1 Determinants of protein-protein interfaces

At the simplest level, one would expect the sort of bonds hlest proteins form
their basic structure would also be involved in joining twifedent proteins
together.

Both hydrogen bonds and salt bridges play a significant tobeadein interfaces
[29].

The density of hydrogen bonds between two different pretatran interface is
about one per two square nanometers.

If you think of a checkerboard with nanometer sized squdhes it is like having
one hydrogen bond on each of the red squares.

The average number of hydrogen bonds per interface is adout t

On the other hand, the average number of salt bridges pefaoceas only two.




2 Protein-protein interface story

It might be that the story of protein-protein interactiomsle here, with the
Intermolecular hydrogen bonds and salt bridges being tlaengtory.

However, three of the 54 high-resolution structures stlithg29] have no
hydrogen bonds or salt bridges, and another dozen have twrisigles and five or
fewer hydrogen bonds.

Thus, we will delve deeper to see what other factors can materprotein-protein
Interactions.

One factor that complicates the picture of protein-protetaractions is the
appearance of water molecules which appear to play a stalctle, as opposed
to simply mediating interactions via dielectric effects.

In the protein interfaces studied in [29], polar atom pandded by water across
the interface with hydrogen bonds were more numerous thrantdiydrogen bond
pairs, with each water molecule connecting 3.8 cross-ciiaim pairs on average.




3 Amino acids at protein-protein interfaces

We begin with a simple use of datamining applied to the undeding of amino
acid tendencies at interfaces.

There are different questions that one can ask, and of cdusseatural that
amino acids get ranked in different orders accordingly.

For simplicity, we contrast just two, but we also review ot Section 8.
The data here is drawn primarily from [12, 10, 4].

The site specificity of protein-protein interactions hasrberidely studied due to
its central biological significance [15, 17, 16, 8, 14, 12].




3.1 Amino acid composition of protein—protein interfaces

The first question [10] we consider is about the amino acidpmmsition of
protein—protein interfaces.

This can be done by simply counting, once an identificatialde®en made
regarding which amino acids are at an interface.

But simple frequencies are misleading: Leu is the most comrasidue at
Interfaces, but it is also overwhelmingly the most comma@idge in most
proteins.

Thus one has to normalize by the natural frequencies of aags in proteins

[4].




3.2 Composition of amino acid pairs at interfaces

The second question [12] is about the amino acid compostiopdirs of amino
acids at interfacethat are interacting.

There are many ways to define interaction, but proximity j$2 natrual metric.

That is, two residues are defined [12] as interacting if thgiicoordianates differ
by at most & (with a similar scheme to include Gly).

This notion is simplistic in that thé's atom is only the first in the sequence, but
IS notable that the same sort of simple measure based ontiaésagment is
successful in other contexts [19].




3.3 Compare and contrast conflicting coompositions

Let us compare and contrast the two questions.

The first question seeks to determine clues for proteinepr@ssociation by
Investigating all residues, suitably normalized.

The second question assumes that proximity of sidechars [gaa significant
factor in protein-protein association, and thus looks farsequences of
restricting to such pairs.

Not surprisingly, each question returns different answeggarding the relative
significance of different residues.




3.4 Some caveats

The distribution of amino acid composition in proteins disys evolutionary
trends [4], and this can require extra care to reveal subkitionships.

Here we limit our investigations to fairly strong trends somplicity.

However, the precise numerical data presented would diftkfferent databases
were chosen for the primary data being used.




4 Interface propensity

The common belief is that hydrophobic residues on the seidéproteins are
likely candidates to support interfaces in protein-pro@essociation.

In Section 6, we present evidence that supports this cakeswitiable
clarifications.

However, [10] presents data with a distinctively differeanclusion, by
normalizing the relative abundance of residues at thefaderby their over-all
abundances.

The residues with the highest relative propensity [10] tabiaterfaces are, in
decreasing order of frequency, Asn, Thr, Gly, Ser, Asp, Al Cys, the group
depicted in Figure 1.

None of these residues is distinctively hydrophobic.

This iIs quite a surprising result, and it demands an explamat




4.1 Sidechains involved in interfaces

. . . . Asparti . .
AsparagineThreonine Glycine Serine apcid Alanine Cysteine

| | | | | |
H—C—OH H H—C—OH CH, CH; CH,

| | | |
CH; H SH

C
7N\ 7\
NH, O oh 0

Figure 1. Periodic table of amino acid sidechains. The mkslyl to be involved
In interactions, ordered from the left (asparagine).




