mouse click using pixel position for higher ac-
curacy.

Figure 2. Ace highlights. The code box currently
shows highlights of all items—expressions (or-
ange), patterns (yellow), and target positions
(green). Items that are selected appear in darker
shades of the highlight color.

For the selection of larger expressions such as
“def” and “let” expressions, which are composed
of smaller expressions, the left parentheses were
first used for selection. In the next iteration, the
keywords themselves (i.e. “def” and “let”) were
used for selection to provide the user with a
larger area in which to select the expression. For
a list of patterns, the left open bracket allowed
for the selection of the list.

Target positions are spaces within expressions
and patterns. In addition to allowing for selection
of expressions and patterns, target positions are
also selectable by clicking anywhere within the
row and column position of the space. These are
needed when moving pieces of code around the
program.

Item selections occur when a user clicks down
on the selection area of an item; deselection sim-
ilarly occurs when the user clicks on an already
selected item.

4.3 Bounding Box

As discussed in Section 4.2 about Item Selec-
tion, larger expressions such as “def’ and “let”
were only selectable by the keywords them-
selves. This greatly limits the selectable area for
large, nested expressions. Therefore, instead of
only allowing for selection of “def” and “let” for
larger expressions and using Ace highlights to
indicate selected items, SVGs (Scalable Vector
Graphics) are drawn over items. SVG is a vec-
tor-based image format. This gives greater con-
trol over the look of hovered and selected items
in Deuce and also allows for event handlers to be
attached to these items. Instead of using the
mouse position to determine which elements are
being hovered over or selected, SVGs allows
Deuce to simply attach functions that are execut-
ed when the SVG is hovered or clicked.

For the SVGs to be properly drawn over expres-
sions that span multiple lines, the start and end
columns are calculated for each line of the ex-
pression by using the unparsed text representa-
tion of lines. Using this information, the points
of a polygon to be drawn over the expression can
be calculated. This results in a SVG polygon that
bounds the entire expression as seen in Figure 3.

Figure 3. Bounding box for an expression.

4.4 Item Selection: Improved Design

The use of SVGs expanded beyond just “def’
and “let” expressions to include all expressions,
patterns, and target positions. The use of SVGs
replaces the reliance on mouse position to de-
termine selected elements. With SVGs being
used for item selection, the use of mouse posi-
tion for selection can be replaced by event han-
dlers tied to the SVGs. Therefore, all expres-
sions, patterns, and target positions are indicated
with SVGs instead of Ace highlights. For ex-
pressions and patterns, the SVGs are polygons;
for target positions, the SVGs are circles. These
circles no longer occupy the entire row and col-
umn space position but rather are centered in the
middle of the space.

In the Deuce layer, all polygons and circles that
indicate expressions, patterns, and target posi-
tions are calculated but hidden until hovered or
selected. All of these items are calculated recur-
sively so that larger expressions are below
smaller expressions, with patterns on top of ex-
pressions and target positions on the very top, on
top of patterns. This allows the user to be able to
“click through” to larger expressions. See the
Figures below to better understand this feature.

Figure 4. Overlapping expressions. As shown,
this function definition includes smaller sub-
expressions. Highlighted in orange is the larger
expression. Highlighted in yellow is a nested
smaller expression. Before the use of SVGs for
selection, the orange expression was only se-
lectable by clicking on the word “def” and the
yellow expression was only selectable by click-
ing on the word “let”. Now, the orange expres-
sion can be selected by the left parenthesis, word
“def”, and space around the target position seen
after the word “def” (described in Figures 5-1
and 5-2). In addition, the orange expression can
be selected by the right parenthesis, too. Similar-

ly, the yellow expression can be selected by its
parentheses, the word “let”, and other spaces
that are not occupied by other SVG elements.

Figure 5-1. Mouse hovering target position cir-
cle.

Figure 5-2. Mouse hovering the row-column
space position of target position seen in Figure
5-1, but outside of the area of the SVG circle.
When the mouse hovers the SVG circle of the
target position, the user can select the target
position. When the mouse moves out of the target
position but stays in the row-column position of
the space of the target position, the larger ex-
pression shown in yellow can be selected if
clicked.

