
1 Revue of the FEM

FEM provides formalism for generating discrete (finite) algorithms
for approximating the solutions of differential equations.

solution

differential equation

domain description

boundary data

forcing terms (f)

a mesh of the domain

F E M
assembles K, F
solves KU=F
forms u from U

Figure 1: Black box into which one puts model problem and out of which pops an

algorithm (KU = F ) for approximating the corresponding solutions.
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1.1 Weak Formulation of Boundary Value Problems

Consider the two-point boundary value problem

−
d2u

dx2
= f in Ω

u(0) = 0, u′(1) = 0.
(1.1)

whereΩ = (0, 1). Define a space incorporating theessential boundary condition:

V = {v ∈ L2(Ω): a(v, v) < ∞ and v(0) = 0}.

(1) Multiply the differential equation in (1.1) byv ∈ V :

f(x)v(x) = −u′′(x)v(x) (1.2)

(2) Integrate (1.2) over the domainΩ:
∫ 1

0

f(x)v(x)dx =

∫ 1

0

−u′′(x)v(x)dx (1.3)
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Continuation of three-step recipe

(3) Integrate by parts (1.3) to get

(f, v) : =

∫ 1

0

f(x)v(x)dx =

∫ 1

0

−u′′(x)v(x)dx

=

∫ 1

0

u′(x)v′(x)dx =: a(u, v).

(1.4)

Then we can say that the solutionu to (1.1) is characterized by

u ∈ V such that a(u, v) = (f, v) ∀v ∈ V, (1.5)

which is called thevariationalor weakformulation of (1.1).

Theorem 1.1 Supposef ∈ C 0([0, 1]) andu ∈ C 2([0, 1]) satisfy(1.5). Thenu

solves(1.1).
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1.2 Naming conventions for two types of boundary conditions

Boundary Condition Variational Name Proper Name

u(x) = 0 essential Dirichlet

u′(x) = 0 natural Neumann

Table 1: Naming conventions for two types of boundary conditions.

The assumptionsf ∈ C 0([0, 1]) andu ∈ C 2([0, 1]) in the theorem allow (1.1) to

be interpreted in the usual sense.

But the variational problem can be solved with much more general f , including

ones that are not functions, such as the Diracδ:

(δ, f) = f(a)

for somea ∈ Ω.

For this reason, (1.5) is also called aweakformulation of (1.1).
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1.3 Ritz-Galerkin Approximation

Let S ⊂ V be any (finite dimensional) subspace. Let us consider (1.5) with V

replaced byS, namely

uS ∈ S such that a(uS , v) = (f, v) ∀v ∈ S. (1.6)

Theorem 1.2 Givenf ∈ L2(0, 1), (1.6) has a unique solution.

Write (1.6) in terms of a basis ofS: {φi : 1 ≤ i ≤ n}, and expand

uS =

n
∑

j=1

Ujφj

Kij = a(φj , φi), Fi = (f, φi) for i, j = 1, ..., n.

SetU = (Uj),K = (Kij) andF = (Fi).

Then (1.6) is equivalent to solving the (square) matrix equation

KU = F. (1.7)
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For a square system such as (1.7) we know that uniqueness is equivalent to

existence, as this is afinite dimensionalsystem.

To prove uniqueness, we show that nonuniqueness implies a contradiction.

Nonuniqueness would imply that there is a nonzeroV such thatKV = 0.

Forv =
∑

Vjφj , this means that0 = a(v, v) =
∫ 1

0
(v′)2(x) dx, from which we

conclude thatV = 0.

Thus, the solution to (1.7) must be unique (and hence must exist).

Therefore, the solutionuS to (1.6) must also exist and be unique.

The matrixK is often referred to as thestiffnessmatrix, a name coming from

corresponding matrices in the context of structural problems.

It is symmetric, since theenergyinner-producta(·, ·) is symmetric.

It is alsopositive definite, since

n
∑

i,j=1

kijvivj = a(v, v) where v =

n
∑

j=1

vjφj .

6



1.4 Piecewise Polynomial Spaces – The Finite Element Method

Let 0 = x0 < x1 < ... < xn = 1 be a partition of[0, 1], and letS be the linear

space of functions generated by the basis functions shown inFig. 2.

0 xi 1

Figure 2: piecewise linear basis functionφi

{φi} is called anodal basis forS, and{v(xi)} are thenodal valuesof a function

v. (The points{xi} are called thenodes.)
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1.5 Computer Implementation of Finite Element Methods

The key step in this process is theassemblyof the inner-producta(u, v) by

summing its constituent parts over each sub-interval, orelement, which are

computed separately.

This is facilitated through the use of a numbering scheme called the

local-to-globalindex.