4.2 Basic statistical definitions

To begin with, let us clarify the basic notions.

If we have a dataset witly different types of characteristics (e.g\V,= 20 and
the characteristics are the different amino acids), thefrdguency f; of the:-th

characteristic is defined by
Oj

f, = (4.1)
Z;\; Oj

whereo; is the number of occurences of theh characteristic in the dataset.

In some cases, frequencies are represented as percemtagkgh case we
simply multiply by 100 in (4.1).




4.3 Basic statistical definitions continued

If we have two datasets with the same characteristics, wnetijuencies; andg;,
respectively, then one can definestative frequency

ri = [i/gi (4.2)
of the characteristics between the two datasets.

There are some problems with this measure of occurence.

First of all, it might happen thaf, = 0 for somek, making the interpretation
difficult.

Related to this is the need for normalization in order to He &dcompare two
different comparisons.

In [10], the following approach was taken.




Define a normalizedelative propensity via
Ty

N .
Zj:l Tj

These relative propensities sum to one, so we can think of tike ordinary
frequencies.

R; = (4.3)

Similarly, we multiply by 100 in (4.1) to convert to percegés as the unit of
“frequency.”

If we apply this approach to datasets of proteins, and theachexistics are the
different amino acid constituents, then we obtain the sehesed in [10].

In this case, the sum of the relative propensities (in pa&aggnunits) is one
hundred, so the mean is five.

In Table 1, data is presented in terms of the deviation ofetinekative propensities
from the mean of five.

That is, the data represeRt — 5.




3-letter | 1-letter | Carbon | Interface | Dehydron | Hydropathy
code code | groups | Propensity| Propensity| Kyte et al.[18]

Z
=

+1.28 +1.63 -3.5
+1.10 +1.41 -0.7
+0.99 +1.42 -0.4
+0.60 +0.80 -0.8
+0.34 +0.76 -3.5
+0.29 +0.6 1.8
+0.25 +0.24 2.5
+0.20 -0.31 4.2
+0.10 +0.10 1.9
+0.10 +0.10 -1.3

Asn
Thr
Gly
Ser

Asp
Ala

Cys
Val
Met

<[ 2 <|O|>P|On|lo|H
N~ W w|lkr|Rr|Rr|lOoO|O]| R

Tyr

Table 1. Amino acids ranked according to their likelihoodhbaing found at
protein-protein interfaces.




3-letter | 1-letter | Carbon | Interface | Dehydron | Hydropathy
code code | groups | Propensity| Propensity| Kyte et al.[18]

His

I
N

-0.25 -0.25 -3.2
-0.25 -0.25 -1.6
-0.33 -0.4 -0.9
-0.35 -0.4 -4.5
-0.35 -1.10 3.8
-0.40 -0.40 2.8
-0.42 -0.38 -3.9
-0.50 -0.11 -3.5
-0.62 -0.6 -3.5
-0.70 -0.92 4.5

Pro

Trp

Arg

Leu
Phe

Lys
Glu
Gln

—lo|lm|x|n|r|m|S|T
rolvIa~N M w]o]w

lle

Table 2. Amino acids ranked according to their likelihoodhbaing found at
protein-protein interfaces.




4.4 Explanation of ranking

The unusual ranking of residues in Table 1 was explaineddhld§ noting that it
correlates closely with the propensity to be engaged in unwtdapped backbone
hydrogen bonds, among amino acids acting as either protoorsl@r acceptors
for main-chain hydrogen bonds.

We will review the concept of wrapping of hydrogen bonds Higor

The data on wrapping are presented in the fifth column in Tapénd the
correlation is striking.

Such under-wrapped backbone hydrogen bonds, in turn, ssendaants of
protein-protein associations, as discussed subsequently




As noted in [10], the seven residues with the highest prapefts being engaged
in under-desolvated hydrogen bonds also have at most asierial degree of
freedom in their side chain.

Thus, the entropic loss resulting from the conformatiomasirance of the
sidechains upon protein association is minimal with thesechains, so that the
energetic benefit of intermolecular protection of pre-fechinydrogen bonds is
most beneficial.

The only purely hydrophobic residue that has an apprecaiolgensity to be in
an interface is Val, with only one sidechain rotameric state

Therefore, its conformational hindrance upon binding ksthe lowest loss in
conformational entropy.