Before the use of SVGs over expressions, pat-
terns, and target positions, hovering and selec-
tion of items was handled by determining which
item the mouse position corresponded to in
terms of row-column position. With SVGs, event
handlers can be attached to indicate which items
are currently being hovered over (onMouseOver)
or clicked on (onMouseClick).

Since the SVGs are drawn in the Deuce layer,
which overlays the Ace layer, this affects basic
Ace features such as scrolling. The position of
polygons and circles drawn in the Deuce layer
therefore need to be manually recalculated when
a scroll occurs to correctly position the SVGs
over selected elements in the code box.

4.5 Mouse Drag-and-Drop

With identification and selection of items in
place, drag-and-drop of elements is possible.
Selection allows the user to choose what to be
moved where, and identification allows the pro-
gram to know which items are selected. A drag
in the Deuce layer involves a start position initi-
ated with the click of the mouse and holding this
click while moving to an end position where the
click is released. Throughout this drag motion,

the start and end positions of the mouse are
stored in the model so that the items associated
with these positions can be identified.

Drag-and-drop is a feature that allows for pro-
gram transformations to be performed in a sim-
ple and smooth motion. This removes the need
for multiple selections or clicking through op-
tions.

4.6 Deuce Mode Features

Given Deuce is an added layer on top of the Ace
text editor, features were added to be able to eas-
ily switch between Deuce and Ace mode. When
the shift key is pressed, the user is in Deuce
mode and is able to see selectable items when
hovering over the item; the user is also able to
select an item. When the shift key is not pressed,
the code box functions as a normal Ace editor,
though the selected items will still appear in the
program (i.e. an expression selected with the
shift key pressed will still appear selected when
the shift key is not pressed). Deselection of items
can only occur in Deuce mode. In both Deuce
and Ace modes, though, the user can press the
escape key to remove all selected items. This
will reset the Deuce state to not contain any se-
lected elements.

5 Deuce: Program Transformations

With the Deuce user interface in place, program
transformations can take advantage of these in-
teraction features to accomplish general tasks.
Deuce currently supports drag-and-drop defini-
tion reordering described in Section 5.1. The
other program transformations discussed in this
section are currently being implemented. The
program transformations discussed in this sec-
tion are based on general programming tasks
often done in functional languages.

While the user interface is the main focus of the
work described in this paper, the following pro-
gram transformations will be supported by the
developed interface features. The figures in this
section show how the implemented user inter-
face will allow a user to perform specific refac-
torings.

5.1 Definition Reordering

Currently, Deuce supports movement of varia-
bles through drag-and-drop. Specifically, a user
can click down on a pattern and drag it to a tar-
get position before an expression or to a target

position before or after a pattern. This allows the
user to reorder a definition and also have the as-
sociated value be moved through a single drag-
and-drop motion as opposed to moving the pat-
tern name and also the value of the pattern in
separate edits of the code.

Figure 6-1. Selected pattern (orange) and target
(black circle) position for drag-and-drop.

Figure 6-2. Program transformation after click-
ing on “color” seen in Figure 6-1 and keeping
the mouse down while moving to the target posi-
tion indicated by the black dot in Figure 6-1 be-
fore releasing the mouse. This moved “color” to
the target position and also moved the value of
color (117) to the associated location.

5.2 Combining and Splitting Definitions

This program transformation allows users to cre-
ate or remove variables. Combining definitions
allows a user to clean up code by creating a re-
usable definition. For example, Figure 7 shows
two “x1” variables defined in separate places. If
the user wants to create a single “x1” variable to
be used in both places with the same value, one
of the “x1” variables could be dragged on top of
the other to create the output seen in Figure 8.
The value of global “x1” is then the value of the
“x1” that was not dragged. Combining defini-
tions can therefore create more readable and re-
usable code.

Figure 7. Two variables to be combined.

Figure 8. After dragging the second “x1” onto
the first “x1”, the two “x1” variables have been
combined into one definition at the top of the
program that is used in both places.

