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1. Introduction

To perform the numerical analysis of schemes approximating models
of non-linear incompressible fluids, we frequently require an operator
that preserves the property of discrete zero divergence and enjoys
the same local approximation properties as a standard interpolation
operator. Although a classical lemma of Fortin [14] states that the
uniform discrete inf-sup condition for the divergence is equivalent to
the existence of an approximation operator that preserves the discrete
divergence, this operator is not necessarily local and is a priori only
stable in the H! norm. Therefore, we must construct our operator
directly.

When dealing with low-degree finite elements, such as the Bernardi-
Raugel element [5], the Crouzeix-Raviart element [13], or the mini-
element [2], this operator can be easily constructed explicitly and
good approximation properties can be deduced from its expression
(cf. for example Crouzeix & Raviart [13], Girault & Raviart [17], Gi-
rault & Lions [16]). But in general, this construction is much more
difficult as soon as the finite-elements’ degree is greater than or equal
to two (with the exception of the non-conforming element of degree
two of Fortin & Soulié [15]).

The equivalence stated in Fortin’s Lemma suggests establishing a
local inf-sup condition, i.e., restricted to macro-elements. Then the
corresponding operator will be quasi-local. And, since macro-elements
have at most a fixed (and small) number of elements, the equivalence
of norms in finite-dimensional spaces will imply approximation prop-
erties of the operator in Z” and WP norms. To this end, we shall
establish a generalization of the theorem of Boland & Nicolaides [6]
and Stenberg [26]. Our generalization allows on one hand overlap-
pings of macro-elements and on the other hand it eliminates taking
a linear combination with a global inf-sup condition for piecewise
constant pressures.

The modification in the last step makes the proof completely lo-
cal in the sense that it only requires an inf-sup condition on macro-
elements. It is achieved by constructing an auxiliary approximation
operator that preserves the mean-value of the divergence in each ele-
ment. This can be easily done as soon as the degree of finite-elements
is at least two (in two dimensions, and three in three dimensions)
precisely the case in which we are interested. Reduction to functions
whose divergence has zero mean-value in each element has already
been used by Crouzeix & Falk in [12] in the case of non-conforming
elements of degree three.
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This article is written for simplicial elements, but it extends easily
to quadrilateral elements. The operator is constructed in Section 1, in
a general setting, for conforming and non-conforming finite elements
in two or three dimensions. Section 2 describes some applications
with continuous or discontinuous approximations of the pressure.

We shall use the following notation; for the sake of simplicity, we
define the spaces in three dimensions. Let (k1, k2, k3) denote a triple
of non-negative integers, set |k| = k1 + k2 + k3 and define the partial
derivative 0F by

f 9kly
v

a Ozt ok oaks
Then, for any non-negative integer m and number r > 1, recall the
classical Sobolev space (cf. Adams [1] or Necas [24])

W™ (Q) = {v e L"(2); 8Fv € L(2) V|k| < m},
equipped with the seminorm
1/r
|'U|Wm,r(n) = ( Z / |8kv|rdx> , (].].)
k|=m "
and norm (for which it is a Banach space)
1/r
Pollwnry = (3 Tolyir) "
0<k<m

with the usual extension when r = oo. The reader can refer to Li-
ons & Magenes [22] and Grisvard [20] for extensions of this defi-
nition to non-integral values of m. When r = 2, this space is the
Hilbert space H™(£2). The definitions of these spaces are extended
straightforwardly to vectors, with the same notation, but with the
following modification for the norms in the non-Hilbert case. Let
u = (u1,u2,us); then we set

1/r
ullzr ) = [ / ||u<x>||’"dx] ,

where || - || denotes the Euclidean vector norm.
For functions that vanish on the boundary, we define

Hy(2) = {v € H'(2); v|pp =0},
and recall Poincaré’s inequality: there exists a constant C' such that

Vv € Hy(2) , |Jvllr2(n) < Cdiam(£2)|v|1(q) - (1.2)
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Owing to (1.2), we use the seminorm | - [51(p) as a norm on H}(92).
We shall also use the standard spaces for incompressible flows in
d dimensions (for d = 2 or 3):

V ={veH(2)* divv =0 in 2},
Vt={veHj(2);VvweV,(Vv,Vw) =0},

Li(0) = {qELQ(Q); /qux:O}.

