Digital biology: protein-ligand interactions

L. Ridgway Scott

The Institute for Biophysical Dynamics, the Computation Institute, and the Departments of Computer Science and Mathematics, The University of Chicago

This talk is based on joint work with Ariel Fernandez (Rice Univ.), Harold Scheraga (Cornell), and Kristina Rogale Plazonic (Princeton); and at U. Chicago: Steve Berry, John Goldsmith and Jing Liu.
Proteins as digital components

Proteins are the essential components of life:

- used to build complexes, e.g., viruses (bricks and mortar)
- involved in signalling (information transmission)
- enzymes essential in catalysis (chemical machines)

Water is essential to life as we know it, but hostile to proteins.

Hydrophobic effect is considered a dominant effect in protein-ligand association but is non-specific (analog) in behavior.

Water is a strong dielectric, and protein sidechains are a complex mix of charged, polar, and hydrophobic parts.

What makes proteins interact in a repeatable way?
Our thesis

Interaction between physical chemistry and data mining in biophysical data bases is useful.

Data mining can lead to new results in physical chemistry that are significant in biology.

Using physical chemistry to look at data provides insights regarding function.

In particular, we review some recent results regarding protein-protein interaction that are based on novel insights about hydrophobic effects. We discuss how these can be used to understand signalling using proteins.
A quote

from Nature’s Robots

The exact and definite determination of life phenomena which are common to plants and animals is only one side of the physiological problem of today. The other side is the construction of a mental picture of the constitution of living matter from these general qualities. In this portion of our work we need the aid of physical chemistry.

so our theme is not so new
Data mining definition

WHATIS.COM: Data mining is sorting through data to identify patterns and establish relationships.

Data mining parameters include:

- **Association** - looking for patterns where one event is connected to another event

- **Sequence or path analysis** - looking for patterns where one event leads to another later event

- **Classification** - looking for new patterns (May result in a change in the way the data is organized but that’s ok)

- **Clustering** - finding and visually documenting groups of facts not previously known

Conclusion: Data mining involves looking at data.
Data mining lens

If data mining is looking at data then

What type of lens do we use?

- All of these have chemical representations, e.g.,

\[C_{400}H_{620}N_{100}O_{120}P_{1}S_{1} \]

- Alphabetic sequences describe much of biology: DNA, RNA, proteins.

- All of these have three-dimensional structure.

- But structure alone does not explain how they function.

Physical chemistry clarifies the picture and allows function to be more easily interpreted.
Sequences can tell a story

Protein sequences
aardvarkateatavisticallyacademicianaccelerativeacetylglycineachievementacidimetricallyacridityactressadamantadhesivenessadministrativelyadmitafflictiveafterdinneragrypniaaimlessnessairlift

and DNA sequences
actcatatactagagtacttagactttatactagagcattacttacttagat

can be studied using automatically determined lexicons.

Joint work with John Goldsmith, Terry Clark, Jing Liu.
Sequences can tell a story *(a linguistic lens)*

Protein sequences

aardvark ate atavistically academia nian accelerate
acetylglucose achievement acidimetrically acridity
actress adamant adhesiveness administratively admit
afflictive after dinner agrynpn ia aimlessness airlift

and DNA sequences

act cat at actagag t act tag act tata act agag cat tact tag at

can be studied using *automatically determined lexicons*.

Joint work with John Goldsmith, Terry Clark, Jing Liu. But that is another talk
Physical chemistry provides new lens to look at protein data

- Tutorial on hydrophobic wrapping
 - hydrophobic protection (desolvation) of hydrogen bonds
 - new motif: dehydron=insufficiently desolvated hydrogen bond
 - dehydrons are involved in protein interaction (they are sticky)

- Using dehydrons in bioinformatics
 - the tails of the distribution: extreme stickiness
 - number of dehydrons correlates with protein interactivity
 - number of dehydrons differentiates proteins with similar structure

- Using wrapping technology in drug design

- Requires more precise understanding of dielectrics
 - Review of dielectrics
 - Poisson-Debye equation
1 Tutorial on hydrophobic wrapping

Effect of modulation of dielectric by hydrophobic groups.

- Amino acid side chains have different properties
- Tutorials on
 - hydrophobicity: carbonaceous groups
 - dielectrics: water screens charges
- Extent of wrapping changes nature of hydrogen bond
- Dehydrons: Under-wrapped hydrogen bonds
 - Antibody binding: dehydrons can guide the way
 - Virus capsid: a model for protein-protein interaction
 - Stickiness of dehydrons
1.1 Amino acid side chains have different properties

Carbonaceous groups on certain side chains are hydrophobic:

Valine
\[\text{CH}_2 \]
\[\text{CH}_2 \]
\[\text{CH}_2 \]
\[\text{CH}_3 \]

Leucine
\[\text{CH}_2 \]
\[\text{CH} \]
\[\text{CH}_2 \]
\[\text{CH}_3 \]

Isoleucine
\[\text{H} \]
\[\text{C} \]
\[\text{CH}_3 \]
\[\text{CH}_2 \]
\[\text{CH}_3 \]

Proline
\[\text{CH}_2 \]
\[\text{CH}_2 \]
\[\text{CH}_2 \]

Phenylalanine
\[\text{CH}_2 \]

Amino acids (side chains only shown) with carbonaceous groups.
1.2 Tutorial on hydrophobicity

Carbonaceous groups (CH, CH$_2$, CH$_3$) are hydrophobic because

- they are non-polar and thus do not attract water strongly
- they are polarizable and thus damp nearby water fluctuations

1.3 Tutorial on dielectrics

Water removal reduces the dielectric effect and makes electronic bonds stronger.