Considering the residues ranked at the bottom of Table 1 dstrades that
hydrophobic residues on the protein surface are infrequadaive to their over-all
abundance.

This implies that are negatively selected to be part of Imgdegions, and thus
they must play a secondary role in terms of binding.




Note that the polar residues (Asn, Asp, Ser, Cys and Thr) avithnimal distance
from their polar groups to the backbone are likely to be eadag dehydrons,
according to Table 1.

It is presumed [10] that this arises not only because theg hawimal nonpolar
carbonaceous groups, but also because the relative ptgxfrtheir polar groups
to a backbone hydrogen bond may limit further clusteringyafrbphobic groups
around the bond.

Gly is itself the greatest under-wrapper and can even batitaf as polar due to
the fact that the polar environment of the peptide bond i®s&g;

Ala is the penultimate under-wrapper and may also exhilortesof the polar
gualities of Gly.




5 Tutorial on hydrophobic wrapping

Effect of modulation of dielectric by hydrophobic groups.
e Amino acid side chains have different properties
e Tutorial on hydrophobicity: carbonaceous groups
e Tutorial on dielectrics: more on this later
e Extent of wrapping changes nature of hydrogen bond
e Dehydrons: Under-wrapped hydrogen bonds
e A model for protein-protein interaction
e Extreme interaction: amyloid formation

e Stickiness of dehydrons




5.1 Amino acid side chains have different properties

Carbonaceous groups on certain side chains are hydrophobic

| _ _ _ Phenyl-
Valine Leucine Isoleucine Proline alanine

| | | | | |
CH; H—C—CH; CH, CH, CH;

CH
7\ | | NS
CH; CH;  CH CH, CH,

RN |
CH3 CH3 CHS

Amino acids (side chains only shown) with carbonaceouspgou




5.2 Tutorial on hydrophobicity

Carbonaceous groups (CH, ¢HCH;) are hydrophobic because

e they are non-polar and thus do not attract water strongly

e they are polarizable and thus damp nearby water fluctations

5.3 Tutorial on dielectrics

Water removal reduces the dielectric effect and makesrelact
bonds stronger.

Number of carbonaceous groups in a region determine extent o
water removal and strength of electronic bonds.




5.4 Extent of wrapping changes nature of hydrogen bond

Hydrogen bonds (B) that are not protected from water do Niceli §te
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Wrapping made quantitative by counting carbonaceous groughe
neighborhood of a hydrogen bond.

Extent of
wrapping

p=15

desolvation spheres




5.5 Under-wrapped hydrogen bonds

Hydrogen bonds with insufficient wrapping in one context can
become well wrapped by a partner.

The hydrogen bond is much stronger when wrapped.

The change in energy makes these hydrogen bonds sticky.

We call such under-wrapped hydrogen bonds

dehydrons

because they can benefit from becoming dehydrated.

The force associated with dehyrdons is not huge, but theacas
a guide In protein-protein association.

In our picturespur new lens colors dehyrdons to
distinguish from ordinary hydrogen bonds.




Dehydrons

In human hemoglobin, From PNAS

100: 6446-6451 (2003) Ariel Fernandez,
Jozsef Kardos, L. Ridgway Scott, Yuji Goto,
and R. Stephen Berry. Structural defects ang
the diagnosis of amyloidogenic propensity.

Well-wrapped

hydrogen bonds are

grey, and dehydrons are green

The standard ribbon model
of “structure” lacks indicators
of electronic environment.




6 Amino acid pairs at interfaces

We now return to the second question raised at the beginrfitigg @hapter
regarding the amino acid compostion for interacting pdi@oino acids at
Interfaces.

We review the results in [12] which use proximity as an int&a metric in

which two residues are defined as interacting if tligjrcoordinates differ by at
most GA.

In this setting, some dominant residues are indeed found ttydrophobic.

We present in Table 3 the residues and their relative prajensas defined in
(4.3), in decreasing order.