2. Construction of the operator

Let £2 be a Lipschitz-continuous domain in R? (d = 2 or 3), with
a polygonal or polyhedral boundary 0f2. Let 7} be a regular (also
called non-degenerate) family of triangulations of 2 (cf. Ciarlet [11]):
there exists a constant o, independent of h and T', such that

VTEﬁ,h—TSJ, (2.3)
pPr

where hr is the diameter of T" and pr is the diameter of the sphere
inscribed in 7. Let k > 1 be an integer and let (X3, M}) be a pair
of finite-element spaces such that M, is contained in L3(£2) and the
restriction to each element of functions of X; and M} contains re-
spectively Pg and IPj_1. Here, IP}, denotes the space of polynomials
of total degree less than or equal to k in d variables. In the case of
a conforming approximation, we choose X}, contained in H&(Q)d. In
the case of a non-conforming approximation, we only ask that the
restriction of functions of X}, to each element T belong to W1 (T')¢
with suitable weak matching conditions on inter-element boundaries
and weak boundary conditions on @f2. This should include at least
continuity of the average value

/ vids, (2.4)
TI

over each element interface 7' and this quantity should vanish on
each face T" contained in 942 (cf. [13]). Condition (2.4) is of course
the simplest form of the “patch test” of Bruce Irons (cf. [11]). To take
into account this possible nonconformity, for each number p > 1, we
equip X} with the broken norm:

/
[V]Wl,p(_()) = (Z ‘v|€[/1,p(T)>1 g ) (25)

TET,
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where the seminorm is defined in (1.1), and we denote

which will be used for functions defined only piecewise such as divv
for discontinuous v.

Remark 1. At first sight, (2.5) defines a semi-norm, but in fact, it is
a norm on Xj,. Indeed, if v belongs to X, and [v]y1s(p) = 0, then
vV = ¢, a constant in each element 7. But the continuity of fT, vds
over each element interface 7" implies that ¢ = ¢, a single constant
independent of T'. Finally, the fact that

VT'E&Q,/ vds =0,
TI

implies that c=0. O

With the above spaces, norms and scalar products, we propose to
construct an operator P, € L(HE(£2)%; X},), satisfying:

Vw € Hy(2)%, Vg € My, g, div(Po(w) = W)la =0,  (2.6)

Vv e WP(2)4 NT € Ty,

s—m+d(1-1

1y (2.7)
|Ph(v) = Vlwmay <Cihy ¢ P vlwsear) |

for all real numbers 1 < s < k+1,1 < p,q < o0, and integer m = 0
or 1 such that

WHE(82) cW™i($2),

where the constant 'y is independent of h and T' and Ar is a suitable
macro-element containing 7. It can be easily checked that (2.6) and
(2.7) with p = ¢ = 2 and m = s = 1 imply the uniform inf-sup
condition between X; and My:

[qn, divvy]o > 5 2.8)

inf sup
*wEMn vy, ex, [Vala (o) lanllL2 o)

with a constant 5* > 0 independent of h. But, of course (2.6) and
(2.7) yield much much more powerful results than (2.8).