Number of carbonaceous groups in a region determine extent of water removal and strength of electronic bonds.
1.4 Wrapping protects hydrogen bond from water

Well wrapped hydrogen bond

Underwrapped hydrogen bond
1.5 Extent of wrapping changes nature of hydrogen bond

Hydrogen bonds (B) that are not protected from water do not persist.

From De Simone, et al., PNAS 102 no 21 7535-7540 (2005)
Wrapping made quantitative by counting carbonaceous groups in the neighborhood of a hydrogen bond.
Distribution of wrapping for an antibody complex.

PDB file 1P2C: Light chain, A, dotted line; Heavy chain, B, dashed line; HEL, C, solid line

number of noncarbonaceous groups in each desolation sphere: radius=6.0 Angstroms
1.6 Under-wrapped hydrogen bonds

Hydrogen bonds with insufficient wrapping in one context can become well wrapped by a partner.

The hydrogen bond is much stronger when wrapped.

The change in energy makes these hydrogen bonds sticky.

We call such under-wrapped hydrogen bonds **dehydrons** because they can benefit from becoming dehydrated.

The force associated with dehyrdons is not huge, but they can act as a guide in protein-protein association.

In our pictures, our new lens colors dehyrdons **GREEN** to distinguish from ordinary hydrogen bonds.

Well-wrapped hydrogen bonds are grey, and dehydrons are green. The standard ribbon model of “structure” lacks indicators of electronic environment.
The HIV protease has a dehydron at an antibody binding site.

When the antibody binds at the dehydron, it wraps it with hydrophobic groups.
Foot-and-mouth disease virus assembly from small proteins.
Dehydrons guide binding of component proteins VP1, VP2 and VP3 of foot-and-mouth disease virus.
1.8 Stickiness of dehydrons

Attractive force of dehydrons predicted and measured in

by considering rates of adhesion to phospholipid (DLPC) bilayer.

Deformation of phospholipid bilayer by dehydrons measured in

Single molecule measurement of dehydronic force in

Fine print: careful definition of dehydron requires assessing modification of dielectric enviroment by test hydrophobe. That is, geometry of carbon groups matters, although counting gets it right \(\approx 90\%\) of the time [1].
Physical chemistry provides new lens to look at protein data

- Tutorial on hydrophobic wrapping
 - hydrophobic protection (desolvation) of hydrogen bonds
 - new motif: dehydron=insufficiently desolvated hydrogen bond
 - dehydrons are involved in protein interaction (they are sticky)

- Using dehydrons in bioinformatics
 - the tails of the distribution: extreme stickiness
 - number of dehydrons correlates with protein interactivity
 - number of dehydrons differentiates proteins with similar structure

- Using wrapping technology in drug design

- Requires more precise understanding of dielectrics
 - Review of dielectrics
 - Poisson-Debye equation
1.9 Extreme interaction: amyloid formation

Standard application of bioinformatics: look at distribution tails. If some is good, more may be better, but too many may be bad. Too many dehydrons signals trouble: the human prion.

2 Dehydrons as indicators of protein interactivity

If dehydrons provide mechanism for proteins to interact, then more interactive proteins should have more dehydrons, and vice versa. **We only expect a correlation since there are (presumably) other ways for proteins to interact.**

The DIP database collects information about protein interactions, based on individual protein domains: can measure interactivity of different regions of a given protein.

Result: **Interactivity of proteins correlates strongly with number of dehydrons.**

The nonconserved wrapping of conserved protein folds reveals a trend toward increasing connectivity in proteomic networks.

Ariel Fernández, L. R. Scott and R. Steve Berry
2.1 Dehydron variation over different species

<table>
<thead>
<tr>
<th>Species (common name)</th>
<th>peptides</th>
<th>H bonds</th>
<th>dehydrions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aplysia limacina (mollusc)</td>
<td>146</td>
<td>106</td>
<td>0</td>
</tr>
<tr>
<td>Chironomus thummi thummi (insect)</td>
<td>136</td>
<td>101</td>
<td>3</td>
</tr>
<tr>
<td>Thunnus albacares (tuna)</td>
<td>146</td>
<td>110</td>
<td>8</td>
</tr>
<tr>
<td>Caretta caretta (sea turtle)</td>
<td>153</td>
<td>110</td>
<td>11</td>
</tr>
<tr>
<td>Physeter catodon (whale)</td>
<td>153</td>
<td>113</td>
<td>11</td>
</tr>
<tr>
<td>Sus scrofa (pig)</td>
<td>153</td>
<td>113</td>
<td>12</td>
</tr>
<tr>
<td>Equus caballus (horse)</td>
<td>152</td>
<td>112</td>
<td>14</td>
</tr>
<tr>
<td>Elephas maximus (Asian elephant)</td>
<td>153</td>
<td>115</td>
<td>15</td>
</tr>
<tr>
<td>Phoca vitulina (seal)</td>
<td>153</td>
<td>109</td>
<td>16</td>
</tr>
<tr>
<td>H. sapiens (human)</td>
<td>146</td>
<td>102</td>
<td>16</td>
</tr>
</tbody>
</table>

Number of dehydrions in Myoglobin of different species
Anecdotal evidence: the basic structure is similar, just the number of dehydrons increases.

SH3 domains are from nematode C. elegans (a) H. sapiens (b);

ubiquitin is from E. coli (c) and H. sapiens (d);

hemoglobin is from Paramecium (e). and H. sapiens-subunit (f).
2.2 Dehydrons as indicator of complexity?

Is this interactivity an indicator of complexity?

Is this complexity an indicator of evolution?

In any case, the number of dehydrons differentiates homologous proteins found in different species.

We can imagine that protein interactivity became a dominant way in evolution to explore biological space, once genome complexity stabilized.

But regardless, we can exploit dehydron differences in drug design.
References