Pairing Pairing Pairing | Total Abun- | Interface | Rim/Core
Rel. Prop.| Rel. Freq.| Freqg.[12] | dance[4] | Propensity| freq. [6]
5.4 2.40 1.87 0.78 +0.25 0.45
1.9 1.60 1.63 1.02 -0.33 0.32
1.7 1.55 6.74 4.35 -0.25 1.24
1.5 1.50 7.01 4.66 +0.6 1.04
1.3 1.46 4.90 3.36 +1.28 1.19
1.1 1.41 6.87 4.87 +1.1 1.19
0.76 1.33 2.56 1.92 -0.25 0.52
Tyr 0.32 1.23 3.70 3.00 +0.1 0.67
Gly 0.11 1.18 8.59 7.30 +0.99 1.16
Ala 0.11 1.18 9.18 1.77 +0.29 0.95

Table 3: Amino acids which occur in pairs at interfaces ararthelative abun-
dances. Primary data is taken from the indicated referemtasative Propensity is
defined in (4.3) and Relative Frequency is defined in (4.2).




Pairing Pairing Pairing | Total Abun- | Interface | Rim/Core
Rel. Prop.| Rel. Freq.| Freqg.[12] | dance[4] | Propensity| freq. [6]
-0.15 1.12 4.02 3.61 -0.4 0.33
-0.33 1.08 3.41 3.15 -0.62 1.03
-0.72 0.99 2.38 2.41 +0.1 0.54
-0.98 0.93 5.06 5.42 +0.34 1.48
-1.2 0.87 7.12 8.17 +0.2 1.09
-1.6 0.79 7.05 8.91 -0.35 0.82
-1.8 0.75 5.00 6.66 -0.7 0.76
Arg -1.9 0.71 4.46 6.27 -0.35 1.19
-2.6 0.55 4.71 8.59 -0.5 1.87
Lys -2.9 0.48 3.73 7.76 -0.42 2.16

Table 4. Amino acids which occur in pairs at interfaces ararthelative abun-
dances. Primary data is taken from the indicated referemtasative Propensity is
defined in (4.3) and Relative Frequency is defined in (4.2).




6.1 Explaining the differences

Two of the residues in Table 3 with greatest relative proppgnsamely Trp and
Pro, are distinctively hydrophobic, as we might expect.

However, these are also two of the most unique residues.
Moreover, other high-ranking residues are as found in Table

The differences between this table and Table 1 reflect thalfatwe are now
asking about residues which are in proximity and thus aegaating in some
direct way.

It is natural to expect that hydrophobicity would be a proemintype of
Interaction.




Since Table 3 does not provide relative abundances direatiyeed to say how
these have been derived.

The fundamental data in Table 3 is Table Il on page 93 in [1Bjcivlists the
“contact” matrixCj;.

This is a matrix that counts the number of times that resiczantacts (is within
the proximity radius of) residug

Summing a column (or row) af’;; and normalizing appropriately gives the total

frequencyF; of the:-th amino acid involved in such pairings.
More precisely, to report frequencies as a percentage,adefin

Y2, Cyj
ey

1,7=1

F; = 100 (6.4)

to be the amino acid pairing frequency, shown in the coluntitlet Pairing
Freq. [12] in Table 3.




6.2 Normalized abundance

The abundance of each amino acid in such pairings needs tarb®lized by an
appropriate measure.

Here we have taken for simplicity the abundances publishgdi] which are
reproduced in the column entitled Total Abundance [4] inlé&h

We do not claim that this provides the optimal reference tasuee relative
abundance in this setting, but it certainly is a plausibla dat to use.

The data shown in the column entitled Pairing Rel. Freq. ind& represents the
ratio of F;, defined in (6.4), to the abundances reported in [4].

The fact that Cys appears to have the highest relative abgada pairs at
Interfaces reflects the simple fact that when Cys appearsguaith another
residue, it is unusually frequently paired with another @yform a disulfide
bond, as confirmed in [12].




/ Pair frequencies

In addition to looking at the frequencies of individual diges, one can also look
at the frequencies of pairings.

A standard tool for doing this is thedds ratio.

Suppose that; is the frequency of théth amino acid in some dataset, and
suppose that’; ; is the frequency of the pairing of thieth amino acid with the
j-th amino acid. Then the odds ratig); is defined as

Ci;
fif;
and has the following simple interpretation. If the pairofghe:-th amino acid

with the j-th amino acid were random, then we would have = f; f,;, and thus
O;; = 1. Therefore an odds ratio bigger than one implies that thenggis more

common than would be expected for a random pairing, and cealef it is less
than one.

O;5 = (7.5)




Thelog odds ratiois often defined by simply taking the logarithm of the odds
ratio. This has the benefit of making the more likely pairipgsitive and the less
likely pairings negative. In [12], a quantity;; is defined by multiplying the log
odds ratio by a numerical factor of ten.