For eliminating the step that deals with piecewise constant pres-
sures in the proof of [6] and [26], we assume that there exists an
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interpolation operator IT, € L(H{(£2)% X)) that satisfies, for any
v € H}(02)%

VT €Ty, /Tdiv(ﬂh(v) —v)dx =0, (2.9)

and the same approximation property as P, namely, with the same
notation:

Vv e WHP()¢ VT € Ty,

s—m—l—d(%— Ly

. (2.10)
T (v) = V|wma(ry < Cohy P|vlwsr(Dr) s

provided W*P(£2) C W™1({2), where the constant C5 is independent
of h and T' and Dy is the union of all triangles that share a side
or a vertex with 7. We shall see in Section 2 that this operator is
easily constructed as soon as k > 2, in two dimensions, and k£ > 3
in three dimensions. Unfortunately, we do not yet see how to extend
our results to the case £k = 2 in three dimensions.

Remark 2. Observe that (2.10) implies that
dist(supp(II,(v))¢, supp(v)) < Csh, (2.11)
with a constant C3 that is independent of h. O

Now, we shall construct Py, by correcting locally IIj,. For this, we
assume that (2 is the union of a finite set of macro-elements {O;}£ ;:

2 =Uk,0;, (2.12)

such that each O; is connected, is the union of elements 7', and the
maximum number of elements 7" in O; is bounded by a constant L.
We assume that O; # O, for i # j; we do not assume that they are
disjoint, but we suppose that each 7" can belong to at most Lo macro-
elements. This implies that the maximum number of macro-elements
that can intersect a given one is bounded by a constant Lz < LjLo.
Here L, and Ly are independent of h.
For each function g in M}, we define in each T'

1
T(qn)|lT = an — m/TthX-

Clearly 7(qgp,) is a piecewise polynomial of the same degree as g, and

My =7Mp = {7(qn); qn € Mp}
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is a linear space, although it is not necessarily a subspace of Mj. We
also introduce the following spaces:

Mu(0;) = {dnlo;; Gn € Mp}Vi=1,...,R.

Similarly, we define the following spaces:

Xh:{VhGXh;VTEﬁL,/

div vy, dx = 0},
T

Xn(0;) = {vy € Xp; supp(vy) C O;},
Vi(0;) = {vh € X1(0i); Van € Mu(O;), [gn,divvh]o, = 0},
Vh(0)t = {vi € X1 (0:); YWy, € Vi(O;), [V Vi, V Who, = 0}.

Observe that the functions of M}, have zero mean-value in each T.
This is imposed on one hand for eliminating the piecewise constant
pressures and on the other hand for allowing macro-elements overlaps.
The constraint on the functions of X} is a compatibility condition
with the functions of Mj. It will be automatically satisfied by using
the operator II},.

Then we define P, by

Py(v) = Hp(v) + ep(v), (2.13)
where cp,(v) € X, will be constructed so that
Van € My, [gn,diven(v)]e = [gn, div(v — Th(v))]e.  (2.14)

If (2.9) holds, then (2.14) and the constraint on X} imply that P,
satisfies (2.6).
Here is the main theorem of this section.

Theorem 1. Assume that:

1) The triangulation satisfies (2.3) and there ezists a set of macro-
elements defined as above and a constant A\* > 0, independent of h
and O; such that, for 1 <i < R,

di .
inf sup lgn, div Vilo, > A" (2.15)

an€Mn(Oi) v, e X1, (0;) Valmiopllanlic2 o))

2) There exists an approzimation operator IIj, defined as above
satisfying (2.9), (2.10).
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Then there ezists an operator P, € L(H}(2)%; X}) of the form
(2.13) satisfying (2.6) and

Vv e WP(2)¢ V1 <i<R,
mtd(i-1) (2.16)
[Pr(v) = Vlwma(o;) < Cih; * PVl
for all real numbers 1 < s <k+1,1<p,q < o0, and integer m =0
or 1 such that
WP(2) ¢ W™I(9),
where A~,~ is a suitable macro-element with

diam(4A;) < Csh;, (2.17)
the constants Cy and Cs are independent of h and R and h; =
maxrco;hr.

