
1 Basic Concepts

The finite element method provides a formalism for generating
discrete (finite) algorithms for approximating the solutions of
differential equations.

It should be thought of as a black box into which one puts the
differential equation (boundary value problem) and out of which
pops an algorithm for approximating the corresponding solutions.

We present a microcosm of the FEM restricted to one-dimensional
problems.
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1.1 Weak Formulation of Boundary Value Problems

Consider the two-point boundary value problem

−
d2u

dx2
= f in (0, 1)

u(0) = 0, u′(1) = 0.
(1.1)

If u is the solution andv is any (sufficiently regular) function such thatv(0) = 0,
then integration by parts yields

(f, v) : =

∫ 1

0

f(x)v(x)dx =

∫ 1

0

−u′′(x)v(x)dx

=

∫ 1

0

u′(x)v′(x)dx =: a(u, v).

(1.2)

DefineV = {v ∈ L2(0, 1) : a(v, v) < ∞ and v(0) = 0}. Then we can say that
the solutionu to (1.1) is characterized by

u ∈ V such that a(u, v) = (f, v) ∀v ∈ V, (1.3)

which is called thevariationalor weakformulation of (1.1).
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Why variational?

The relationship (1.3) is called “variational” because the functionv is allowed to

vary arbitrarily.

It may seem somewhat unusual at first, but it has a natural interpretation in the

setting ofHilbert spaces.

(A Hilbert space is a vector space whose topology is defined using an

inner-product.)

One example of a Hilbert space isL2(0, 1) with inner-product(·, ·).

The spaceV may be viewed as a Hilbert space with inner-producta(·, ·), which

was defined in (1.2).
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Is it the same?

The central issue is that (1.3) still embodies the original problem (1.1). The

following theorem verifies this under some simplifying assumptions.

Theorem 1.1 Supposef ∈ C 0([0, 1]) andu ∈ C 2([0, 1]) satisfy(1.3). Thenu

solves(1.1).

The boundary conditionu(0) = 0 is calledessentialas it appears in the variational

formulation explicitly, i.e., in the definition ofV . This type of boundary condition

also frequently goes by the proper name “Dirichlet.”

The boundary conditionu′(1) = 0 is callednaturalbecause it is incorporated

implicitly. This type of boundary condition is often referred to by the name

“Neumann.” We summarize the different kinds of boundary conditions

encountered so far, together with their various names in thefollowing table:
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1.2 Naming conventions for two types of boundary conditions

Boundary Condition Variational Name Proper Name

u(x) = 0 essential Dirichlet

u′(x) = 0 natural Neumann

Table 1: Naming conventions for two types of boundary conditions.

The assumptionsf ∈ C 0([0, 1]) andu ∈ C 2([0, 1]) in the theorem allow (1.1) to

be interpreted in the usual sense. However, we will see otherways in which to

interpret (1.1), and indeed the theorem says that the formulation (1.3) is a way to

interpret it that is valid with much less restrictive assumptions onf . For this

reason, (1.3) is also called aweakformulation of (1.1).
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1.3 Ritz-Galerkin Approximation

Let S ⊂ V be any (finite dimensional) subspace. Let us consider (1.3) with V

replaced byS, namely

uS ∈ S such that a(uS , v) = (f, v) ∀v ∈ S. (1.4)

It is remarkable that a discrete scheme for approximating (1.1) can be defined so

easily.

This is only one powerful aspect of the Ritz-Galerkin method.

However, we first must see that (eqn:ohtuone) does indeeddefinean object. In the

process we will indicate how (eqn:ohtuone) represents a (square, finite) system of

equations foruS .

These will be done in the following theorem and its proof.

Theorem 1.2 Givenf ∈ L2(0, 1), (1.4) has a unique solution.

The proof of Theorem 1.2 reveals important structure of the problem.
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Let us write (1.4) in terms of a basis ofS:

{φi : 1 ≤ i ≤ n}

Let

uS =

n∑

j=1

Ujφj

Let

Kij = a(φj , φi), Fi = (f, φi)

for i, j = 1, ..., n.

SetU = (Uj),K = (Kij) andF = (Fi).

Then (1.4) is equivalent to solving the (square) matrix equation

KU = F. (1.5)

For a square system such as (1.5) we know that uniqueness is equivalent to

existence, as this is afinite dimensionalsystem.

To prove uniqueness, we show that nonuniqueness implies a contradiction.

