
Mote: Goal-Driven Development and Synthesis for Haskell

by

Izaak Meckler

A thesis submitted in partial satisfaction of the

requirements for the degree of

Bachelor of Science

in

Computer Science

in the

Undergraduate Division

of the

University of Chicago

The thesis of Izaak Meckler, titled Mote: Goal-Driven Development and Synthesis
for Haskell, is approved:

Date

Date

Date

University of Chicago

Mote: Goal-Driven Development and Synthesis for Haskell

Copyright 2015
by

Izaak Meckler

1

Abstract

Mote: Goal-Driven Development and Synthesis for Haskell

by

Izaak Meckler

Bachelor of Science in Computer Science

University of Chicago

,

This thesis describes the design of an editor plugin called Mote. Mote brings sev-
eral enhancements to Haskell programming, including support for goal-oriented pro-
gramming, automatic generation of pattern matching expressions, and type directed
synthesis of short Haskell expressions. Our synthesis strategy includes a method for
eliminating duplicates from synthesized expressions based on the string diagrams of
category theory. We describe in detail the theory and algorithms involved in this
application of string diagrams.

i

Contents

Contents i

List of Figures ii

Notation iv

1 Mote 1
1.1 Pattern matching boilerplate . 2
1.2 Managing the types of expressions with holes 3
1.3 Synthesis of small expressions . 6

2 Searching for polymorphic programs 13
2.1 Preliminaries . 14
2.2 A calculus for natural transformations 15
2.3 A semantics in categories . 17
2.4 A semantics in string rewriting (a special case) 19
2.5 Completeness . 22
2.6 Some proof theoretic observations . 23
2.7 String diagrams for efficient search 24
2.8 String diagrams for eliminating redundancy 29
2.9 Remarks on implementation . 34
2.10 Turning string digrams to terms . 35
2.11 Finding a topmost vertex . 36
2.12 Future possibilities . 39

Bibliography 40

ii

List of Figures

1.1 Using holes in Agda . 2
1.2 An example usage of Mote’s case expansion facilities (1) 4
1.3 An example usage of Mote’s case expansion facilities (2) 4
1.4 Using holes in Mote (1) . 5
1.5 Using holes in Mote (2) . 5
1.6 Discovered programs of type [Filepath] -> IO [String] 8
1.7 A diagram of findAllTodoLines . 9

2.1 A diagram of randomlyNothing . 25
2.2 A string diagram of randomSublist . 26
2.3 Translations for the remaining rules of N 28
2.4 Naturality evidently holds for string diagrams 28
2.5 Vertical (cut) and horizontal (juxtapose, or zip) composition evidently

commute for string diagrams . 29
2.6 The essential rules for our string calculus 30
2.7 The action of JAiK on morphisms . 31
2.8 Naturality for n . 32
2.9 A trivial diagram . 32
2.10 Decomposition of a string diagram . 33
2.11 A fusion optimization on string diagrams 35
2.12 A fusion optimization in translating a string diagram into a term 36

iii

iv

Glossary

Σ∗ The set of strings over the alphabet Σ.

Σ An alphabet. That is, a finite set of “symbols”..

η, ϕ Variables for natural transformations.

ηX The component of the natural transformation at the object X.

JsK The interpretation of some syntactic entity s in some model.

C Variable for a category.

HomC(X, Y) The collection of morphisms from X to Y in the category C.

Pre(X) The preorder category on the partially ordered set X.

A A sequence A1, A2,

inhabited A type or set is inhabited if there is something of that type or in that set
(cf. nonempty).

v

Acknowledgments

First off, I want to thank Ravi Chugh, my thesis advisor. This thesis would not be
possible without your guidance and willingness to listen to my ranting. I’d also like to
thank all of my friends who discussed with me the ideas described here. Specifically,
thank you to Brandon Rayhaun and Kyle Gannon. Finally, I’d like to thank my
parents for their perpetual support and love.

1

Chapter 1

Mote

This thesis documents the design of Mote, an editor plugin for making Haskell pro-
gramming easier and more enjoyable. On a high level, Mote brings the following
enhancements to Haskell development:

1. Writing pattern matching expressions requires knowing the variants of the type
of the expression you wish to match on, and is needlessly laborious for types with
many variants. To this end, Mote provides a facility for automatic generation
of case expressions.

2. The only way to know the types of variables in scope is to know the types of the
functions which produced them or the types of the patterns they were bound
in, both of which require memorizing APIs or jumping back and forth between
the program and documentation (or other modules). Mote’s use of holes helps
to solve this problem.

3. Often fragments of a program can be automatically generated from values in
scope. Mote thus includes a limited facility for synthesizing small expressions.

The Agda Emacs mode [4] does an excellent job of addressing aspects of these
problems. Programming using it involves the use of holes. A hole is a placeholder
expression that one types as a subexpression when not immediately sure what should
be written. In Agda, holes are introduced by typing ?. After loading the file in Emacs,
the hole is rendered as an underscore surrounded by brackets, as in Figure 1.1. Agda
also gives the programmer an info panel showing the types of local variables in the
hole, as well as the type of expression which the hole should be filled in with. This
type is called the goal type of the hole, or just the type of the hole.

The expression which one fills a hole with often itself has further holes. The
idea is to program by constructing terms piece by piece, replacing large goals with
“smaller” goals by constructing the eventual program from the outside in. Agda also

CHAPTER 1. MOTE 2

Figure 1.1: Using holes in Agda

has facilities for automatic generation of pattern matches and program synthesis,
which will be discussed later.

As for Haskell, there is a popular Haskell editor plugin called ghc-mod[7], which
has a very stable implementation and offers features including in-editor compilation
error messages and the ability to query for the types of expressions.

In previous versions, it seems to have supported automatic generation of case
expressions and limited hole-based programming. As of the current version, corre-
spondence with the package’s maintainer these facilities indicates that these features
are broken or very limited, and we were not able to use them.

1.1 Pattern matching boilerplate

Defining programs by pattern matching is one of the most ubiquitous and useful fea-
tures of typical functional programming languages. However, writing case expressions
can be tedious and requires complete knowledge of the structure of the type of the
expression that one is trying to pattern match on. That is, to pattern match on an
expression of type T , one must know all the constructors of T and, at the least, the
arity of each constructor.

CHAPTER 1. MOTE 3

Consider for example the following type which describes expressions in a simple
language

data Expr

= Var Var

| Let [(Pattern, Expr)] Expr

| Case Expr [(Pattern, RightHandSide)]

| Lam Var Expr

| App Expr Expr

where Var, Pattern, and RightHandSide are defined elsewhere.
As mentioned, defining a function out of this type by pattern matching requires

not only knowing all of the many variants and then laboriously writing a pattern
for each of them, but likely the types of the constructors’ arguments as well. Mote
addresses both of these two problems, though only the first will be discussed in this
section.

Drawing inspiration from Agda, to solve the problem of having to know and write
all the possible variants of the type, given an expression to case on with a known
type, Mote can automatically generate a case expression with one branch for every
constructor of that type. The variables bound in the patterns are given names that
reflect their type. Specifically, for a base type whose name is t, the name for a variable
of that type will consist of all the upper case letters in t. For compound types, names
are built up via some inductive rules. In addition, features of Mote described in
section 1.2 allow the programmer to easily inspect the types of the variables bound
in patterns.

In Haskell, the analogous expression type[6] has 46 variants whose arguments,
taken together, have around 35 distinct types. In such an instance, Mote’s case
expansion facilities really shine (as the author can attest to after having to write
numerous functions by pattern matching on Haskell’s expression type for the present
work), but this simplified example suffices to illustrate the problem and how Mote
can help.

A sample usage of this feature is shown in Figures 1.2 and 1.3. The vim command
:CaseOn EXPR inserts an exhaustive case expression on the expression EXPR in the
current hole.

1.2 Managing the types of expressions with holes

Often one wants to make partial progress in the writing of an expression without
having to complete it. Moreover, while programming one needs to keep track of the
types of expressions in scope. This can be difficult in practice when values have
complex types, or when the expressions come from an external library.

CHAPTER 1. MOTE 4

Figure 1.2: An example usage of Mote’s case expansion facilities (1)

Figure 1.3: An example usage of Mote’s case expansion facilities (2)

CHAPTER 1. MOTE 5

Figure 1.4: Using holes in Mote (1)

Figure 1.5: Using holes in Mote (2)

CHAPTER 1. MOTE 6

Consider again the above example of writing a function evaluate :: Expr ->

Expr. Suppose we want to write the Let case. First, we navigate to the appropriate
hole using Mote’s NextHole command (Figure 1.4). Then, knowing that the evalu-
ation of the expression e will depend on the values bound by the Let, we write a
sketch of a program that will evaluate and use the bindings (Figure 1.5). The type
environment panel informs our writing of the sketch by providing us of the types of
the arguments of the Let constructor without having to refer to the definition of the
Expr type. We can then move into the new hole we’ve created and examine the local
type environment to plan our next move.

1.3 Synthesis of small expressions

The third major enhancement Mote brings to Haskell programming is the automatic
synthesis of small expressions. Program synthesis[3] is the automatic generation of
programs from a statement of intent from a user. Often, the statement of intent
is a constraint that a generated program should satisfy, for example a test case the
program should pass or a type it should have. In the present work, this constraint
will be the latter. That is, we describe aspects of the following problem: given a type,
generate a program that has that type.

Agda has the ability to syntesize terms as well, though the search returns at most
one term and makes no attempt to find a term the programmer is likely to want. This
is because often in Agda, either the types are sufficiently specific that only one term
will fit, or the programmer is just trying to finish a proof and doesn’t care much about
its computational behavior. Thus, in Haskell the approach must be quite different
since the programmer certainly cares about the actual behavior of a synthesized term.