Proof. 1) In order to deal with possible macro-elements overlaps, we
wish to associate a partition of {2 to the set {O;}. To this end, we
define A, = Oq, then we take for Ay the union of all elements T" that
belong to Oz, but not to A; and by induction, we choose for A; the
set (possibly empty) of all 7' that belong to O; but not to U;;llAj.
(If A; is empty, we simply omit it from the list.) By construction, the
A; are mutually disjoint,

R=UR,A;, A;CcO;,1<i<R.

The uniform local inf-sup condition (2.15) implies that, for each
i, there exists a unique function cp; € V;,(0;)* solution of

Van € Mp(0y), [gn, div enilo, = [gn, div(v — Tn(v))]a, . (2.18)

(Note that c¢j; = 0 when A, is empty). Then we extend each ¢ ; by
zero outside O; and we set

R
ch(v) = Z Ch,i .
=1

By construction, c(v) € Xj; moreover, the support of cp,i and the
partitioning of {2 into {A;}%, imply that c,(v) satisfies (2.14). In-
deed, we have
R R
(g, diven(v)]a = [an, div(>_eni)le =D _lgn, diveno

i=1 i=1
R R
= g divenio, = Y gn, div(v — II1(v))] 4,
= [gn, div(v — IIL(v))]q -

<
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2) The local inf-sup condition (2.15) implies that

fenidisoy < ldv(y ~ Ia(W)izsy.  (219)

Let 1" denote the unit reference element and ¢; the composition of
cpi|r with the affine transformation that maps 7" onto 7. Since each
¢; belongs to a finite-dimensional space, of dimension bounded by a
fixed constant, on which all norms are equivalent, we can write for
any q > 2:

. . 1/q
||Ch,i||Lq((9¢) < C( Z ‘T|||Ci||§,2(f))

TCO;

. . 1/

TCO; (2.20)
Ay d/q A 112 1/2
ChI( Y leil2az)

TCO;
< CRI 9 Pllenillizon)

IA

IA

where p; = minypcp, pr and C denotes constants that are independent
of h and 4. The third inequality follows from Jensen’s inequality. If
1 < ¢ < 2, Holder’s inequality and the fact that O; contains at most
Ly elements give directly

) < ORI ©3)- (2.21)

In the conforming case, c,; € Hy(O;)% and Poincaré’s inequality
(1.2) gives

||Ch,i||L2((’)¢) < C’diam(@i)\ch,ﬂm(on < éhi‘Ch,i‘Hl(oi) . (2.22)

In the non-conforming case, since O; contains at most L; elements,
the set {€;}rco,; belongs to a finite-dimensional space whose dimen-
sion is bounded by a fixed constant independent of h. Let us show

that o o
(3 lediZ) " ana (% o) /

TCO;

are two equivalent norms on this space. Indeed, if

(3 alug) =0,

TCO;
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then each ¢€; is constant and therefore cj; is constant in each 7.
Hence the argument of Remark 1, applied in O; shows that c;; = 0

in O;. Therefore, each ¢; = 0. Thus, there exists a constant C, such
that

A /2 . X 1/2
(3 ellas)  <O(X i)
TCO; TCO; (2.23)
< Ohip;d/Q[ch,i]Hl(Oi) :

In either case, when substituting (2.22) or (2.23) and (2.19) into (2.20)
or (2.21), we derive for any ¢ > 1:

2 d —d
lenillzeon < € it P lenil o

A (2.24)

A similar argument, somewhat simpler because there is no need for
Poincaré’s inequality, yields for ¢ > 2:

~

c - .
[enilwragoy < 5ohi o Pldivy — Ta()paay,  (2:25)

and for 1 < ¢ < 2:

~

C - .
[enilwraon < b PV - TaW)]ieay . (2:26)

3) The expression of ¢ gives:

R 1/q
leallzaon = ( / ||Zch,j||qu) |
O; j=1

where ||-|| denotes the Euclidean norm. But since ¢, ; vanishes outside
Oj, the above sum runs over all indices j such that O; intersects O;.
Let us number these indices from 1 to R; < L3. Thus the sum on j
has at most L3 terms. Hence