7



Nonuniqueness would imply that there is a nonzeroV such thatKV = 0.

Write v =
∑

Vjφj and note that the equivalence of (1.4) and (1.5) implies that

a(v, φj) = 0 for all j.

Multiplying this byVj and summing overj yields0 = a(v, v) =
∫ 1

0
(v′)2(x) dx,

from which we conclude thatv′ ≡ 0.

Thus,v is constant, and, sincev ∈ S ⊂ V impliesv(0) = 0, we must havev ≡ 0.

Since{φi : 1 ≤ i ≤ n} is a basis ofS, this means thatV = 0.

Thus, the solution to (1.5) must be unique (and hence must exist).

Therefore, the solutionuS to (1.4) must also exist and be unique.
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The matrixK is often referred to as thestiffnessmatrix, a name coming from

corresponding matrices in the context of structural problems.

It is symmetric, since theenergyinner-producta(·, ·) is symmetric.

It is alsopositive definite, since

n∑

i,j=1

kijvivj = a(v, v) where v =
n∑

j=1

vjφj .

Clearly,a(v, v) ≥ 0 for all (vj) anda(v, v) = 0 was already “shown” to imply

v ≡ 0 in the proof of Theorem 1.5.
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1.4 Piecewise Polynomial Spaces – The Finite Element Method

Let 0 = x0 < x1 < ... < xn = 1 be a partition of[0, 1], and letS be the linear

space of functionsv such that

• i) v ∈ C 0([0, 1])

• ii) v|[xi−1,xi] is a linear polynomial,i = 1, ..., n, and

• iii) v(0) = 0.

We will see later thatS ⊂ V . For eachi = 1, .., n defineφi by the requirement

thatφi(xj) = δij = the Kronecker delta, as shown in Fig. 1.
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0 xi 1

Figure 1: piecewise linear basis functionφi

Lemma 1.1 {φi : 1 ≤ i ≤ n} is a basis forS.

{φi} is called anodal basis forS, and{v(xi)} are thenodal valuesof a function

v. (The points{xi} are called thenodes.) The set{φi} is linearly independent

since
∑n

i=1 ciφi(xj) = 0 impliescj = 0. To see that it spansS, consider the

following:
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Definition 1.1 Givenv ∈ C 0([0, 1]), theinterpolant vI ∈ S of v is determined

byvI : =
∑n

i=1 v(xi)φi.

Clearly, the set{φi} spansS if the following is true.

Lemma 1.2 v ∈ S ⇒ v = vI .

v − vI is linear on each[xi−1, xi] and zero at the endpoints, hence must be

identically zero.

The interpolant defines a linear operatorI : C 0([0, 1]) → S whereIv = vI .

Lemma 0.4.4 says thatI is aprojection(i.e.,I2 = I).
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1.5 Relationship to Difference Methods

The stiffness matrixK as defined in (0.2.3), using the basis{φi} described above,

can be interpreted as a difference operator.

Let hi = xi − xi−1.

Then the matrix entriesKij = a(φi, φj) can be easily calculated to be

(0.5.1) Kii = h−1
i + h−1

i+1, Ki,i+1 = Ki+1,i = −h−1
i+1 (i = 1, ..., n − 1)

andKnn = h−1
n with the rest of the entries ofK being zero.

Similarly, the entries ofF can be approximated iff is sufficiently smooth:

(0.5.2) (f, φi) =
1

2
(hi + hi+1)(f(xi) + O(h))

whereh = max hi.

This follows easily from Taylor’s Theorem since the integral of φi is

(hi + hi+1)/2. Note that the error isnotO(h2) unless1 − (hi/hi+1) = O(h).
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Thus, thei − th equation ofKU = F (for 1 ≤ i ≤ n − 1) can be written as

(0.5.3)
−2

hi + hi+1

[
Ui+1 − Ui

hi+1
−

Ui − Ui−1

hi

]
=

2(f, φi)

hi + hi+1
= f(xi) + O(h).

The difference operator on the left side of this equation canalso be seen to be an

O(h) accurate approximation to the differential operator−d2/dx2 (andnot

O(h2) accurate in the usual sense unless1 − hi/hi+1 = O(h).)