Mote’s search finds as many terms as possible fitting a given type. Typically, this
is quite a large number of terms. In order to make the results more useful for the
user, we make some attempts reduce the size of this list. Specifically, we eliminate
duplicates: terms which are syntactically different but semantically equivalent. To do
so, we make use of objects called string diagrams. String diagrams are a representation
of programs which identify certain semantically equivalent programs.

Mote is capable of synthesizing programs with types of the form

∀α.Fα→ Gα

where F and G are functors (possibly constant or identity). That is, Fα is a Haskell
expression of kind * of the form

F1(F2(· · ·A · · ·))

where A is either the type variable α or a closed type and each Fi is a Haskell
expression of kind * -> * with a lawful functor instance. Here are a few examples of
types of this form.

CHAPTER 1. MOTE 7

forall a. [IO (Maybe a)] -> IO [a]

forall a. FilePath -> IO [String]

forall a. [a] -> Int

Types with longer chains of applications of functors often appear in “effects-munging”
code: code which executes and reorders effects (encoded as monads). While this was
the original inspiration for the approach we take, the current search facility is more
general.

Mote’s high level strategy is extremely simple. Suppose Mote is searching for a
program of type ∀α.Fα → Gα. Mote will search for a sequence of functions which
when composed have this type by doing a depth-limited depth first search. The
depth (which corresponds to the length of the sequence of functions) is limited both
for performance (since there is an expectation that in-editor tools be fast) and since
the user is unlikely to want large terms. Once terms have been discovered, they are
converted to string diagrams, duplicates are removed, and converted back to terms.

Let’s look at an example. Imagine that we have a list of paths to source files

sourceFiles :: [Filepath]

and also a function for reading the contents of a given file

readFileMay :: Filepath -> IO (Maybe String)

which returns Nothing if the file given as an argument does not exist. Suppose our
goal is to find all lines in all of these files that contain a “TODO”. To that end, we
have written a function

findTodos :: String -> [String]

findTodos = filter ("TODO" ‘isInfixOf‘) . lines

where isInfixOf returns true if its first argument is a contiguous substring of the
second and lines :: String -> [String] turns a file into the list of lines that
comprise it.

Now, we write

allTodoLines :: IO [String]

allTodoLines = _ sourceFiles

meaning that our goal is to write a program of type [Filepath] -> IO [String] to
turn the list of source filepaths into the list of “todo”s which they contain.

We can query Mote for a program of this type by executing the command :MoteSearch

[Filepath] -> IO [String]. The info panel then displays a list of discovered pro-
grams of this type (shown in Figure 1.6), ordered by a heuristic ranking function
discussed in Chapter 2. All the way as the 17th result is the program we are looking
for:

fmap (concat . fmap findTodos . catMaybes) . sequenceA . fmap readFileMay

CHAPTER 1. MOTE 8

which concatenates all “todo”s in all of the files. Though it is the 17th result, notably,
it is the first that uses findTodos. Let us call this function findAllTodoLines.

In future work, we hope to add a facility for the user to add hints to the search,
such as a constraint that discovered programs must involve a particular function, so
that desired programs appear higher in the list of results. For now, the user would
have to do a textual search in the results panel to find this term.

1 fmap catMaybes . sequenceA . fmap readFileMay

2 fmap (concat . fmap maybeToList) . sequenceA . fmap readFileMay

3 (fmap . fmap) (unlines . maybeToList) . sequenceA . fmap readFileMay

4 (fmap . fmap) (unwords . maybeToList) . sequenceA . fmap readFileMay

5 fmap (concat . sequenceA . fmap maybeToList) . sequenceA . fmap readFileMay

6 fmap (fmap (unlines . lines) . catMaybes) . sequenceA . fmap readFileMay

7 fmap (catMaybes . fmap listToMaybe . fmap maybeToList) . sequenceA . fmap readFileMay

8 fmap (catMaybes . maybeToList . listToMaybe) . sequenceA . fmap readFileMay

9 fmap (maybeToList . join . listToMaybe) . sequenceA . fmap readFileMay

10 fmap (fmap (unwords . lines) . catMaybes) . sequenceA . fmap readFileMay

11 fmap (fmap (unlines . words) . catMaybes) . sequenceA . fmap readFileMay

12 fmap (concat . fmap lines . catMaybes) . sequenceA . fmap readFileMay

13 fmap (fmap unwords . sequenceA . fmap maybeToList) . sequenceA . fmap readFileMay

14 fmap catMaybes . sequenceA . fmap readFileMay . maybeToList . listToMaybe

15 fmap (concat . fmap words . catMaybes) . sequenceA . fmap readFileMay

16 fmap (concat . maybeToList . sequenceA) . sequenceA . fmap readFileMay

17 fmap (concat . fmap findTodos . catMaybes) . sequenceA . fmap readFileMay

18 fmap (fmap (unwords . findTodos) . catMaybes) . sequenceA . fmap readFileMay

19 fmap (maybeToList . join) . sequenceA . fmap readFileMay . listToMaybe

20 fmap (fmap unlines . maybeToList . sequenceA) . sequenceA . fmap readFileMay

21 fmap (catMaybes . sequenceA . sequenceA) . sequenceA . fmap readFileMay

22 fmap (fmap unwords . maybeToList . sequenceA) . sequenceA . fmap readFileMay

23 fmap (fmap unlines . sequenceA . fmap maybeToList) . sequenceA . fmap readFileMay

24 fmap (fmap (unwords . words) . catMaybes) . sequenceA . fmap readFileMay

25 fmap (catMaybes . maybeToList) . sequenceA . fmap readFileMay . listToMaybe

26 fmap (fmap (unlines . findTodos) . catMaybes) . sequenceA . fmap readFileMay

Figure 1.6: Discovered programs of type [Filepath] -> IO [String]

Figure 1.7 shows a string diagram of findAllTodoLines. A string diagram is
a graphical notation from category theory for representing natural transformations,
and will be discussed at length in the next chapter. Specialized to Haskell, string
diagrams provide a way of representing functions that that identifies some semanti-
cally equivalent expressions. For our purposes, this means we can eliminate duplicate
search results before displaying them to the user.

As an example, findAllTodoLines could have been written in (at least) the
following three ways (spaced out for readability):

fmap (join . catMaybes)

. sequenceA

CHAPTER 1. MOTE 9

sequenceA

catMaybes

join

readFileMay

findTodos

Figure 1.7: A diagram of findAllTodoLines

. (fmap . fmap . fmap) findTodos

. fmap readFileMay

fmap (join . catMaybes)

. (fmap . fmap . fmap) findTodos

. sequenceA

. fmap readFileMay

fmap (join . fmap findTodos . catMaybes)

. sequenceA

. fmap readFileMay

Though these terms are all syntactically different, they are semantically equiva-
lent1. as they all correspond the same string diagram.

1In an idealized version of Haskell. The proper qualifications are made in Chapter 2

CHAPTER 1. MOTE 10

By performing search on string diagrams rather than terms (or alternatively, by
converting to string diagrams and then eliminating duplicates after performing search)
we are able to make the list of terms displayed to the user more usable. In this
particular example, the number of terms discovered before eliminating duplicates is
76, compared to the 26 afterwards.

Related work

There are many existing systems which integrate synthesis tools into a development
environment. Agda, for example, has an “auto” command that triggers an attempt
to search for a term of the type of the current hole. The search has a timeout of
about five seconds. Agda uses a search strategy based on the idea of narrowing[16],
which could easily be a complete proof strategy for a full MLTT-style dependently
language. In practice, for performance reasons, the implementers of Agda limit the
capabilities of the search (for example by disallowing induction) so that the strategy
as implemented is not complete.

There are several related tools for Haskell specifically. One such tool is Lennart
Augustsson’s Djinn[1], integrated in the ghc-mod[7] plugin. Djinn is a theorem prover
for intuitionistic propositional logic capable of synthesizing simple programs, but
whose utility is severely limited by the fact that it is only capable of reasoning about
non-recursive polynomial types. For example, Djinn can infer a program of type
Either a b -> Bool but cannot even be queried about a type like [IO a] -> IO

[a], since neither IO nor [] are non-recursive polynomial types.
A second is MagicHaskeller[13], which attempts to synthesize functions satisfying

a boolean predicate. Mote’s synthesis capabilities differ in that it has no facility for
constraining synthesized programs to satisfy behavioral predicates instead constrain-
ing them only on types. Notably, MagicHaskeller makes efforts to eliminate duplicate
synthesized terms, as Mote does,inputs relying on equations like the η-rule and test-
ing on random inputs to do so. Mote’s method for eliminating duplicate terms relies
on naturality and functoriality equations, to be discussed later.

A third is the recently released Exference[23] which synthesizes Haskell terms
which have a given type. Exference supports some features not currently in Mote,
such as synthesis of terms which pattern match on single constructor types, and more
generally, terms of a less restricted form than those generated by mote. At present,
Exference searches for terms built out of a curated set of base terms whereas Mote’s
Search uses whatever is in scope in the file in which it is invoked.

Another category of tool in this space, widely used in practice, is code completion
systems for object-oriented languages like the partial completions of [18] or Intel-
lisense[24]. Such systems, designed for object-oriented languages, rely on the fact
that for any given value, it is immediately clear what operations may be performed
on it: namely, the set of methods which that value has.