R; 1/q
lellzaon < I8 ( [ ||ch,j||qu)

i j=1

R; 1/q
< 15(Xlenslluonoy)

=1

(2.27)
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where a =1/2if1<¢<2, a=1/¢,1/q+1/¢ =1, if ¢ > 2. Hence
(2.24) implies

R;

C _ . 1/q
||ch||L‘1((’)¢) < G <z:1 hg,(1+d/II)pj qd/Q[dlv(v — Hh(V))]qL2(Aj)> ,
‘]:

where the index j is such that O; intersects O;. Therefore, the local
quasi-uniformity of 7;, (cf. for instance [4]) and Jensen’s inequality if
q > 2 or Holder’s inequality if ¢ < 2 yield:

lenllzaion < Ch; T D div(y — T2y, (2:28)

where D; is the union of A; for all j such that O; intersect O;.
Similarly, we derive from (2.25):

[enlwraoy < CREY TP ldiv(y — Iy ())]gopy - (2:29)
Then (2.16) follows from (2.28) or (2.29) and (2.10) with m =1 and
! :()2f course, if we integrate over (2 instead of O;, we obtain for m = 0
or 1:

[enlwma(g) < ChtmAmin0dA/a=1/2)[div(v — IT4(v))] 120 -
Remark 3. Note that
dist (supp(P,(v))¢, supp(v)) < Cgh, (2.30)

where the constant Cg is independent of h. Indeed, if A;, U---UA;, is
the union of all sets where div(v — II;(v)) is not identically zero, then
the support of ¢ is contained in A;, U---U 4;,. Since each macro-
element in this union contains at least one element where div(v —
IT,(v)) does not vanish, the distance between the supports of ¢;, and
div(v — II(v)) is smaller than the largest diameter of the macro-
elements. Then (2.11) and the assumptions on the macro-elements
imply (2.30). O

We end this section with an alternate proof of the inf-sup condition
(2.8) that does not use macro-elements.

Theorem 2. The inf-sup condition (2.8) holds with a constant * >
0 independent of h if the following hold.

1) The triangulation satisfies (2.3).

2) There exists an approzimation operator IIj, defined as above

satisfying (2.9), (2.10).
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3) There exists a constant v* > 0, independent of h, such that

d.

Z (2.31)
IEMp v, e X, [Vh]Hl(Q)H‘JhHL?(Q)

Proof. The proof is based on a global perturbation of I1;, analogous
to (2.18). For v € H}(£2)4, let us solve the problem: Find by(v) €
Vi, (£2)* solution of

Van € My, [gh, divb,(v)]o = [gn, div(v — (V)] e - (2.32)

By virtue of (2.31), this problem has a unique solution by(v) €
Vi (£2)*, the dependence of by, on v is linear and

()] 1 () < %[div(v AT

Furthermore, (2.9) and the definition of X, imply that (2.32) is
valid for all g in M}. Finally, consider the following operator @} €
L(HG(2)% Xp):

Qn(v) = II(v) + bp(v) . (2.33)

The above arguments show that @), satisfies (2.6) and

[Qn (i) < TR ()] () + %{divw — )iz

and in turn, this implies (2.8).

3. Applications

Let us begin by defining the classical conforming (continuous) La-
grange finite elements of degree k, denoted by LF(7y):

L5(Th) = {vn, €C°(2); VT € Th, valr € Pr}. (3.34)

The Taylor-Hood element with continuous pressures (cf. Hood & Tay-
lor [21]) for k > 2 in d dimensions is based on the spaces

Xp = LE(TR) N HF(2)* and My, = LE(TR) N L3(2).  (3.35)