For a uniform mesh, the equations reduce to the familiar difference equations

(0.5.4) −
Ui+1 − 2Ui + Ui−1

h2
= f(xi) + O(h2)

which are well known to be second-order accurate.
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Characteristics of the finite element formalism

Being based on the variational formulation of boundary value problems, it is quite

systematic, handling different boundary conditions with ease; one simply replaces

infinite dimensional spaces with finite dimensional subspaces.

What results, as in (0.5.3), is the same as a finite difference equation, in keeping

with thedictumthat different numerical methods are usually more similar than

they are distinct.

However, we are able to derive very quickly the convergence properties of the

finite element method.

Finally, the notation for the discrete scheme is quite compact in the finite element

formulation.

This can be utilized to automate coding the algorithm via appropriate software

support.
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1.6 Computer Implementation of Finite Element Methods

One key to the success of the finite element method, as developed in engineering

practice, was the systematic way that computer codes could be implemented.

One important step in this process is theassemblyof the inner-producta(u, v) by

summing its constituent parts over each sub-interval, orelement, which are

computed separately.

This is facilitated through the use of a numbering scheme called the

local-to-globalindex.

This index,i(e, j), relates the local node number,j, on a particular element,e, to

its position in the global data structure.
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In our one-dimensional example with piecewise linear functions, this index is

particularly simple: the “elements” are based on the intervalsIe := [xe−1, xe]

wheree is an integer in the range1, . . . , n and

i(e, j) := e + j − 1 for e = 1, . . . , n andj = 0, 1.

That is, for each element there are two nodal parameters of interest, one

corresponding to the left end of the interval (j = 0) and one at the right (j = 1).

Their relationship is represented by the mappingi(e, j).
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We may write the interpolant of a continuous function for thespace of all

piecewise linear functions (no boundary conditions imposed) via

(0.6.1) fI :=
∑

e

1∑

j=0

f(xi(e,j))φ
e
j

where
{
φe

j 3 j = 0, 1
}

denotes the set of basis functions for linear functions on

the single intervalIe = [xe−1, xe]:

φe
j(x) = φj ((x − xe−1)/(xe − xe−1))

where

φ0(x) :=





1 − x x ∈ [0, 1]

0 otherwise

and

φ1(x) :=





x x ∈ [0, 1]

0 otherwise.
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Note that we have related all of the “local” basis functionsφe
j to a fixed set of

basis functions on a “reference” element,[0, 1], via an affine mapping of[0, 1] to

[xe−1, xe]. (By definition, the local basis functions,φe
j , are extended by zero

outside the intervalIe.)

The expression (0.6.1) for the interpolant shows (cf. Lemma 0.4.4) that any

piecewise linear functionf (no boundary conditions imposed) can be written in

the form

(0.6.2) f :=
∑

e

1∑

j=0

fi(e,j)φ
e
j

wherefi = f(xi) for all i. In particular, the cardinality of the image of the index

mappingi(e, j) is the dimension of the space of piecewise linear functions.Note

that the expression (0.6.2) representsf incorrectly at the nodal points, but this has

no effect on the evaluation of multilinear forms involving integrals off .
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The bilinear forms defined in (1.2) can be easily evaluated (assembled) using this

representation as well. For example,

a(v, w) =
∑

e

ae(v, w)

where the “local” bilinear form is defined (and evaluated) via

ae(v, w) :=

∫

Ie

v′w′ dx

= (xe − xe−1)
−1

∫ 1

0

(
Σjvi(e,j)φj

)′ (
Σjwi(e,j)φj

)′
dx

= (xe − xe−1)
−1



vi(e,0)

vi(e,1)




t

K



wi(e,0)

wi(e,1)



 .

(1.6)

Here, thelocal stiffness matrix, K, is given by

Ki,j :=

∫ 1

0

φ′

i−1φ
′

j−1 dx for i, j = 1, 2.
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Note that we have identified the space of piecewise linear functions,v, with the

vector space of values,(vi), at the nodes.

The subspace,S, of piecewise linear functions that vanish atx = 0, defined in

Sect. 0.4, can be identified with the subspace{(vi) 3 v0 = 0}.

Includingv0 in the data structure (with a value of zero) makes the assembly of

bilinear forms equally easy in the presence of boundary conditions.
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2 Two dimensional flow

The finite element method can be applied in the same way in any
number of simulation dimensions.

Figure 2: Mesh for pump flow in two dimensions.
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Figure 3: Pump flow in two dimensions
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Model problem

We consider a variational problem with “energy” form

a(v, w) =

∫

Ω

α(x)∇v · ∇w dx (2.7)

Let Vh = piecewise linear functions on a non-degenerate meshTh, and assume

that the discontinuities ofα andf , fall on mesh lines inTh.