CHAPTER 1. MOTE 11

Things are somewhat less clear in functional languages. In a sense, the situation
is similar in that the “only” operation which may be applied to a value of a given
type is the eliminator for that type (or put another way, the only operation that can
be performed is pattern-matching) and the elimination rule for objects is essentially
access to their methods. In practice, this is not exactly the case as many definitions
are built out of existing functions and not given by explicit pattern matching, and a
search strategy based on this is not likely to be useful. When all things are possible, it
is unlikely that the expression the user is looking for will be happened upon. For this
reason, we suppose a closed set of operations that can be performed on a value of a
type T which will essentially be the functions in scope taking an argument of type at
least as general as T . This approach is analogous to that taken in the autocompletion
methods mentioned above.

Some of the capabilities of Mote’s search seem to be similar to the Scala synthesis
tool InSynth[9]. Namely, the ability to synthesize expressions involving polymorphic
subexpressions. It should be stressed however that the primary technical innovation
of Mote’s search is not quite in the searching itself, but in eliminating duplicates from
the set of synthesized expressions.

Limitations and future work

As of now, the implementation cannot handle polymorphism in the functors them-
selves. For example, the system is unable to use the function snd :: (x, a) ->

a to provide a term of type (Int, a) -> a since the functor applied to the source,
(,) x is polymorphic in x and we currently make no attempt to unify it with Int. It
should be fairly straightforward to extend the search with this ability, and we have
already begun work on this problem.

Also, since the search strategy is a simple exhaustive search, searching for terms
of size greater than about 6 takes more time than is acceptable for interactive usage.
Notably, the current implementation does not terminate search after some number
of solution programs have been found, but only after all have been found. It seems
plausible that some heuristics to inform a “best-first” search, or terminating search
after some number of programs judged to be good have been found could improve
this limitation considerably. Exference[23] uses a best-first search strategy to achieve
better performance.

Another limitation is that the search currently cannot use multi-argument elim-
ination and introduction functions like maybe :: a -> (a -> b) -> Maybe a ->

b, either :: (a -> c) -> (b -> c) -> Either a b -> c, (,) :: a -> b ->

(a, b). It would be a major achievement in our eyes to augment string diagrams
to naturally represent sum and product types in such a way that many equations
involving them (such as (a, b) = (b, a) or (a, Either b c) = Either (a, b)

(a, c)) hold in the string diagram representation. The work in [21] seems relevant
in approaching this problem.

CHAPTER 1. MOTE 12

Somewhat relatedly, our search cannot easily handle type constructors functorial
in more than one argument. A satisfactory account of product and sum types would
likely have the side effect of partially addressing this issue since in Haskell a typical
type is constructed as a sum of products.

13

Chapter 2

Searching for polymorphic
programs

Suppose you have a list of directories

dirs :: [DirPath]

and also a function for obtaining the paths to the files in a given directory

listDirectory :: DirPath -> IO (Maybe [FilePath])

which returns Nothing if the DirPath given as an argument does not exist. Now
suppose you are trying to list all files in the directories dirs

allFiles :: IO [FilePath]

allFiles = _

We can fill this in with the predictable definition

allFiles :: IO [FilePath]

allFiles = (fmap (concat . catMaybes) . sequence) (map listDirectory dirs)

where

catMaybes :: [Maybe a] -> [a]

catMaybes = foldr (maybe id (:)) []

concat :: [[a]] -> [a]

concat = foldr (++) []

are library functions. The function

fmap (concat . catMaybes) . sequence

is a general purpose “effects-munging” function and is likely one of the few such
functions of type

forall a. [IO (Maybe [a])] -> IO [a]

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 14

which is both short and useful.
In this chapter, we develop a theory to guide the development of Mote’s search

functionality. I.e., for discovering programs with types of the form

forall a. F1 (F2 (... (Fn a) ...)) -> G1 (G2 (... (Gm a) ...))

2.1 Preliminaries

In what follows, we use the notions of categories, functors, and natural transforma-
tions extensively. For an introduction to these ideas, please see for example [2].

Important tools that we will make frequent use of are Wadler’s free theorems
[25], which are essentially consequences of Reynold’s abstraction (or parametricity)
theorem for System F [20]. In particular, we use the following fact. For any System
F terms

mapF : ∀αβ.(α→ β)→ (Fα→ Fβ)

mapG : ∀αβ.(α→ β)→ (Gα→ Gβ)

η : ∀α.Fα→ Gα

f : A→ B

such that

mapF (λx.x) = λx.x

mapG (λx.x) = λx.x

we have
mapG f ◦ η = η ◦mapF f

where equality of functions is extensional equality. In reality, this fact of parametricity
is very delicate, and adding the wrong features to System F will invalidate it. For
example, if we add laziness and non-termination, as in Haskell, this fails to hold as
the following example illustrates1 [22]

Let

g :: [a] -> Maybe a

g _ = Just (let x = x in x)

If the free “theorem” were true, we would have

g . map (_ -> ()) = fmap (_ -> ()) . g

But

1This example was generated by the wonderful tool “Automatically Generating Counterexamples
to Naive Free Theorems” at http://www-ps.iai.uni-bonn.de/cgi-bin/exfind.cgi.

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 15

(g . map (_ -> ())) [] = Just (let x = x in x)

(fmap (_ -> ()) . g) [] = Just ()

In this work, we ignore this subtlety (and indeed, all subtleties related to ⊥) and
imagine we are working in an ideal subset of Haskell without non-termination. We
also ignore the subtleties associated with making a category of Haskell types and
functions. Explicity, our (false, but not too badly false) assumptions are as follows.

• There is a category Hask whose objects are Haskell types and where HomHask(A,B)
consists of the terms of type A→ B identified by extensional equality.

• Every type constructor F :: * -> * paired with a function mapF :: forall

a b. (a -> b) -> (F a -> F b) with mapF (\x -> x) = \x -> x and mapF

f . mapF g = mapF (f . g) gives rise to an endofunctor on Hask.

• For any F, G :: * -> * with corresponding maps on arrows mapF and mapG

satisfying the functor laws, any function f :: forall a. F a -> G a gives
rise to a natural transformation from the functor arising from F to the functor
arising from G.

In particular we have the following equation for any g : A -> B.

f . mapF g = mapG g . f

To make such assumptions is mainly just a linguistic convenience. For further infor-
mation on the acceptability of reasoning under such assumptions, see [5].

2.2 A calculus for natural transformations

Our goal is a useful algorithm for the synthesis of Haskell programs of types of the
form

forall a. F a -> G a

which, as per the above discussion, correspond to natural transformations from the
functor corresponding to F to the functor corresponding G.

With this in mind, in this section, we presentN , a proof calculus for deriving natu-
ral transformations between functors, demonstrate a connection with string rewriting
systems, and prove the completeness of a particular search strategy. Beginning in
section 2.7, we present a modification of the strategy resulting in significant efficiency
gains.

The basic ideas underlying this calculus and its relationship to string rewriting
have been known since at least the the publication of [19]. It seems the basic idea
of connecting natural transformations to string rewriting has been essentially redis-
covered several times in different contexts, including [19], [17] in the context of con-
currency, and [15] in the context of computer verification of purported commutative

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 16

diagrams involving monads, and in the development of the present work, with an eye
toward proof search.

One of the contributions of this portion of the present work is to give a clean pre-
sentation of a logic of natural transformations, similar systems also termed rewriting
logic, as well as an account of the models of this logic. Amazingly, the definitions
given here (and the obvious theorems which follow) coincide almost exactly with those
given in [17], although the definitions in the present work are simpler, due to ours
being a more impoverished logic.

The more novel contribution is in the modification to the logic use string diagrams
as its proof terms, which results in an efficiently computable sufficient condition for
deciding the equality of two polymorphic programs by giving a sort of normal form.
This in turn aids in speeding up program search since the search space is made quite
a bit smaller. That is, we demonstrate the usefulness of string diagrams for reasoning
about the equivalence of (and potentially optimizing) polymorphic programs, and
their utility in program synthesis.

We first give a presentation of the calculus N which is easily motivated by the goal
at hand (constructing natural transformations) and then modify its rules to obtain a
calculus more suitable for proof search.

Each rule is justified by operations that can be performed to obtain natural trans-
formations of endofunctors.

Let A,B,C, . . . be symbols intended to range over endofunctors on some category
C. Juxtaposition of these symbols should be thought of as composition of functors.
I.e, AB should be interpreted as the composite A ◦B. The sequents for this calculus
are of the form

A1 · · ·An → B1 · · ·Bm

which will be interpreted as the type of natural transformations from A1 · · ·An to
B1 · · ·Bm. A proof of such a sequent can be thought of as a (description of a) natural
transformation from A1 · · ·An to B1 · · ·Bm.

The rules of the calculus N are

Id
A→ A

B → B′
Functor

AB → AB′

A→ A′
Component

AB → A′B

A→ B B → C
Cut

A→ C

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 17

Note that in the pure system N as presented, the only derivable sequents are of
the form X → X. So, to the pure system we add a collection of axioms A, each of
the form

`
S → T

for some fixed S and T and for some label `. Concretely, we’ll imagine that each
axiom is a tuple (`, S, T). We denote the resulting proof calculus N [A].

The Cut rule seems to hurt the possibility of proof search in N [A] since B cannot
be inferred from the conclusion sequent and could in principle be any of infinitely
many strings. To remedy this, we add the following rules for each (`, S, T) ∈ A.

X → ASB
`

S → T
Rewrite-`-R

X → ATB

`
S → T ATB → Y

Rewrite-`-L
ASB → Y

We will see later on that only one of these rules is necessary for each (`, S, T).
Note that these rules are essentially special cases of Cut:

X → ASB

`
S → T

Component
SB → TB

Functor
ASB → ATB

Cut
X → ATB

`
S → T

Component
SB → TB

Functor
ASB → ATB ATB → Y

Cut
ASB → Y

and so their addition does not alter the set of provable sequents, although it does of
course alter the collection of proofs.