Users may also be interested in the reverse ac-
tion—splitting definitions when values are no
longer shared. For example, if the two places
“x1” is used do not share the same value any-
more, the user could drag the “x1” to the places
it would be uniquely defined as shown in Figure
9. This allows users to easily and quickly rede-
fine variable values.

Figure 9. Variable to be split. If the value of
“x1” is no longer shared, the user should drag
“x1” to each place it will be uniquely defined.
The result of this transformation is shown in
Figure 10.

Figure 10. Splitting variables. The split “x1”
values have the same value but now have a local
scope. Therefore, the user can change the value
of one without affecting the other.

5.3 Introducing Variables

Users may want to create new variables within a
program to increase readability of code. For ex-
ample, as seen in Figure 11, one variable is an
expression defined in terms of another variable.
The code may be made cleaner by extracting this
variable out and then using the new variable
name in its place as seen in Figure 12.

Figure 11. Instance to introduce a new variable.

Figure 12. Introducing a new variable.

5.4 Introducing Lambdas

When similar pieces of code are frequently re-
used within a program, a lambda function can be
introduced to reduce the program size. As shown
in Figure 13, the definitions for “line1”, “line2”,
and “line3” use the same code with different var-
iable values. Therefore, a function that parame-
terizes the changing values can be created to
simplify the code (Figure 14).

To perform this program transformation, the user
drags the similar definitions on top of one anoth-
er to combine them. In the example shown in
Figure 13, the user can drag the “line2” defini-
tion on top of the “line1” definition, which
would create the “line1” function seen in Figure
14. Then the user would drag the “line3” defini-
tion in Figure 13 on top of the newly created
“line1” function to create the program seen in
Figure 14.

Figure 13. Repetitive code snippets.

Figure 14. Introducing a lambda function to re-
move repetitive code snippets.

5.5 Adding or Removing Function Argu-
ments

Building off of the previous program transfor-
mation (Introducing Lambdas), there may be
certain parameters to the created function or any
other defined function that should be added and
others that should be removed. For example, in
Figures 14 and 15, the “width” variable is set to
be 5 for all calls to the “line1” function. The user
may instead want “width” to be a parameter to
the “line1” function. To invoke this transfor-
mation, the user would drag the 5 inside of the
“line1” function definition into the parameter list
for the function as depicted in Figure 15. This
would then change the function to have a
“width” parameter and also add an argument
value of 5 to each place the “line1” function is
called, as seen in Figure 16.

Figure 15. Adding a function argument to a func-
tion.

Figure 16. Adding a function argument also edits
the function at call-sites.

Similarly, function arguments can also be re-
moved. To invoke this transformation, the user
should drag the argument to be removed directly
on top of the parameter, as seen in Figure 17.
The result will then be Figure 14. Note the
“width” parameters are also removed at the call-
sites.

While all “width” values in Figure 17 have a
value of 5, the value that is dragged on top of the
parameter variable will be the value that is set in
the function. For example, if the second call to
“line1” in Figure 17 had a “width” value of 6
while the other “width” values remained the
same with values of 5, and this 6 value was
dragged on top of “width”, the “width” value in
Figure 14 would be 6.

Figure 17. Removing a function argument.

5.6 Reordering Function Arguments

To reorder function arguments, users should
drag the argument to be moved onto a target po-
sition. In the following example in Figure 18, the
user wants to move “x2” before “y1” but after
“x1”. This results in Figure 19, where the “x2”
parameter is after the “x1” parameter, and the
corresponding “x2” values in the calls to the
“line1” function have also moved to the corre-
sponding places.

Figure 18. Reordering a function argument.

Figure 19. Reordered function argument also
changes argument ordering at call-sites.