Solve foruh ∈ V h such that

a(uh, v) = (f, v) ∀v ∈ V h (2.8)

The application of a finite element method is similar to the one-dimensional case.

A mesh as in Figure 2 is created, and a corresponding spaceVh of piecewise

polynomials is defined.

In this way, simulations as depicted in Figure 3 can be performed.
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2.1 Error estimators and adapted meshes

It is also possible to predict the error on a given mesh automatically.

Based on the error prediction a new mesh can be created.

The erroreh := u − uh satisfies theresidual equation

a(eh, v) = R(v) ∀v ∈ V (2.9)

where theresidualR ∈ V ′ is defined byR(v) :=

∑

T

∫

T

(f −∇α · ∇uh)v dx +
∑

e

∮

e

[αn · ∇uh]v ds (2.10)

One part ofR is absolutely continuous

RA|T := (f −∇α · ∇uh) |T = (f −∇ · (α∇uh)) |T

since∇uh andα are smooth on eachT .
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The other term in the definition of the residual is the “jump” term

RJ(v) :=
∑

e

∮

e

[αn · ∇uh]v ds ∀v ∈ V (2.11)

where[φ] denotes the jump inφ (across the face in question). More precisely,

[φ](x) := lim
ε→0

φ(x + εn) − φ(x − εn)

so that the expression in (2.8) is independent of the choice ofnormaln on each

face.

If A is the differential operator associated with the form (2.7),namely,

Av := −∇ · (α∇v), then we see thatRA = A(u − uh) = Aeh on eachT .

Relations (2.9–2.10) are derived simply by integrating by parts on eachT , and the

resulting boundary terms are collected in the termRJ .
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Although (2.9–2.10) can be viewed as just a re-writing of (2.9),it gives an

expression of the error in terms of a right-hand sideR ∈ V ′.

Insertingv = eh in (2.9), we see that

α0|eh|
2
H1(Ω) ≤ |R(eh)| ≤ ‖R‖H−1(Ω)‖eh‖H1(Ω). (2.12)

Therefore

α0‖eh‖H1(Ω) ≤ ‖R‖H−1(Ω). (2.13)

Error estimated by‖R‖H−1(Ω) involves only data (f andα) and and something

we have computed (uh).

Difficult to compute a negative norm explicitly sinceR has two different parts:

standard (integrable) function plus “interface Delta functions.”

But can provide an effective estimate of‖R‖H−1(Ω) as follows.
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The residual has special properties. In particular, the fundamental orthogonality

implies that

R(v) := a(eh, v) = 0 ∀v ∈ Vh.

For each interior facee, let Te denote the union of the two elements sharing that

face. Then using anon-smooth data interpolantIh [Scott-Zhang] we find

|R(v)| =|R(v − Ihv)|

≤γ
( ∑

T

‖f −∇α · ∇uh‖
2
L2(T )h

2
T

+
∑

e

‖ [αn · ∇uh] ‖2
L2(e)he

)1/2

|v|H1(Ω)

(2.14)
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Herehe (resp.hT ) is a measure of the size ofe (resp.T ), andT̂ (resp.T̂e) denotes

the neighborhood of elements touchingT (resp.Te). For this reason, we define

the local error indicatorEe by

Ee(uh)2 :=
∑

T⊂Te

h2
T ‖f −∇α · ∇uh‖

2
L2(T )

+he‖ [αn · ∇uh] ‖2
L2(e)

(2.15)

where a natural choice forhe (resp.hT ) is the length ofe (resp. square root of the

area ofT ) unless the elements are anisotropic.

The error estimator (2.15) can be generated automatically from the description

(2.7).
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With this definition, the previous inequalities can be summarized as

|R(v)| ≤ γ

(
∑

e

Ee(uh)2

)1/2

|v|H1(Ω)

which in view of (2.12) implies that

|eh|H1(Ω) ≤
γ

α0

(
∑

e

Ee(uh)2

)1/2

(2.16)

whereγ is only related to interpolation error.

From the error estimate, a better mesh can be determined, andthe process

repeated to get a more accurate simulation.

The use of adaptivity in the mesh makes the simulation process much more

efficient, although more complicated!

But it all can be done automatically.
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