In the two-dimensional case, the inf-sup condition for the pair of
spaces (3.35) was established for k¥ = 2 by Bercovier & Pironneau [3],
then by Verfiirth [27], and by [17]; this last reference gives a proof
with a semi-local argument based on the approach of [6] and [26], and
under the assumption that 7 is non-degenerate and each triangle T
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has at most one edge on 0f2. The inf-sup condition for £k = 3 was
established by Brezzi & Falk [9] (cf. also Brezzi & Fortin [10]) under
these assumptions as well. Finally, Boffi has presented proofs of the
inf-sup condition in two [7] and three [8] dimensions for arbitrary
degree k > 2. But none of these references propose an approximation
operator satisfying (2.6) and (2.7). Reference [18] proves the analogue
of Lemma 1 and Theorem 1 with & = 3 in two dimensions, and we
develop this approach more generally here.

3.1. Taylor-Hood in two dimensions

The preliminary operator II? is derived from Scott & Zhang [25] as
follows. Let T be a triangle with vertices a;, and opposite sides f;,
1 <1i < 3. A polynomial p of degree two is uniquely determined in T'
by the six values:

p(a;) , /p(s)ds,lgig?).
f.

Let @a; € IP2 and ¢y, € IP3 be the Lagrange basis functions associ-
ated with these values, i.e.

(Pa,-(aj) :6i,j 3 / gDai(S)dS =0,1 g]ak <3,

k

e (ag) =0, / wr(s)ds =6;;,1 < j,k <3.

J

For defining ITZ on H'({2), we regularize the above point values as
follows. With each vertex a;, we choose once and for all a side k; of
T, with end-point a;. This choice is arbitrary, with one exception: for
preserving vanishing boundary values, we impose in addition that «;
be contained in 0f2 whenever a; lies on 02. Let 95, € IP2(k;) be the
dual basis function on &;, i.e.

/ as(5)n(s) ds = bass, (3.36)

where b denotes the side k; itself or its two end-points. Then we
replace the point-value p(a;) by the degree of freedom

/K D) ds-
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Thus we define Hﬁ by:

o)) = Y- ([ v(6)s(5)ds) s (0

a; €Sy, ki

+ Z (/ v(s) ds)gof(x),

Fe€ly f

(3.37)

where S, denotes the set of all vertices a; of 7;, and I}, denotes the set
of all segments f of 7. It stems from the above choice of degrees of
freedom on the sides f and the corresponding choice of basis functions
that

Vf eIy, /f(H,Ql(v)—v) ds=0. (3.38)

The operator H,% can be extended to vector-valued functions by ap-
plying it to each component. Of course, (3.38) implies (2.9). Further-
more, it is easy to check that Hfl is a projection, by virtue of (3.36);
i.e. if vy, is globally continuous in 2 and a polynomial of IP5 in each
triangle 7', then

7 (vh) = vp -

This property allows one to apply the argument of [25] and show that
IT? satisfies the optimal approximation property (2.10) for s € [1, 3].

Following Boffi [7], we make the following construction in order to
verify condition (2.15). For each interior vertex o;, we define O; to
be the union of triangles in 7}, that have o; as a vertex (i.e., O; is the
star of the vertex o;). For each ¢ € IIj, we construct vy as follows
to verify (2.15).

We begin by looking at a typical edge e that has o; as a ver-
tex. Since o; is an interior vertex, e is not a boundary edge. Choose
coordinates so that e lies on the z-axis. Let T' and T? denote the
two triangles in 7, which include e, and let e} and e} be the other
two edges of T9 (j = 1,2). Let £, denote the linear function van-

ishing on €], whose value at the opposite vertex (on e) is one. Given
g € Mh(Oi), define
i 13 Odn :
Vol = (~66 50 15,0) for j = 1,2.
z
Note that G, = 7(qn) has the property that

Odn _ Ogn
ox ox
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on the edge e, since ¢, — gy is constant on e. Also

/ divvédz =0for j = 1,2,
T;

by the divergence theorem, since the component of v¢ normal to e
is zero. Thus v® is well defined in X3(0;), and by the divergence

theorem,
3 pJ 3qh
divv® g, dz = E Eé da:.
ThWUTs

Now define
vy = Z vé,
e

where the sum is over all edges meeting at o;. Then

/ div vy, gp dz = Z/ZETET(&M) dx

TCO;

where the sum is over all triangles meeting at o;, /% denotes the linear
function associated with the edge of T' not containing ¢; and e;‘f are
the other two edges, with EZ denoting the linear function vanishing
on el, where {k,k'} = {1,2}.