5.7 Button Transformations

In addition to drag-and-drop program transfor-
mations, Deuce can support transformations in-
duced by selection of items and button clicks.
For example, if the user wants to make two vari-
ables equal, one option is to use the drag-and-
drop method described in Section 5.2. Another
option would be to select the two variables to be
set equal and click a “Make Equal” button that
becomes available when the selected items satis-
fy the requirements of using the button. This se-
lection option to perform program transfor-
mations can be used in addition or in place of
drag-and-drop options. The risk of relying on
selection and buttons is the proliferation of men-
us in the user interface. The addition of menus,
though, could provide the user with more options
and configurations to produce the exact refactor-
ing outcome intended. Nevertheless, drag-and-
drop allows the user to easily perform program
transformations with a single motion.

6 Future Work

The user interface features implemented for the
Deuce layer lay the foundation for a wide variety
of refactorings. These refactorings include, but
are not limited to, the program transformations
discussed in Section 5 (Deuce: Program Trans-
formations).

On the frontend, the user interface can continual-
ly be iterated on. As discussed in Section 4
(Deuce: User Interface), multiple design itera-
tions were implemented and improved on. Addi-
tional features that can be added to the user in-
terface include elements to better guide a user
through Deuce. This may include arrows to indi-
cate where an item may be moved after it has
been selected, a before and after comparison of
the code once a transformation has been per-
formed, and a short pause before the actual code
change is made so that it is not so sudden. These
would allow a new user to better understand the
features Deuce provides and also give all users
more ideas about how to refactor the program.

On the backend, much of the future work is de-
scribed in Section 5. These transformations rely
on both the user interface and structure-aware
components of Deuce. With more program trans-
formations in place, users are able to see the full
potential of the direct manipulation source pro-
gram editor to make editing and refactoring easi-
er.

With more features on both the frontend and
backend in place, user studies can be conducted
to test the performance of Deuce. Similar to the
user studies done by the DNDRefactoring team,
users will be asked to perform various program
transformations in Deuce and in the regular Ace
editor. The tests will measure the time needed in
both cases to complete a task and also the users’
opinions. These studies will be useful in improv-
ing Deuce’s user interface and also program
transformation features. This feedback will drive
future work.

7 Conclusion

Deuce aims to make editing and refactoring of
programs easier and less prone to errors. This is
done by creating a layer on top of a traditional
text editor that provides features that make such
tasks easier to invoke and execute. To be able to
provide these features, the editor must be struc-

ture-aware, keeping track of elements of the pro-
gram and their relationships. With an interactive
user interface and useful program transfor-
mations, Deuce can improve the programming
experience by making common tasks simpler
and quicker to perform.

8 Acknowledgements

I would like to thank Professor Ravi Chugh, my
thesis advisor, for giving me this opportunity to
work on the Sketch-n-Sketch project and for
providing continuous guidance throughout the
entire endeavor. I would also like to thank Pro-
fessor Shan Lu for her advice and mentorship. I
am also grateful for the Liew Family College
Research Fellows Research Grant for supporting
this project.

Resources

#1 Sketch-n-Sketch project:

https://ravichugh.github.io/sketch-n-
sketch/index.html

#2 Deuce code (last commit by author):

https://github.com/ravichugh/sketch-n-
sketch/commit/c794383cfe3e60c8490c739a4e6533af
7f2fe511

#3 Little language syntax guide:

https://github.com/ravichugh/sketch-n-
sketch/blob/master/README.md

#4 Ace Editor:

https://ace.c9.io/#nav=about

References
[1] R. Chugh, B. Hempel, M. Spradlin, and J. Albers,

“Programmatic and Direct Manipulation, Together
at Last,” in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design
and Implementation (PLDI), 2016.

[2] B. Hempel and R. Chugh, “Semi-Automated SVG
Programming via Direct Manipulation,” in Pro-
ceedings of the ACM Symposium on User Inter-
face Software and Technology (UIST), 2016.

[3] A.J. Ko and B.A. Myers, “Barista: An Implemen-
tation Framework for Enabling New Tools, Inter-
action Techniques and Views in Code Editors”, in
Proc. ACM Conference on Human Factors in
Computing Systems, 2006.

[4] Y.Y. Lee, N. Chen, R.E. Johnson, “Drag-and-

Drop Refactoring: Intuitive and Efficient Program
Transformation,” in ICSE, 2013.