This index,i(e, j), relates the local node number,j, on a particular element,e, to

its position in the global data structure.

In our one-dimensional example with piecewise linear functions, this index is

particularly simple: the “elements” are based on the intervalsIe := [xe−1, xe]

wheree is an integer in the range1, . . . , n and

i(e, j) := e + j − 1 for e = 1, . . . , n andj = 0, 1.

That is, for each element there are two nodal parameters of interest, one

corresponding to the left end of the interval (j = 0) and one at the right (j = 1).

Their relationship is represented by the mappingi(e, j).
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We may write the interpolant of a continuous functionf or of a vectorF as

fI :=
∑

e

1
∑

j=0

fi(e,j)φ
e
j :=

∑

e

1
∑

j=0

f(xi(e,j))φ
e
j

where
{

φe
j 3 j = 0, 1

}

denotes the set of basis functions for linear functions on

the single intervalIe = [xe−1, xe]:

φe
j(x) = φj ((x − xe−1)/(xe − xe−1))

where

φ0(x) :=







1 − x x ∈ [0, 1]

0 otherwise

and

φ1(x) :=







x x ∈ [0, 1]

0 otherwise.
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Note that we have related all of the “local” basis functionsφe
j to a fixed set of

basis functions on a “reference” element,[0, 1], via an affine mapping of[0, 1] to
[xe−1, xe]. (By definition, the local basis functions,φe

j , are extended by zero
outside the intervalIe.)

The bilinear forms defined in (1.4) can be assembled using thisrepresentation:

a(v, w) =
∑

e

ae(v, w)

where the “local” bilinear form is defined (and evaluated) via

ae(v, w) :=

∫

Ie

v′w′ dx

= (xe − xe−1)
−1





vi(e,0)

vi(e,1)





t

K





wi(e,0)

wi(e,1)



 .

(1.8)

Here, thelocal stiffness matrix, K, is given by

Ki,j :=

∫ 1

0

φ′
i−1φ

′
j−1 dx for i, j = 1, 2.
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1.6 More weak formulations

Consider the two-point boundary value problem

−
d2u

dx2
+ λu = f in Ω

u(0) = 0, u′(1) = 0.
(1.9)

whereΩ = (0, 1). Define

V = {v ∈ L2(Ω): a(v, v) < ∞ and v(0) = 0}.

(1) Multiply the differential equation in (1.9) byv ∈ V ,

(2) Integrate over the domainΩ, and (3) Integrate by parts to get

(f, v) =

∫ 1

0

u′(x)v′(x) + λv(x)u(x)dx =: a(u, v). (1.10)

This leads toKU + λMU = F , whereM is called the mass matrix:

Mij = (φi, φj). This equation will besingular for someλ < 0 since it

corresponds to an eigenvalue problem:M−1KU = −λU .
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1.7 Different boundary conditions

Consider the boundary conditions

u(0) = 0, u(1) = 0

u(0) = 0, u′(1) = 0

u′(0) = 0, u(1) = 0

u′(0) = 0, u′(1) = 0

(1.11)

These correspond to the spaces

V ={v ∈ W : v(0) = 0 and v(1) = 0}

V ={v ∈ W : v(0) = 0}

V ={v ∈ W : v(1) = 0}

V =W

(1.12)

respectively, whereW is the space

W = {v ∈ L2(Ω): a(v, v) < ∞}
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1.8 Multiple weak formulations

Consider the two-point boundary value problem

−
d2u

dx2
+

du

dx
= f in Ω (1.13)

whereΩ = (0, 1). This leads to multiple variational formulations:

∫ 1

0

u′(x)v′(x) + v(x)u′(x)dx =: a1(u, v).

∫ 1

0

u′(x)v′(x) − v′(x)u(x)dx =: a2(u, v).

(1.14)

depending on whether or not we integrate by parts on the second term on the left

hand side in (1.13)

For this reason, using variational forms as a language avoids some ambiguity in

the model definition.
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2 Matrix Evaluation by Assembly

Theassemblyof integrated differential forms is done by summing its constituent

parts over eachelement, which are computed separately through the use of a

numbering scheme called thelocal-to-globalindex. This index,ι(e, λ), relates the

local (or element) node number,λ ∈ L, on a particular element, indexed bye, to

its position in the global data structure.

We may write a finite element functionf in the form
∑

e

∑

λ∈L

fι(e,λ)φ
e
λ (2.15)

wherefi denotes the “nodal value” of the finite element function at the i-th node

in the global numbering scheme and{φe
λ 3 λ ∈ L} denotes the set of basis

functions on the element domainTe.
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The element basis functions,φe
λ, are extended by zero outsideTe.