Using a straightforward extension of the arguments of Theorem
11.4.2, pp.178,179 in [17], we can use the above construction to prove
the following in two dimensions, which in particular implies (2.15).

Lemma 1. Assume that Ty is non-degenerate and each T € Ty, has
at least one interior vertex. Let the spaces Xy and My, be defined by
(8.85) for k > 2. Then for any O; and for all q, € My(O;), the
function vy, defined above satisfies:

1 1
Vp > 2, with p' defined by — + — =1,
p p

(3.39)

[ avdivvidx > élanlzsopllanlio,
¥p > 2, [Vallzoor) < e llanll iz » (3.40)
Vp > 2, [Valwieo;) < éllanllir o) (3.41)

where ¢ denote several constants, depending possibly on p, but inde-
pendent of h, O;, qr, and vy,. In these three inequalities, the exponents
p are independent of each other and can be infinite.
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Combining Lemma 1 with the construction of 17 ,21 proves the fol-
lowing.

Theorem 3. Suppose that the dimension d = 2. Under the assump-
tions of Lemma 1, the Taylor-Hood spaces (3.35) for k > 2 have a
quasi-local interpolant Py, satisfying (2.6) and (2.16).

3.2. Taylor-Hood in three dimensions

The techniques of Boffi [8] show that Lemma 1 holds in d = 3 di-
mensions for all £ > 2. On the other hand, it is not clear how to
generalize the preliminary operator Hi in this case to satisfy the
required property

VfeTy, /f(ﬂh(v) —v) ds=0, (3.42)

where I}, denotes the set of all faces f of Tj.

A preliminary operator I1 ,3; based on piecewise cubics can derived
from Scott & Zhang [25] as in the two-dimensional case. The nodal
variables are the usual vertex and edge nodal variables, together with

/p(s)d5,1§i§4
f.

for the four faces f;. Again, it follows immediately that (3.42) holds
for II;, = 11 ,?;
Thus we have the following result.

Theorem 4. Suppose that the dimension d = 3. Under the assump-
tions of Lemma 1, the Taylor-Hood spaces (3.35) for k > 3 have a
quasi-local interpolant Py, satisfying (2.6) and (2.16).

3.3. Discontinuous pressure spaces

Our techniques in the case of standard conforming finite-element
methods with element-wise discontinuous pressure is even simpler
than the Taylor-Hood methods, because the triangles themselves can
be chosen for macro-elements. For simplicity, we give an example with
k = 2, but the argument extends very easily to arbitrary k& > 3. We
retain the above notation for a triangle, its vertices and sides and we
introduce the three barycentric coordinates A;, of the vertices a; de-
fined by: A\; € IP and X;(aj) = d;; for 1 <4,j < 3. Then, as in [17],
for each triangle T', we define the polynomial space:

PZ(T):PQ@Z)T’
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where by = A1 A3 is the bubble function in 7. With this notation,
we choose:

Xp = {vn € CO(2)?; VT € T, vi|r € P2(T)*} N Hy(2)?, (3.43)

My, = {gn € L3(2); VT € Ty, anlr € IP1} . (3.44)

This and higher-order versions of this element were introduced by [13]
and Mansfield [23]. The inf-sup condition was established in [17],
first locally in each triangle and then globally with the triangles as
macro-elements; but no local operator was constructed. Let us de-
scribe briefly its construction.