2.3 A semantics in categories

The presentation of N [A] with the rules Rewrite-`-R and Rewrite-`-L and with-
out cut is suitable for search assuming A is finite. This is because given a goal sequent
X → Y there are only finitely many rules from which it could be derived. This gives
us a näıve strategy: at each stage, simply try each of the finitely many rules in a
depth first manner.

However, it is not immediately clear a priori that removing cut and replacing
it with the Rewrite-`-L and Rewrite-`-R rules preserves the set of derivable

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 18

sequents. Furthermore, since we care about the actual natural transformations cor-
responding to proofs of sequents, it is not clear that any natural transformation
constructible using Cut is derivable using the other rules.

To that end, we develop a bit of theory connecting the proof system to both
natural transformations and string rewriting systems.

Definition 1. Fix an alphabet Σ and let A be a collection of axioms (`, S, T) with
S, T ∈ Σ∗.

A model of A is

1. A category C

2. For each Ai ∈ Σ a functor JAiK : C → C.

As a notational convenience, for a string A1 · · ·An ∈ Σ∗ we define JA1 · · ·AnK :=
JA1K ◦ · · · ◦ JAnK.

3. For each (`, S, T) ∈ A a natural transformation J`K : JSK→ JT K.

We use the notation
C |= A

to mean that there merely exist endofunctors on C and natural transformations making
C a model of A.

If we were after generality, we could have defined a model as an arbitrary 2-
category on one object, but we specialize the definition for simplicity.

For our applications, the model to keep in mind is Hask, the category of Haskell
types and functions. Here, for (`, S, T) ∈ A, the natural transformation J`K will
typically be represented a value of type ∀α.JSKα→ JT Kα.

Proposition 2. If p is a proof N [A] ` S → S ′ and C |= A, then there is a natural
transformation JpK : JSK→ JS ′K.

Proof. By induction on the structure of p.

• Id

Id
A→ A

Take JpK = idJAK.

• Functor

B → B′
Functor

AB → AB′

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 19

Let q be the proof B → B′. By induction we have JqK : JBK→ JB′K. Now take
JpK = JAKJqK.

• Component

A→ A′
Component

AB → A′B

Let q be the proof that A→ A′. By induction we have JqK : A→ A′. Now take
JpK = JqKJBK.

• Cut

A→ B B → C
Cut

A→ C

Let q be the proof of A→ B and r the proof of B → C. Now take JpK = JrK◦JqK.

• Axiom `

`
S → T

Take JpK = J`K.

2.4 A semantics in string rewriting (a special

case)

Let A be a set of axioms over the alphabet Σ. Consider the semi-Thue system −→A
generated by the rewrite rules

S −→A T

for each (, S, T) ∈ A. That is, −→A is the least relation on Σ∗ satisfying

• S −→A T for each (, S, T) ∈ A.

• If A −→A B, then for any X, Y ∈ Σ∗ XAY −→A XBY .

• For any X ∈ Σ∗, X −→A X.

• If A −→A B and B −→A C, then A −→A C.

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 20

The idea is we start with some string A, and then we find a substring S of A such
that S is the right hand side of some axiom rule S −→A T , and we then replace the
substring S with T in A to obtain a new string A′.

There is a obviously a strong resemblance to N [A]. What we will show is that the
set of sequents X → Y deducible from a set of axioms A is exactly the set of rewrite
rules X −→A Y .

We can build a very syntactic model structure for A by considering the preorder
category on (A,−→A), denoted Pre(A). Explicitly, this is the category whose objects
are the strings in Σ∗ and where

Hom(X, Y) =

{
{ ∗ } X −→A Y
∅ otherwise

This just encodes the partial order −→A as a category.
Pre(A) can be made a model for A as follows.

• For Ai ∈ Σ define
JAiK(X) := AiX

i.e., the string whose head is Ai and whose tail is X. This gives a functor iff
Hom(JAiK(X), JAiK(Y)) is inhabited whenever Hom(X, Y) is. But this holds
since

Hom(X, Y) inhabited =⇒ X −→A Y
=⇒ AiX −→A AiY

=⇒ Hom(AiX,AiY) inhabited

• For (`, S, T) ∈ A, we must provide

J`K : JSK→ JT K

Given the definition of JAiK, it is clear that JSK is the map prepending S to its
argument and similarly for JT K So, to construct J`K, for each X ∈ Σ∗, we must
exhibit

J`KX : Hom(SX, TX)

with naturality following from uniqueness of morphisms in Pre(A). Hom(SX, TX)
is inhabited because

(`, S, T) ∈ A =⇒ S −→A T
=⇒ SX −→A TX
=⇒ Hom(SX, TX) inhabited

so we are done.

In fact, what we have proved here is half of the claim that

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 21

Lemma 3. S −→A S ′ iff there is a natural transformation JSK→ JS ′K.

Proof. We proved the forward direction above. The other direction of the impli-
cation follows from taking the component of the given natural transformation
at the empty string.

Corollary 4. If N [A] ` S → S ′, then S −→A S ′.

Proof. Suppose N [A] ` S → S ′. By Proposition 2, there is a natural transformation
JSK→ JS ′K. By Lemma 3, S −→A S ′.

Proposition 5. If S −→A S ′, then N [A] ` S → S ′.

Proof. There are two proofs of this fact that we would like to describe with tedious
details ommitted. That is, I will just give a sketch of the two proofs. They differ in
whether one inducts backwards or forwards. The first builds a proof using only the
Rewrite-`-L rules and Id to get a “right-leaning” proof tree and the second only
the Rewrite-`-R rules and Id to get a “left-leaning” proof tree. They essentially
correspond to different ways of “parenthesizing”.

We can imagine S −→A S ′ was derived by starting with the string S and then
applying some sequence of axiom rewrites to S to get a sequence

S = S0 −→A S1 −→A · · · −→A Sn = S ′

where each Si+1 is obtained from Si by rewriting a substring using a single axiom
(`i, Ai, Bi) in A by the rule

Si = XiAiYi −→A XiBiYi = Si+1

Now the two proofs go as follows.

(1) If S = S ′, we take our proof to be

Id
A→ A

Otherwise, recalling that S = S0 = X0A0Y0 and S1 = X0B0Y0, we take our proof
to be

`
A0 → B0 A0B0Y0 → Y

Rewrite-`-L
X0A0Y0 → S ′

where the proof of A0B0Y0 → Y is obtained in this way by induction.

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 22

(2) If S = S ′, again we use the Id rule.

Otherwise, recalling Sn−1 = Xn−1An−1Yn−1 and Sn = S ′ = Xn−1Bn−1Yn−1, we
take our proof to be

S → Xn−1An−1Yn−1
`

An−1 → Bn−1
Rewrite-`-R

S → Xn−1Bn−1Yn−1

where the proof of S → Xn−1An−1Yn−1 is obtained in this way by induction.

Corollary 6 (Cut elimination). If N [A] ` S → S ′ with a proof p, then there is a
proof q of S → S ′ only using the rules Rewrite-`-R such that JpK = JqK in any
model. There is also such a proof of S → S ′ only using the rules Rewrite-`-L.

Proof. By Proposition 4, we obtain a sequence of rewrites S −→A S ′. The two
constructions going the other way then provide the proofs of S → S ′ desired. Using
the definitions of Rewrite-`-L and Rewrite-`-L in terms of cut in section 2.2 and
the fact that functors preserve composition, we obtain the desired equalities.

2.5 Completeness

We can now state and prove a completeness property for the system N [A] expressing
the following informal claim: “any natural transformation constructible starting from
A in a generic category is derivable in N [A]”.

Theorem 7 (Soundness and completeness). N [A] ` S → S ′ iff every model of A is
a model of S → S ′.

Proof.

1. =⇒ (Soundness)

Suppose N [A] ` S → S ′ and C |= A. Then by Proposition 2, there is a natural
transformation JSK→ JS ′K. Thus, C models S → S ′.

2. ⇐= (Completeness)

Suppose every model of A is a model of S → S ′. Then in particular, Pre(A) is
a model of S → S ′. This means we have a natural transformation JSK→ JS ′K,
which by Lemma 3 implies S −→A S ′. Thus by Proposition 5, N [A] ` S → S ′.

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 23

Essentially this fact can be found in [17].
This completeness theorem is frankly inadequate from the perspective of program

search, where possibly most sequents F → G are inhabited and what we really care
about is the structure of the collection of all proofs of the sequent. That is, we would
want a completeness theorem which tells us that all natural transformations definable
over a base set in a generic category are definable in N [A], and two “generic natural
transformations” are equal exactly when their proofs are equal in N [A].

Unfortunately, there can be no such theorem about N [A] since N [A] does not
really represent the collection of natural transformations freely generated over A.
There is too much redundancy. That is, there are distinct proofs in N [A] whose
interpretations are equal in every model. The exact nature of this redundancy and
what can be done about it will be analyzed in the following sections.

2.6 Some proof theoretic observations

As mentioned, the system as presented some redundancy on the level of proofs. That
is to say, there are distinct proofs trees which yield the same natural transformation
under any interpretation. Suppose we have functors A,B,C,D and η : A → C,
ϕ : B → D and consider, for example the following four proofs:

ϕB → D
Functor

Aϕ : AB → AD
η : A→ C

Component
ηD : AD → CD

Cut
ηD ◦ Aϕ : AB → CD

η : A→ C
Component

ηB : AB → CB
ϕ : B → D

Functor
Cϕ : CB → CD

Cut
Cϕ ◦ ηB : AB → CD

By naturality, ηD ◦ Aϕ = Cϕ ◦ ηB. To avoid this redundancy, we could add this
derivation of horizontal composition as a primitive inference rule.