It is noteworthy that the odds ratios indicated in Table fl[4] are all between a
half and two. That is, there are no pairs which occur even aras twice as
frequently as would be expected randomly (or half as fretiyen

The pair with the highest odds ratio (1.87) is Cys-Cys, altidsibridge.

Although Cys is uncommon, when it does appear we can expecbé involved
In a disulfide bridge.

The next highest odds ratio pair is Trp-Pro (1.42), whichigpawvo of the most
unigue sidechains.




In Table Il of [4], The following four pairs with the next higgst odds ratios
iInvolve charged residues:

Asp-His (1.25),
Arg-Trp (1.23),
Asp-Ser (1.22) and
Asp-Thr (1.21).

The first of these Is a salt-bridge, and the second is a choige-interaction
known as a catiom= interaction [11, 30, 7] based on the polarity of aromatic
residues.

The latter two pairs are charged and polar residues as well.

The next four pairs in ranking of odds ratio are Cys-Ser (11.28p-Arg (1.19),
Met-Met (1.16) and Cys-His (1.15).

These show a similar mix of polar interactions.

So how does hydrophobicity play a role?




7.1 Comparing odds ratios

There is no absolute scale on which to measure odds ratiosharsignificance of
any deviation from one is context dependent.

But it is notable that the pair frequencies reported in [I2]rmuch smaller than
found for alpha helices or beta sheets [19].

The top thirty values for the odds ratios for amino acid paiith 6 < 50 are all
greater than two, with the highest being 3.75 [19].

Moreover, the top fifteen values for the odds ratios for anaicid pairs with
6 > 155, that is pairs in3 sheets, are all greater than two [19].

We interpret that to mean that the hydrophobic pairs invbiventerfaces are
more nearly random, none of which occur with very high oddissa




7.2 Core versus rim pairs

When we add the further analysis in [6] which differentiatieel prevalence of
core versus rim residues in protein interfaces, the pigtuaenplified.

In [6], interface topology was characterized in detall, @&wias found that
Interfaces could typically be described in terms of disepatches of about 1600
A2 in area.

For each patch, the boundary (rim) residues were identikesiss the interior
(core) residues.

The statistics for amino acid preferences for the rim vetsasore are
reproduced in Table 3.

There is a strong correlation between being charged or palhpreferring the
rim, as indicated in Table 5.




Rel. Pair Total Abun- | Rim/Core | Homodimer
Freq. | Freq.[12] | dance [4] freq. [6] | Rim/Core [1]
-2.9 | 0.48 3.73 7.76 2.16 2.19
-2.6 | 0.55 4.71 8.59 1.87 1.48
0.93 5.06 5.42 1.48 1.61
1.7 1.55 6.74 4.35 1.24 1.51
1.3 | 1.46 4.90 3.36 1.19 1.49
1.1 1.41 6.87 4.87 1.19 1.16
Gly | 0.11 | 1.18 8.59 7.30 1.16 1.38
Arg -1.9 | 0.71 4.46 6.27 1.19 0.85
Val -1.2 | 0.87 7.12 8.17 1.09 0.83
Ser 1.5 | 1.50 7.01 4.66 1.04 1.15

Table 5: Amino acids which occur in pairs at interfaces arairtrelative abun-
dances. Primary data is taken from the indicated references




Rel. Pair Total Abun- | Rim/Core | Homodimer
Freq. | Freq.[12] | dance [4] freq. [6] | Rim/Core [1]
1.08 3.41 3.15 1.03 1.22
1.18 9.18 7.77 0.95 0.93
-1.6 | 0.79 7.05 8.91 0.82 0.61
-1.8 | 0.75 5.00 6.66 0.76 0.55
0.32 | 1.23 3.70 3.00 0.67 0.58
-0.72 | 0.99 2.38 2.41 0.54 0.68
0.76 | 1.33 2.56 1.92 0.52 0.85
Cys 5.4 | 2.40 1.87 0.78 0.45 0.81
-0.15| 1.12 4.02 3.61 0.33 0.40
Trp 1.9 | 1.60 1.63 1.02 0.32 0.60

Table 6: Amino acids which occur in pairs at interfaces arairtrelative abun-
dances. Primary data is taken from the indicated references




7.3 Special interfaces

Protein-ligand interfaces differ in function, and intexa with different function
can have different composition.