Since Py C Po(T), we can define the preliminary operator IT;, =
II? by (3.37). It satisfies (2.9) and (2.10) for s € [1, 3].

Reference [17] proves the local inf-sup condition (2.15) with O; =
T. The function

Vialr = =brVap,

that is associated with ¢, belongs indeed to Xj(T). Hence the as-
sumptions of Theorem 1 are satisfied and its conclusion holds.

Theorem 5. Suppose that the dimension d = 2. The spaces (3.43)
and (3.44) have a quasi-local interpolant Py, satisfying (2.6) and (2.16).

3.4. Nonconforming methods

We finish with two examples of non-conforming finite-element meth-
ods. The first one, with £ = 2, is the IP, — IP; element analyzed
by [15]. As mentioned in the Introduction, its operator P, can be
constructed explicitly and for this reason, it does not require all the
steps of Theorem 1. But for the sake of completeness, let us describe
briefly its construction. We retain the above notation and on each
side f; of T', we introduce the two Gauss points «; 1 and ;2. Next,
following [15], we define the “bubble function” by € IPj:

br =2—-3\2 4+ X2+ )2),

that takes the value 1 at the center of 7' and vanishes at the Gauss
points a; 1, a2, for 1 <7 < 3. Then we set

By, = {bh S L2(.Q); VT € 771, bh|T =crbr, cr € R},
that is clearly not contained in H'(£2), and we choose

Xp = (L2(T) N HE(2)) @ BE, (3.45)
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and M), defined by (3.44). Again, we can define ITj, = II? by (3.37);
it satisfies (2.9) and (2.10) for s € [1,3]. Then we set

Py(v) = M(v) + Y erbr,
TCT,

where ¢ = (cr,1,¢r2) and

1 . 9
crk = W /T.’Ek div(v — IT};(v)) dx.

Clearly, Py (v) has the same support as IT2(v). Let Br be the matrix

of the affine transformation that maps the unit reference triangle 7
onto 7. In view of (2.9), we easily derive that for any number p > 1
and any function v € WiP(£2):

lerl < CHUTI™2|| Br|l||div(v — IT7(v))l| oz -
Hence, we have proved the following result.

Theorem 6. Suppose that the dimension d = 2, that Ty, is regqular
and that WIP(2) C W™4(£2), m = 0 or 1. The spaces (3.45) and
(3.44) have a quasi-local interpolant Py, satisfying

|[Pa(v) = Viwmacr) < TR(V) = VIwma(r)

—m _ ) (3.46)
+Cohy ™ PP Qi (T2 (v) = V)|

and therefore, Py, satisfies (2.6) and (2.16) with k = 2.

The last example we consider is the non-conforming P53 — IP,
element analyzed by [12] in two dimensions. Let ¢; 1, a; 2 and a; 3 be
the three Gauss points on the side f; of T'; we choose

X = {vn;VT € Th, valr € IP§,
Vh|fq; is continuous at «; ;,1 < j < 3,Vfi C Iy, (3.47)
vi(@ij) = 0,1 < j <3, on each side f; C 002},

My = {gn € L{(2); VT € Th, gulr € P2} . (3.48)

On one hand, as the finite-element functions that are globally con-
tinuous, vanish on 3f2, and are polynomials of degree three in each
triangle belong to X}, we can define IT}, as in [18]. This is straightfor-
ward. But on the other hand, establishing the local inf-sup condition
(2.15) is much more delicate than in all the preceding examples be-
cause there seems to be no privileged arrangement of elements into
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macro-elements that gives a simple proof. By writing the expression
of divuy, in each triangle 7" and taking into account the continuity of
uy, at the Gauss points, Crouzeix & Falk in [12] prove (2.15) in a va-
riety of macro-elements that can cover most commonly used meshes.
There are three typical macro-elements each containing three or four
triangles. And these may be augmented by a few triangles, in case
these triangles do not fit into the typical macro-elements. Then the
conclusion of Theorem 1 holds with k = 3.
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