η : A→ C ϕ : B → D
Zip

Cϕ ◦ ηB : AB → CD

The Zip rule is actually quite nice as it allows us to derive both the Functor and
Component rules, which could then be removed as primitives.

Id
A→ A B → B′

Zip
AB → AB′

A→ A′
Id

B → B
Zip

AB → A′B

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 24

There is also the fact that functors preserve composition, so for ϕ : B → C and
η : C → D, we should have an equality between the two proofs

ϕ : B → C
Functor

Aϕ : AB → AC
η : C → D

Functor
Aη : AC → AD

Cut
Aη ◦ Aϕ : AB → AD

and

ϕ : B → C η : C → D
Cut

η ◦ ϕ : B → D
Functor

A(η ◦ ϕ)AB → AD

This latter equality could be thought of as reduction rule from the first proof to
the second, since it can be carried out using only local information and reduces the
size of the proof. Interpreting these derivations as programs, in typical cases it also
corresponds to an optimization analogous to the list fusion optimization implemented
in GHC[10]. That is, A(η ◦ ϕ) would make one pass over an A data structure rather
than the two passes Aη ◦ Aϕ might make.

2.7 String diagrams for efficient search

It would be an interesting future direction of research to investigate the possibility of
defining confluent or even normalizing reduction rules on proofs in N [A] (or a modi-
fied system), but the problem can be essentially side-stepped by translating proofs in
N [A] into string diagrams. The situation is reminiscent of that of linear logic, where
translating linear logic tree-proofs into proof nets [8] eliminates computationally ir-
relevant distinctions between proofs.

To motivate string diagrams, let us consider a program for randomly selecting a
sublist of a list. Suppose we have a monad Random with values

randomBool :: Random Bool

runRandom :: Random a -> IO a

Define

randomlyNothing :: a -> Random a

randomlyNothing x =

fmap (\b -> if b then Just x else Nothing) randomBool

which randomly ignores its argument. Now define

randomSublist :: [a] -> IO [a]

randomSublist = runRandom . fmap catMaybes . sequence . map randomlyNothing

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 25

which takes a list to a random sublist by randomly sending each element x in the list
to either Just x or Nothing and then picks out all the elements x which were sent
to Just x.

In the language of natural transformations, randomlyNothing :: a -> Random

(Maybe a) can be thought of a natural transformation from the identity functor
on Hask to the composite Random ◦ Maybe. Thinking in this way, we can draw
randomSublist as a rather uninspiring 2-diagram (in Cat, the 2 category of cate-
gories) (Figure 2.1).

IO

sequence

catMaybesrunRandom

Hask Hask

Hask

Hask

Hask

id
Hask

Li
st

Li
st

Random

Random

M
aybe

randomlyNothing

Figure 2.1: A diagram of randomlyNothing

This representation makes it hard to see the flow of effects in our program and is
also quite cluttered. We can draw the same information in a more managable way,
which lets us more easily imagine effects tranforming into other effects, by essentially
taking the dual graph to Figure 2.1, as in Figure 2.2. Here, functors are repre-
sented by arrows and polymorphic functions by points (drawn as circles). Would-be
straight lines corresponding to the identity functor are omitted. Hence, for exam-
ple, randomlyNothing in Figure 2.2 has outgoing arrows but none incoming. Such
a diagram is called a string diagram. Here we think of functors as “effects” (e.g.,
IO, partiality, non-determinism, randomness) and a string diagram shows us how a
programs translates effects into other effects through polymorphic functions.

A question which arises is “Have we lost any information by translating our pro-
gram into a string diagram?” That is, is it possible to recover a program from the
string diagram which it corresponds to? At first blush the answer seems to be no since
there are two distinct programs which have the same string diagram. For example,
the two programs

randomSublist, randomSublist’ :: [a] -> IO [a]

randomSublist =

runRandom . fmap catMaybes . sequence . map randomlyNothing

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 26

sequence

runRandom

randomlyNothing

catMaybes

Figure 2.2: A string diagram of randomSublist

randomSublist’ =

fmap catMaybes . runRandom . sequence . map randomlyNothing

get translated into the same string diagram, namely the one in Figure 2.2. How-
ever, the free theorem (naturality) for forall a. Random a -> IO a tells us that
runRandom . fmap catMaybes is indistinguishable from fmap catMaybes . runRandom

[25]. So although the two programs are not literally the same term, they are obser-
vationally indistinguishable 2. In general, it is true that string diagrams faithfully
represent terms identified up to extensional equality (i.e., identifying functions if they
agree on all arguments). For details, see [11]. As mentioned in the first chapter, we
exploit the fact that string diagrams represent programs up to naturality (and func-
toriality) equations and not literally to eliminate duplicates from lists of synthesized
programs.

In general, string diagrams are a graphical calculus which provide a convenient
and easy to reason about notation for describing morphisms in a monoidal category.
A monoidal category is a category C with a functor ⊗ : C → C → C, associative
up to isomorphism, an object 1 ∈ C which is a left and right identity for ⊗ up to
isomorphism, and such that some coherence conditions between these isomorphisms.
For more details, see [11].

2As mentioned, in real Haskell, due to the interaction of nontermination with laziness, such
naturality equations do not always hold, but in this work as a simplification we assume their validity.

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 27

String diagrams were first introduced by Kelly and Laplaza in [14] and put on a
solid formal basis by Joyal and Street [11] [12] who proved the correctness of reasoning
using string diagrams up to isotopy.

Formally, a string diagram is a directed graph with

• Two distinct vertices called the “top” and “bottom” vertices such that the top
vertex has no incoming edges and the bottom vertex has no outgoing edges.
These two vertices will be called “special” vertices.

• A downward embedding γ of the graph into the plane.

An downward embedding (hereafter, simply called an “embedding”) γ of a graph is
a collection of smooth paths γe : [0, 1] → R2, one for each edge e of the graph such
that

• For any e1, e2, e1 and e2 have the same source iff γe1(0) = γe2(0).

• For any e1, e2, e1 and e2 have the same sink iff γe1(1) = γe2(1).

• For any e1, e2, the sink of e1 is the source of e2 iff we have γe1(1) = γe2(0).

• For each e, the path γe travels monotonically down the plane. That is, for
t1 < t2, the y coordinate of γe(t1) is greater than the y coordinate of γe(t2).

• For e 6= e′, γe and γe′ intersect only at their endpoints if at all.

• The top vertex of the graph is embedded above all other vertices and the bottom
vertex of the graph is embedded below all other vertices.

with isotopic embeddings identified. For full details see [11].
As a notational convenience, we will use γ(p) to refer to the image of the whole

graph as a subspace of the plane, γ(e) for the image of an edge e, and γ(v) for the
image of a vertex v.

Often, we imagine that the top and bottom vertices are pulled off the screen and
we do not draw them. The edges leaving from the top vertex may be called the
“inputs” or the “incoming edges” of the diagram and the edges entering the bottom
vertex may be called the “outputs” or the “outgoing edges” of the diagram.

The embedding of the graph induces an ordering on the incoming edges at any
given vertex. Simply order them from left to right. Likewise an ordering on the
outgoing edges is induced in the same way. Obviously representing an embedding of
the graph in the plane is untenable from the perspective of efficient implementation,
so in our implementation we store only the ordering of the edges incident to every
vertex. The original embedding is determined up to isotopy by this data.

In our context, the only example of a monoidal category we will consider is the
following.

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 28

Definition 8. Let End(C) be the category whose objects are endofunctors on C, i.e.,
functors C → C, and whose maps are natural transformations.

Composition of endofunctors ◦ : End(C) → End(C) → End(C) is a monoid oper-
ation for End(C) with on-the-nose identity idC . The action of ◦ on arrows is given
by horizontal composition of natural transformations. That is, if we have η : A→ B
and ϕ : C → D, then we define ◦(η, ϕ) : A ◦ C → B ◦D by

Bϕ ◦ ηC

(or alternatively, ηD ◦ Aϕ, which is the same map as discussed above). Figure 2.2
shows a string diagram in the monoidal category End(Hask).

A

B

A

B

Functor

C

C A

B

A

B

Natural

C

C

Figure 2.3: Translations for the remaining rules of N

A

B D

C A

B D

C

=

Figure 2.4: Naturality evidently holds for string diagrams

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 29

A D

C E

A D

C E

=

Figure 2.5: Vertical (cut) and horizontal (juxtapose, or zip) composition evidently
commute for string diagrams

2.8 String diagrams for eliminating redundancy

In this section, we give a calculus of string diagrams and prove a 2-dimensional or
proof relevant completeness theorem.

Fix an alphabet Σ and a set of axioms A as in the definition of N . I.e., A is a set
of triples of the form (`, S, T) with S, T ∈ Σ∗.

Let us call the calculus that we are defining G[A]. The theorems of G[A] are, just
as in N [A], statements of the form A → B for A,B ∈ Σ∗. A proof of A → B is
a string diagram obtained according to the rules depicted in Figure 2.6. In words,
we inductively define the proofs of G[A] as follows. In general, a proof in G[A] of
A1 · · ·An → Bn · · ·Bm (for Ai, Bj ∈ Σ) will be a string diagram whose incoming
ports are labelled by the Ai and whose outgoing ports are labelled by the Bi.

• Id

For each A ∈ Σ, G[A] proves A → A with proof given by the string diagram
with one incoming port labelled by A, one outgoing port labelled by A, and a
single edge connecting them. The embedding is the only possible one (up to
isotopy) and is shown in Figure 2.6.