In [15], basic differences between protein-antibody ardyare-inhibitor pairs, as
well as others, are explored.

Using more extensive datasets available more recenty/ahproach has been
refined to allow classification of interface type based omaacid composition
[23].




8 Comparisons and caveats

We have made several observations based on analyzinghexstia sets. These
conslusions should be viewed as preliminary since thesesgd$ must be viewed
as incomplete. Our primary intent was to introduce a mettogpyofor exploring
such data sets and to indicate the type of results that cahtbaned.

Our basic analysis of pairwise interaction data was takem fil2]. However, the
methodology is quite similar to that of the earlier paper[28hough there are
differences in the way the interior (and non-interior) sigi&@ns in the interaction
zone are defined.

That is, the classification of rim and core residues in therfate [12] is different
In definition from exposed and interior residues in the iiaiez in [28], although
similar in spirit.

Figure 3B of [28] shows how the residues that are interagingximate) in an
Interface are very similar in composition to ones in thenoteof proteins.




8.1 Comparing interfaces

To illustrate the sensitivity of results depending on theadase chosen, we revie
the results in [1] which is very similar in spirit to [6], theflérence being the use
of homodimers for the study of interfaces.

In Table 5, we present this data, with the residues reordergive the rim/core
preferences in order for the data in [6] to facilitate congxar with the data in [1].

What we see is the same general trend, namely that charggqubiardesidues
prefer the rim, but with changes in the particular ranking®ag the different
groups.

However, there Is a significant reversal in the roles of angiand valine [1].




8.2 Nonspecific interactions

The dissection trilogy is completed in [2] in which an atténgamade to
determine aminoacid distributions for “nonspecific” iretions.

This is intended to be a proxy for any surfaces which mighdl thawever briefly
to other protein surfaces. The dataset is determined byrigak crystal contact
surfaces in the PDB.

We leave as an exercise to compare the data for these swiahdhke other data
presented here.

See [2] for a comparison with the data in [6] and [1].




8.3 Hot spots and alanine scanning

In [3], an attempt is made to identify so-called “hot spote”’gyotein surfaces.

They report on the results of an experimental techniquedalbnine scanning
in which residues are replaced by alanine and compared etbriginal protein
by some activity assay.

What they discover is that the most common sidechains atduods sire the ones
that are bulkiest, Trp, Tyr and Arg. This is not surprisingca the replacement by
Ala has the greatest change in geometry for these residues.

However, such substitutions might be extremely rare.

What might be a better test of importance would be other nmrtgte.g., ones
which do not change the volume or geometry of the side chaisteatic
replacement of all amino acids by all other amino acids iartyean order of
magnitude more work than just replacing by a fixed side chain.

Having a better model of what governs protein-protein sxtgons could lead to a
more directed study of sidechain mutation effects.




8.4 Cation-r Interactions

The aromatic sidechains do play a special role in protegrfates through what
Is called a cationr interaction [11].

The special polar nature of the aromatic residues proviteespportunity for

Interaction with positively charged (cation) residuesqL&rg, His).
The cations motifs play a special role in protein interfaces [30, 7].

The cations interaction also has a significant rolednrhelix stabilization [26].




A study of the role of evolution on protein interface compiosi can be found in
[5]. In [13, 20], interacting amino acids across interfaaes studied and
compared with regard to conservation and hot spots.

Protein-protein interactions can be classified in diffekeays, e.g., by how
transient they are, and studies have been done to examiasedides in size of

Interaction zones and sidechain propensities [22, 21].

Identification of individual sidechains that may play th&erof “anchors” in
protein-ligand recognition is studied in [25] via moleautiynamics simulations.
Individual residues are identified that appear to fit intorgetrsic features on
paired protein surfaces both in crystal structures andardimamic simulations.




O Conclusions

Two main conclusions were obtained. The first is that hydotydity is not the
primary variable that determines proximity to interactstes. Instead, there is a
different “interactivity” order that governs the liklihdaf an amino acid residue
being in an active zone. Electrical forces have a more prentirole that simple
steric effects.

On the other hand, pairwise interactions of hydrophobidtes do play a
secondary role in protein-protein interactions, espgcialthe interior, or core,
regions of interaction domains. Moreover, their inter@us$i tend to be less
specific than might be the case in other pairings, such aphadielices and beta
sheets. Nonspecific interactions can be problemmatic [].
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