Can relate “element” basis functionsφe
λ to fixed set of basis functions on

“reference” element,T , via mapping ofT to Te.

Could involve changing both the “x” values and the “φ” values in a coordinated way, as with the Piola

transform , or it could be one whose Jacobian is non-constant, as with tensor-product elements or

isoparametric elements.

For an affine mapping,ξ → Jξ + xe, of T to Te:

φe
λ(x) = φλ

(

J−1(x − xe)
)

.

The inverse mapping,x → ξ = J−1(x − xe) has as its Jacobian

J−1
mj =

∂ξm

∂xj
,

and this is the quantity which appears in the evaluation of the bilinear forms. Of

course,det J = 1/ detJ−1.
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2.1 Evaluation of bilinear forms

The assembly algorithm utiizes the decomposition of a variational form as a sum

over “element” forms

a(v, w) =
∑

e

ae(v, w)

where “element” bilinear form for Laplace’s equation defined via

ae(v, w) :=

∫

Te

∇v(x) · ∇w(x) dx

=

∫

T

d
∑

j=1

∂

∂xj
v(Jξ + xe)

∂

∂xj
w(Jξ + xe) det(J) dξ

(2.16)

by transofrming to the reference element.

Finite element matrices computed via assembly in a similar way.

The local element form is computed as follows.
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2.2 Evaluation of bilinear forms—continued

ae(v, w) =

∫

T

d
∑

j=1

∂

∂xj
v(Jξ + xe)

∂

∂xj
w(Jξ + xe) det(J) dξ

=

∫

T

d
∑

j,m,m′=1

∂ξm

∂xj

∂

∂ξm

(

∑

λ∈L

vι(e,λ)φλ(ξ)

)

×

∂ξm′

∂xj

∂

∂ξm′





∑

µ∈L

wι(e,µ)φµ(ξ)



det(J) dξ

=















vι(e,1)

·

·

vι(e,|L|)















t

K
e















wι(e,1)

·

·

wι(e,|L|)















.

(2.17)
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Here, theelement stiffness matrix, Ke, is given by

Ke
λ,µ :=

d
∑

j,m,m′=1

∂ξm

∂xj

∂ξm′

∂xj
det(J)

∫

T

∂

∂ξm
φλ(ξ)

∂

∂ξm′

φµ(ξ) dξ

=

d
∑

m,m′=1

Ge
m,m′Kλ,µ,m,m′

(2.18)

where

Kλ,µ,m,m′ =

∫

T

∂

∂ξm
φλ(ξ)

∂

∂ξm′

φµ(ξ) dξ (2.19)

and

Ge
m,m′ := det(J)

d
∑

j=1

∂ξm

∂xj

∂ξm′

∂xj
(2.20)

for λ, µ ∈ L andm, m′ = 1, . . . , d.

18



3 Revue of Adaptivity

adaptive

quality requirement

differential equation

domain description

boundary data

forcing terms (f)

creates initial mesh

creates new mesh
good enough?

solution

uses error estimator
applies FEM

F E M

Figure 3: Black box for adaptive FEM; requires no mesh initially, only quality re-

quirement. Generates a sequence of meshes and applies standard FEM until quality

is assured.
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Model problem

We consider a variational problem with “energy” form

a(v, w) =

∫

Ω

α(x)∇v · ∇w dx (3.21)

Solve foruh ∈ V h such that

a(uh, v) = (f, v) ∀v ∈ V h (3.22)

The erroreh := u − uh satisfies theresidual equation

a(eh, v) = R(v) ∀v ∈ V (3.23)

where theresidualR ∈ V ′ is defined byR(v) :=

∑

T

∫

T

(f −∇α · ∇uh)v dx +
∑

e

∮

e

[αn · ∇uh]v ds (3.24)

If A is the differential operator associated with the form (3.21), namely,
Av := −∇ · (α∇v), then we see thatRA = A(u − uh) = Aeh on eachT .

Relations (3.23–3.24) can be derived automatically.
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The local error indicatorEe by

Ee(uh)2 :=
∑

T⊂Te

h2
T ‖f −∇α · ∇uh‖

2
L2(T )

+he‖ [αn · ∇uh] ‖2
L2(e)

(3.25)

can also be generated automatically from the description (3.21).

With this definition, we showed that

|eh|H1(Ω) ≤
γ

α0

(

∑

e

Ee(uh)2

)1/2

(3.26)

whereγ is only related to interpolation error.

From the error estimate, a better mesh can be determined: we refine whereEe(uh)

is large.

The process is repeated to get a more accurate simulation.

The use of adaptivity is more complicated but makes the simulation process much
more efficient.

But it all can be done automatically.
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