• `
For each (`, S, T) ∈ A, G[A] proves S → T with the proof given by the string
diagram in Figure 2.6. In words, we can describe the diagram as follows.

If S = A1 · · ·An and T = B1 · · ·Bm, Ai, Bj ∈ Σ, then our diagram has a single
vertex labelled by `, incoming ports labelled by A1, . . . , An and ordered in that
way, each with an edge into the single vertex. The outgoing ports are labelled
B1, . . . , Bm, ordered in that way and each has an edge from the single vertex.

• Cut

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 30

A
1

A
n

B
1

B
m

…

…

ℓ

ℓ

A

B

B

C

C

A

Cut

,

A

B D

C

Juxtapose

,

A

B D

C

Id

A

A

Figure 2.6: The essential rules for our string calculus

If p is a proof of A→ B and q is a proof of B → C, then we obtain a proof of
A→ C in the obvious way by joining up the outgoing ports of p to the incoming
ports of q.

• Juxtapose

If p is a proof of A→ B and q is a proof of C → D, then we obtain a proof of
AC → BD by juxtaposing p and q left-to-right.

For p a proof ofX → Y in G[A] and for C a model ofA, define JpK ∈ HomEnd(C)(JXK, JY K)
(a natural tranformation from JXK to JY K) inductively as follows.

If p was obtained using Cut by attaching p0 : X → X ′ to p1 : X ′ → Y , define
JpK = Jp1K ◦ Jp0K.

If p was obtained using Juxtapose by juxtaposing p0 : A→ B with p1 : C → D,
define JpK to be the horizontal composition of p0 and p1, Jp0KD ◦ AJp1K.

If p was obtained using Id, then JpK = id.

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 31

If p was obtained using the ` rule, then JpK = J`K.

Theorem 9 (2 dimensional completeness). Suppose that p, q are proofs of A→ B in
G[A] and that for any model C we have JpK = JqK. Then p = q.

Proof. Essentially, this says that our proof system of string diagrams is a free category
of some sort. We prove this by constructing a special model. Define the category Z
(Z for “zebra”) as follows.

• The objects of Z are the strings over the alphabet Σ.

• HomZ(X, Y) is the set of proofs of X → Y in G[A]. Composition is given by
the Cut rule as in Figure 2.6.

Now we define a model structure on Z.

• For Ai ∈ Σ, JAK : Z → Z is given by JAiK(X) = AiX. I.e., the string whose
head is Ai and whose tail is X. The action on morphisms is illustrated in
Figure 2.7.

Y

X

Y

X A
i

A
i

A
i⟦ ⟧ =()

Figure 2.7: The action of JAiK on morphisms

With this definition, for A,B ∈ Σ∗, a natural transformation n : JAK → JBK
satisfies the equation nY ◦ JAKf = JBKf ◦ nX . Figure 2.8 shows the meaning of
this equation on the level of string diagrams.

By Figure 2.8, since we can push around the blue and gray boxes so that they’re
all at the same height, the string diagram labelled nX is the same as the string
diagram labelled nY . Thus n is determined by this single diagram and for any
X, nX : HomZ(JAKX, JBKX) is just this single diagram juxtaposed with the
straight line Id diagram X → X on the right. Moreover, a map defined in that
way satisfies naturality.

• Now we can finish the definition of the model structure. For (`, S, T) ∈ A. J`KX
is the diagram for ` in Figure 2.6 juxtaposed with the straight line Id diagram
X → X on the right. By the preceeding discussion, this is natural.

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 32

A

B Y

X A

B Y

X

=

=⟦ ⟧A fn
Y ⟦ ⟧B f n

X

Figure 2.8: Naturality for n

By the inductive definition of J−K on all proofs (string diagrams) in G[A], it is clear
that for p a proof of A → B, JpK is the natural transformation such that JpKX :
HomZ(AX,BX) is p juxtaposed with the straight line X → X on the right. That is,
Z essentially interprets proofs as themselves.

Now we are ready to finish the proof. Let p, q be given proofs (string diagrams)
of A→ B and for any model of A we have JpK = JqK. Then in particular this is true
of Z. But then clearly p = q by the preceeding paragraph.

Proposition 10. Any string diagram such that each vertex corresponds to an axiom
in A can be obtained using the rules of G[A].

Proof. The idea of the proof is to slide vertices which are topmost in some embedding
off the page one by one. A vertex (here we exclude the top vertex) is topmost in an
embedding if its image has the highest y coordinate of any vertex .

A
1

A
1

A
2

A
2

A
n

A
n

…

Figure 2.9: A trivial diagram

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 33

The proof that any graph can be built using the moves of G[A] proceeds by
induction on the number of internal vertices in p, sliding vertices up and out of the
picture one-by-one.

If p is a straight line graph as in Figure 2.9, then p can be written as a collection
of juxtaposed Id graphs and we’re done.

Otherwise, p contains vertices. Let v be a vertex labelled by `, such that there
is some downward embedding of p with v having the highest y-coordinate. In what
follows, the words left and right refer to left and right in this embedding. Say the

X
1

X
k…

A B X
1

X
k…A B

= =
Cut

X
1

X
k…A B

Juxtapose

ℓ

ℓ ℓ

Figure 2.10: Decomposition of a string diagram

edges going into v are from the incoming ports X1, . . . , Xk, the ports to the left of X1

are A and the ports to the right of Xk are B so the graph is as depicted in Figure 2.10.
Figure 2.10 then shows how we can apply Cut and then Juxtapose twice to isolate
v, which is now just the axiom given by the rule `. By induction, we can obtain the
lower half of the graph (depicted as a black box in Figure 2.10) using the rules of
G[A], and so we an obtain p using G[A].

Note that this proof almost corresponds to an algorithm for turning string dia-
grams (whose vertices are labelled with Haskell functions terms) into actual Haskell
programs since Cut corresponds to function composition and Juxtapose to hori-
zontal composition, which is g . fmap f if g corresponds to the diagram on the left
and f the one on the right. “Almost”, because we have given no algorithm for finding
a vertex which in some embedding appears with the highest y-coordinate. We will
approach this problem in Section 2.11.

Together, Theorem 9 and Proposition 10 prove that a brute-force search using the
rules of G[A] will not only find all the natural transformations all the sequents which
hold in every model, but will also find all the natural transformations which may be
constructed in every model and will find them only “once”. Of course, naturality
equations are not the only relations between Haskell programs (and because not all
Haskell programs of type ∀α.Fα → Gα are of the form produced by G[A]) so the
search strategy is bound to miss some programs, and to find some programs twice.

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 34

Our current implementation includes an extension to string diagrams which re-
flect equations involving constant functors (as string diagrams reflect naturality and
functoriality equations) but due to time constraints, we will not describe it here.

2.9 Remarks on implementation

In this section we describe briefly the application of the ideas of this chapter to a
very simple implementation of program search, as well as some heuristics used to
rank generated programs.

Suppose we want to find a string diagram of type A→ B. We proceed by trying
to rewrite A to B by applying our axioms A to substrings of A. I.e., at step n, we
will have

Xn = { p a string digram starting from A | p has n internal vertices }

We can compute Xn+1 from Xn by applying all the applicable rules to each element
of Xn. To ensure we don’t store two graphs that have the same interpretation, we
define a hash function on graphs whose value depends only on the isomorphism type
of the graph (and not of the particulars of how it is represented). This permits us to
quickly eliminate duplicates which helps prevent duplicating efforts in search.

In our implementation, an in scope Haskell function is included in our set of axioms
A if after giving values for all but one of its arguments it has a type of the form

forall a. F a -> G a

If the function has n arguments, we say that as an axiom it has n − 1 holes (since
we have to come up with values for n − 1 of its arguments for it to be a function of
the desired type). Note that a function can be considered as an axiom in many ways,
depending on which arguments we imagine putting holes in for.

We use the following heuristic for ranking discovered programs before presenting
them to the user. Candidate programs are ordered lexicographically by

(1) The total number of holes in the program.

(2) The number of vertices in the string diagram.

(3) The number of connected components of the string diagram.

In our usage this seems to produce a fairly good ordering of discovered terms, but
more extensive testing is needed to see how useful a ranking scheme this is.

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 35

2.10 Turning string digrams to terms

Surprisingly one of the trickiest aspects of this system of program search from an
implementation poitn of view is turning discovered string diagrams (graphs) into
Haskell terms. The algorithm we use is essentially described by Proposition 10 and
proceeds by sliding vertices up and off the top of the page one by one. Each vertex
corresponds to a primitive function of type ∀α.Fα→ Gα and the order in which they
are slid off corresponds to the order they appear in the term, which is a composite
of such primitives (with some number of fmaps applied to each primitive). Several
improvements related to the fusion optimization can be made to this algorithm. So,
in this section we present a modification of the algorithm implicit in Proposition 10
for converting string diagrams to Haskell terms. In what follows, StringDiagram
will be the type of string diagrams whose vertices are labelled by Haskell terms of the
appropriate types.

f

g

f g°

A

B

A

B

=

Figure 2.11: A fusion optimization on string diagrams

First, we define a preprocessing step compressPaths which implements a fusion
optimization. Given a diagram p, let compressPaths p be the diagram obtained by
applying the edge contraction rule illustrated in Figure 2.11. The correctness of this
operation with respect to a translation into Haskell terms relies on the assumption
that Haskell functors preserve composition.

We give an informal definition of a function toTerm′ : StringDiagram→ HaskellTerm.
Let p be the input diagram.

(1) If the input diagram is a bunch of straight lines, we return id.

(2) Suppose the input diagram p is a straight line on the right of a diagram p′.
Then toTerm′ p = toTerm′ p′. This corresponds to turning a program of type

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 36

∀α.F (G2α) → G1(G2α) which “doesn’t use” the G2 into one of type ∀α.Fα →
G1α. The correctness of this operation is implied by the fact that fmap id = id.

(3) Suppose the input diagram p is a straight line on the left of a diagram p′. Then
toTerm′ p = fmap (toTerm′ p′). See Figure 2.12 for an illustration of this case.
This case is an example of a fusion optimization.

C

B

A

A

toTerm’()=
C

B

toTerm’(())fmap
A

Figure 2.12: A fusion optimization in translating a string diagram into a term

(4) Otherwise, choose a vertex which in some embedding is the topmost vertex, la-
belled by the Haskell term t, which is to the right of k lines. Let p′ be the diagram
obtained by sliding this vertex up “off the page”. Then define

toTerm′ p = toTerm′ p′ ◦ (fmap ◦ · · · ◦ fmap︸ ︷︷ ︸
k

)t

We then take toTerm = toTerm′ ◦ compressPaths.
An actual implementation of these functions can be found (as of the time of

writing) at github.com/imeckler/mote/blob/master/Search/Graph.hs.
Both compressPaths and case (3) of toTerm′ implement a kind of fusion op-

timization, but a moment’s thought shows that each catches cases that the other
misses.

2.11 Finding a topmost vertex

We now describe an approach to the problem of computing when a vertex in a string
diagram is the topmost in some embedding from the combinatorial data of a string
diagram.

To reiterate, the combinatorial data of a string diagram is an acyclic directed graph
with, a distinguished vertex called the top vertex with in-degree 0, a distinguished
vertex called the bottom vertex with out-degree 0, a linear ordering on the incoming
edges, and one on the outgoing edges at every vertex.

https://github.com/imeckler/mote/blob/master/Search/Graph.hs

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 37

Claim 11. Suppose C is a monoidal category such that there is only one natural
transformation from idC to itself. Suppose p is a string diagram. Let p′ be the subgraph
induced by restriction to the undirected connected components of the top and bottom
vertices. Then p and p′ both have the same interpretation in C.

Proof. Let v be any vertex in p but not p′. I.e., a vertex not connected by an undi-
rected path to one of the special vertices. Let X be the undirected connected com-
ponent of v. The topmost vertices (under the embedding γ) must have no incoming
edges and the bottommost vertices must have no outgoing edges.

Thus, X is interpreted as a natural transformation from the identity to the iden-
tity. But by assumption, there is only one, namely the identity transformation. The
identity can be represented by the empty diagram, so we can replace X by the empty
graph. Doing this for all such connected components X amounts to restricting p to
vertices connected by an undirected path to one of the special vertices.

We will call a string diagram where all vertices are connected by an undirected
path to one of the special vertices reduced. The assumption of uniqueness of natural
transformations idC → idC holds in our System F setting, where the only function of
type ∀α.α→ α is λx.x.

Claim 12. Suppose v0 is the topmost non-special vertex in some embedding γ of
a reduced diagram p with incoming edges e1, . . . , en ordered left to right. Then the
following holds:

• All ei have the top vertex as their source.

• For any ei, ei+1, there is no edge e such that e is to the right of ei and ei+1 is
to the right of e.

Proof. Let v0 be the topmost non-special vertex. Then any edge entering v have the
top vertex as their origin. Call the edges e1, . . . , en ordered left to right. Take any
ei, ei+1. Since Consider the region bounded by ei and ei+1. Since p is reduced, there
can be no vertices or edges contained in this region. In particular it is clear there can
be no edge e with e to the right of ei and ei+1 to the right of e since such an edge
would be in this region.

Claim 13. There is an algorithm for computing a vertex which in some embedding is
the topmost given the combinatorial data of a non-empty, reduced string diagram p.

Proof. Portions of the proof of correctness of this algorithm are incomplete. We will
explicitly mention which in the body of the proof.

Let S be the set of vertices v such that all incoming edges of v have the top vertex
as their source. Since p is non-empty, S must be non-empty. This can be seen as
follows. Fix an embedding γ of p. Some vertex is topmost in this embedding. By

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 38

Claim 12, all incoming edges of v have the top vertex as their source. So, if there is
any hope of finding the topmost vertex, it will be in S.

There are three cases.

(1) There exists a v ∈ S such that v has exactly one incoming edge.

In this case, we can clearly alter a given embedding γ to an embedding γ′ in which
the y coordinate of v is arbitrarily close to the y coordinate of the top vertex by
dragging it along the incoming edge. Thus, v is topmost in some embedding, and
we are done.

(2) There exists a v ∈ S such that v has at least 2 incoming edges. Recall that all
the edges entering v originate in the top vertex. Now there are two cases.

(a) All the incoming edges of v are contiguous in the left to right ordering on the
edges leaving the top vertex. Then the incoming edges of v can be contracted,
pulling v arbitrarily close to the top vertex.

(b) The incoming edges of v are not contiguous. That is, there are edges ei, ei+1

with ei to the left of ei+1 from the top vertex to v such that there are some
edges x1, x2, · · · which come to the right of ei but left of ei+1.

Let p′ be the subdiagram induced by taking x1, x2, . . ., their endpoints and
all vertices reachable (by an undirected path) from their endpoints. This is
the subdiagram contained in the region enclosed by ei and ei+1. Recursively
find a vertex which is topmost in an embedding of p′. Clearly, this vertex can
also be made topmost in an embedding of p by squishing the embedding of
p′ appropriately.

(3) Every vertex in S has no incoming edges.

Say y1, . . . , yk are the outgoing edges of the top vertex. Let p be a graph (with
orderings on edges) obtained from p as follows. Let u1, . . . , uk be k new vertices
not present in p. Change the source of each yi to be ui rather than the top vertex.
Essentially we explode the top vertex into k different vertices, one for each edge.

Let γ be an embedding of p. We can obtain an embedding γ′ of p′ respecting all
the orderings from γ simply by slightly retracting each of the edges yi away from
γyi(0), the image of the top vertex.

Consider X := R2 \ γ′(p′). This space has exactly one non-compact (indeed,
co-compact) connected component, call it X0. We want to compute all vertices
and edges in S whose images lie on the boundary of X0.

This we do as follows. First, we define a sequence (v0, e0), (v1, e1), . . . inductively
such that

• The endpoints of ei are vi and vi+1

CHAPTER 2. SEARCHING FOR POLYMORPHIC PROGRAMS 39

• The image of each ei under γ′ is in the boundary of X0

Let v0 be the bottom vertex of p′ and let e0 be the rightmost edge entering v0. It
is clear that e0 must belong to the boundary of X0. Suppose we have defined vi
and ei. Let vi+1 be the endpoint of ei which is not vi. There is a counterclockwise
linear ordering on the edges incident to vi+1 induced by the embedding of p. Let
ei+1 be the next edge counterclockwise from ei at vi+1. Since ei is in the boundary,
so too must be ei+1 since the region to the exterior of ei is plainly connected to
the region exterior to ei+1.

Now carry out analogous processes with (v0, e0) = (ui, yi) for each i. We have not
proved that every edge lying on the boundary of X0 will be discovered by this
method.

The topmost vertex of p under γ belongs to the boundary of X0. This can be seen
since there is clearly a path up from this vertex to the top vertex which doesn’t
intersect any edges. Furthermore, if a vertex v in S lies on the boundary of X0,
then it is topmost in some embedding. Since it lies on the boundary of X0 and
X0 is co-compact, there is a path starting at γ′(v) which goes arbitrarily high in
the plane. We have not proved it, but it should be possible to drag v along this
path to make it the topmost vertex.

We can thus find the topmost vertex of a diagram by first reducing it and then
applying the above algorithm.

2.12 Future possibilities

Several directions for future work were mentioned in section 1.3. Here we reiterate
that an extension of string diagrams which handle product and sum types well would
be a useful and interesting direction to pursue. As mentioned earlier, the current
implementation in Mote uses an extension of string diagrams which are a kind of
canonical form for natural transformation terms quotiented by equations holding
for constant functors. Due to time constraints we have not been able to include a
description in this thesis but we hope to write a paper describing this extension soon.

40

Bibliography

[1] Lennart Augustsson. Djinn, a Theorem Prover in Haskell, for Haskell. Accessed:
2015-06-16. url: http://www.augustsson.net/Darcs/Djinn/.

[2] Steve Awodey. Category Theory. Great Clarendon Street, Oxford: Oxford Uni-
versity Press, 2010.

[3] James Bornholt. Program Synthesis, Explained. Accessed: 2015-05-28. url: https:
//homes.cs.washington.edu/~bornholt/post/synthesis-for-architects.

html.

[4] Ana Bove, Peter Dybjer, and Ulf Norell. “A Brief Overview of Agda — A Func-
tional Language with Dependent Types”. In: Proceedings of the 22Nd Interna-
tional Conference on Theorem Proving in Higher Order Logics. TPHOLs ’09.
Munich, Germany: Springer-Verlag, 2009, pp. 73–78. isbn: 978-3-642-03358-2.
doi: 10.1007/978-3-642-03359-9_6. url: http://dx.doi.org/10.1007/
978-3-642-03359-9_6.

[5] Nils Anders Danielsson et al. “Fast and Loose Reasoning is Morally Correct”.
In: Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’06. Charleston, South Carolina,
USA: ACM, 2006, pp. 206–217. isbn: 1-59593-027-2. doi: 10.1145/1111037.
1111056. url: http://doi.acm.org/10.1145/1111037.1111056.

[6] GHC HsExpr type. Accessed: 2015-05-28. url: https://downloads.haskell.
org/~ghc/7.8.3/docs/html/libraries/ghc-7.8.3/src/HsExpr.html#

HsExpr.

[7] ghc-mod: Happy Haskell Programming. Accessed: 2015-06-16. url: https://
github.com/kazu-yamamoto/ghc-mod.

[8] Jean-Yves Girard. “Proof-nets: The parallel syntax for proof-theory”. In: Logic
and Algebra. Marcel Dekker, 1996, pp. 97–124.

[9] Tihomir Gvero, Viktor Kuncak, and Ruzica Piskac. “Interactive Synthesis of
Code Snippets”. English. In: Computer Aided Verification. Ed. by Ganesh Gopalakr-
ishnan and Shaz Qadeer. Vol. 6806. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2011, pp. 418–423. isbn: 978-3-642-22109-5. doi: 10.1007/

http://www.augustsson.net/Darcs/Djinn/
https://homes.cs.washington.edu/~bornholt/post/synthesis-for-architects.html
https://homes.cs.washington.edu/~bornholt/post/synthesis-for-architects.html
https://homes.cs.washington.edu/~bornholt/post/synthesis-for-architects.html
http://dx.doi.org/10.1007/978-3-642-03359-9_6
http://dx.doi.org/10.1007/978-3-642-03359-9_6
http://dx.doi.org/10.1007/978-3-642-03359-9_6
http://dx.doi.org/10.1145/1111037.1111056
http://dx.doi.org/10.1145/1111037.1111056
http://doi.acm.org/10.1145/1111037.1111056
https://downloads.haskell.org/~ghc/7.8.3/docs/html/libraries/ghc-7.8.3/src/HsExpr.html#HsExpr
https://downloads.haskell.org/~ghc/7.8.3/docs/html/libraries/ghc-7.8.3/src/HsExpr.html#HsExpr
https://downloads.haskell.org/~ghc/7.8.3/docs/html/libraries/ghc-7.8.3/src/HsExpr.html#HsExpr
https://github.com/kazu-yamamoto/ghc-mod
https://github.com/kazu-yamamoto/ghc-mod
http://dx.doi.org/10.1007/978-3-642-22110-1_33
http://dx.doi.org/10.1007/978-3-642-22110-1_33

BIBLIOGRAPHY 41

978-3-642-22110-1_33. url: http://dx.doi.org/10.1007/978-3-642-
22110-1_33.

[10] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. “Playing by the rules:
rewriting as a practical optimisation technique in GHC”. In: 2001 Haskell Work-
shop. ACM SIGPLAN, 2001.

[11] André Joyal and Ross Street. “The Geometry of Tensor Calculus, I”. In: Ad-
vances in Mathematics 88.1 (1991), pp. 55–112. issn: 0001-8708. doi: http:
/ / dx. doi . org/ 10 . 1016 /0001 - 8708(91) 90003 - P. url: http : // www .

sciencedirect.com/science/article/pii/000187089190003P.

[12] André Joyal and Ross Street. The Geometry of Tensor Calculus, II. Accessed:
2015-04-09. url: http://maths.mq.edu.au/~street/GTCII.pdf.

[13] Susumu Katayama. “Recent Improvements of MagicHaskeller”. English. In:
Approaches and Applications of Inductive Programming. Ed. by Ute Schmid,
Emanuel Kitzelmann, and Rinus Plasmeijer. Vol. 5812. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2010, pp. 174–193. isbn: 978-3-642-
11930-9. doi: 10.1007/978-3-642-11931-6_9. url: http://dx.doi.org/
10.1007/978-3-642-11931-6_9.

[14] G.M. Kelly and M.L. Laplaza. “Coherence for compact closed categories”. In:
Journal of Pure and Applied Algebra 19 (1980), pp. 193–213. issn: 0022-4049.
doi: http://dx.doi.org/10.1016/0022-4049(80)90101-2. url: http:
//www.sciencedirect.com/science/article/pii/0022404980901012.

[15] Dextex Kozen. Natural Transformations as Rewrite Rules and Monad Compo-
sition, Tech. Rep. TR2004-1942. 2004.

[16] Fredrik Lindblad. “Higher-Order Proof Construction Based on First-Order Nar-
rowing”. In: Electron. Notes Theor. Comput. Sci. 196 (Jan. 2008), pp. 69–84.
issn: 1571-0661. doi: 10.1016/j.entcs.2007.09.018. url: http://dx.doi.
org/10.1016/j.entcs.2007.09.018.

[17] José Meseguer. “Conditional rewriting logic as a unified model of concurrency”.
In: Theoretical Computer Science 96.1 (1992). Selected Papers of the 2nd Work-
shop on Concurrency and Compositionality, pp. 73–155. issn: 0304-3975. doi:
http://dx.doi.org/10.1016/0304-3975(92)90182-F. url: http://www.
sciencedirect.com/science/article/pii/030439759290182F.

[18] Daniel Perelman et al. “Type-directed Completion of Partial Expressions”. In:
Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’12. Beijing, China: ACM, 2012, pp. 275–
286. isbn: 978-1-4503-1205-9. doi: 10.1145/2254064.2254098. url: http:
//doi.acm.org/10.1145/2254064.2254098.

http://dx.doi.org/10.1007/978-3-642-22110-1_33
http://dx.doi.org/10.1007/978-3-642-22110-1_33
http://dx.doi.org/10.1007/978-3-642-22110-1_33
http://dx.doi.org/10.1007/978-3-642-22110-1_33
http://dx.doi.org/http://dx.doi.org/10.1016/0001-8708(91)90003-P
http://dx.doi.org/http://dx.doi.org/10.1016/0001-8708(91)90003-P
http://www.sciencedirect.com/science/article/pii/000187089190003P
http://www.sciencedirect.com/science/article/pii/000187089190003P
http://maths.mq.edu.au/~street/GTCII.pdf
http://dx.doi.org/10.1007/978-3-642-11931-6_9
http://dx.doi.org/10.1007/978-3-642-11931-6_9
http://dx.doi.org/10.1007/978-3-642-11931-6_9
http://dx.doi.org/http://dx.doi.org/10.1016/0022-4049(80)90101-2
http://www.sciencedirect.com/science/article/pii/0022404980901012
http://www.sciencedirect.com/science/article/pii/0022404980901012
http://dx.doi.org/10.1016/j.entcs.2007.09.018
http://dx.doi.org/10.1016/j.entcs.2007.09.018
http://dx.doi.org/10.1016/j.entcs.2007.09.018
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(92)90182-F
http://www.sciencedirect.com/science/article/pii/030439759290182F
http://www.sciencedirect.com/science/article/pii/030439759290182F
http://dx.doi.org/10.1145/2254064.2254098
http://doi.acm.org/10.1145/2254064.2254098
http://doi.acm.org/10.1145/2254064.2254098

BIBLIOGRAPHY 42

[19] A.J. Power. “An abstract formulation for rewrite systems”. English. In: Cate-
gory Theory and Computer Science. Ed. by DavidH. Pitt et al. Vol. 389. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 1989, pp. 300–312.
isbn: 978-3-540-51662-0. doi: 10.1007/BFb0018358. url: http://dx.doi.
org/10.1007/BFb0018358.

[20] John C. Reynolds. “Types, Abstraction and Parametric Polymorphism”. In:
Information Processing 83 (1983), pp. 512–523.

[21] Mikael Rittri. “Retrieving Library Identifiers via Equational Matching of Types”.
In: Proceedings of the 10th International Conference on Automated Deduction,
volume 449 of LNAI. Springer Verlag, 1992, pp. 603–617.

[22] Daniel Seidel and Janis Voigtländer. “Automatically Generating Counterex-
amples to Naive Free Theorems”. In: Proceedings of the 10th International
Conference on Functional and Logic Programming. FLOPS’10. Sendai, Japan:
Springer-Verlag, 2010, pp. 175–190. isbn: 3-642-12250-7, 978-3-642-12250-7.
doi: 10.1007/978- 3- 642- 12251- 4_14. url: http://dx.doi.org/10.
1007/978-3-642-12251-4_14.

[23] Lennart Spitzner. Accessed: 2015-05-28. url: https://github.com/lspitzner/
exference/raw/master/exference.pdf.

[24] Using IntelliSense. https://msdn.microsoft.com/en-us/library/hcw1s69b.
aspx. Accessed: 2015-05-28.

[25] Philip Wadler. “Theorems for free!” In: Functional Programming Languages and
Computer Architecture. ACM Press, 1989, pp. 347–359.

http://dx.doi.org/10.1007/BFb0018358
http://dx.doi.org/10.1007/BFb0018358
http://dx.doi.org/10.1007/BFb0018358
http://dx.doi.org/10.1007/978-3-642-12251-4_14
http://dx.doi.org/10.1007/978-3-642-12251-4_14
http://dx.doi.org/10.1007/978-3-642-12251-4_14
https://github.com/lspitzner/exference/raw/master/exference.pdf
https://github.com/lspitzner/exference/raw/master/exference.pdf
https://msdn.microsoft.com/en-us/library/hcw1s69b.aspx
https://msdn.microsoft.com/en-us/library/hcw1s69b.aspx

	Contents
	List of Figures
	Notation
	Mote
	Pattern matching boilerplate
	Managing the types of expressions with holes
	Synthesis of small expressions

	Searching for polymorphic programs
	Preliminaries
	A calculus for natural transformations
	A semantics in categories
	A semantics in string rewriting (a special case)
	Completeness
	Some proof theoretic observations
	String diagrams for efficient search
	String diagrams for eliminating redundancy
	Remarks on implementation
	Turning string digrams to terms
	Finding a topmost vertex
	Future possibilities

	Bibliography

