Software Automation

L. Ridgway Scott

Fall 2009
1 Systems (r)evolution

Traditional systems research was based in three areas.

![Diagram showing traditional areas of systems research: Databases, Programming Languages & Compilers, Operating Systems.]

Figure 1: Traditional areas of systems research
1.1 Current systems research

Current systems research has changed in two of the three areas.

Figure 2: Traditional areas of systems research are changing, and new ones have been added.
1.2 Future systems research

Future systems research will continue to evolve.

Figure 3: Traditional areas of systems research must change to survive.
New paradigms for software development

Hierarchical code development

Improves upon standard two level model: language+compiler
Allows appropriate optimizations to be done at different levels
Improves code correctness and decreases cost of code development

Automation of code production

Utilizes abstract descriptions as basis to generate code automatically
Leverages intrinsic domain languages
Improves code correctness and decreases cost of code development
Allows true optimization of generated code
Hierarchy of problem representation

— Model description [application domain]
— Algorithm discovery [mathematical description]
— Algorithm implementation [programming language]

Executable code [machine code: parallel, multicore]

Automation can be performed at each level

Interaction between levels can be tested to optimize performance
Example of hierarchy: signal processing (Spiral project)

— Model description [Discrete Fourier Transform: DFT]
— Algorithm discovery [Cooley-Tukey FFT]
— Algorithm implementation [FFTW]
— Executable code [BLAS, ATLAS, OSKI]

Automation can be performed at each level: can derive FFT from abstract definition of DFT

No need to hand-code for specific architectures
Paradigm limitations?

Must have hierarchical structure

But what doesn’t?
Common in computer architecture, compiler design, scientific computing, etc.

Automatic generation requires abstract model

In principle, this can be developed in any area, e.g., operating systems

Found in VLSI design, compiler design [3, 2], scientific computing [8, 7, 6, 5], etc.
Why focus on scientific computation?

Has built-in hierarchical structure

Models often built from simpler models

Laplace \Rightarrow Stokes \Rightarrow Navier-Stokes \Rightarrow Grade-2 fluids

Has built-in abstract descriptions

Equations are the language of science and engineering

\[E = mc^2 \]

\[F = ma \]

\[-\nu \Delta u + \text{curl}(u - \alpha \Delta u) \times u + \nabla p = f \]
The software challenge

(Correct) interpretation of problem description

Have to translate from a high-level description to low-level executable, correctly!

Optimization of generated code

Have to solve disparate optimization problems at compile time or in conjunction with run-time indicators

Tension between expressiveness and efficiency

Ideally the naive user could code in a high-level specification language and have it translated into efficient machine code.
Problem with single-language approach

Figure 4: The conflict between efficiency and expressiveness [M. Dragichescu].
Each language has its own domain

Each reflects a different application domain

Fortran: \(u(x) = 3\sqrt{\sin(\log(\tan(\cos(J_1(e^x + \sqrt{\pi x})))))} \)

Scripting languages: rapid prototyping, user interfaces

Functional languages: compilers, symbolic manipulation

C: systems software

C++: job security for programmers

what language??: (parallel) sparse matrix operations
Nature of ‘answer’ changes over time

In antiquity, an answer was a number: the length of the diagonal of a unit square is \(\sqrt{2} \).

Later geometric figures were answers: elliptical orbits of planets.

More recently, functions became an acceptable answer: an ODE is solved by a Bessel function, \(J_1 \).

In computational science, a well posed boundary value problem is an acceptable answer.

All of these are abstractions that provide information on demand.
FEM: computational science ‘answer’

Generates discrete (finite) algorithms for approximating the solutions of differential equations.

- differential equation
- domain description
- boundary data
- forcing terms (f)
- a mesh of the domain

F E M assembles K, F
solves $KU = F$
forms u from U

> Figure 5: FEM=black box into which one puts model problem and out of which pops an algorithm ($KU = F$) for approximating the corresponding solutions.
Adaptive FEM formalism

What is the right way to program this?

Figure 6: Black box for adaptive FEM; requires no mesh initially, only quality requirement. Generates a sequence of meshes and applies standard FEM until quality is assured.
Causes of efficiency–expressiveness conflict

Compilers perform transformations, not optimization.

Optimization at compile time, even if based on realistic performance models, would be wildly expensive (NP^{NP}).

True optimization would have to involve evaluating performance.

Actual performance is often data dependent.

Best transformations are often domain dependent.
What is missing currently

Current language support for hierarchical abstraction

- You can define what you want
- But you can’t specify how to compile it

Compiler optimizations cannot be chosen to fit the application.

Must live with what the compiler writer gives you.

Interpretation of multiple abstraction levels may also be costly.
One solution: multi-lingual

Figure 7: One way to combine efficiency and expressiveness [1].
Limits to linking multiple languages

(Experience gained from the development of Analysa.)

Lacks formal description, requires development (and maintenance) of ad hoc interface.

Different memory models (allocation, garbage collection) can interact adversely at run time.

Increases the burden of code maintenance (must track multiple standards, together with interactions between them).

But it does mollify the tension between expressiveness and efficiency.
Ken Kennedy’s telescoping languages

Figure 8: Telescoping language approach [4].
Similar challenges
from which we can learn

Same as problems in language/compiler design
Need to perform optimization and code generation
Often need to utilize these in an application-specific way (Spiral).

Hierarchical issues addressed in programming language
Manticore project for parallel computation

Algegra of code optimizations
Common to use Lambda Calculus or algebra of real numbers
Finite elements introduces optimization in vector spaces
2 Solving PDE’s: the FEM

Optimization of code for solving differential equations has been studied widely [5, 6, 7, 8].

Many of these approaches have been based on the finite element method (FEM).

There are four distinct areas of finite element codes: function spaces, domain geometry/mesh, differential equation, and equation solution.

These are not hierarchical: interactions are multi-faceted.

Each area has its own natural language and its own optimizations.

But interactions require inter-procedural analysis to obtain ideal performance.
Structure of PDE codes

Different modules must interact.

Figure 9: The structure and some interactions of PDE codes.
Mathematics of PDE codes

Different domains use different mathematics.

- function spaces
- functional anal.
- geometry/mesh
- combin. topology
- partial diff. eq.
- variational forms
- eq. solution
- linear algebra

Figure 10: Sample mathematical structures of components of PDE codes.
Boundary condition interactions

Require independent modules to be compatible.

Figure 11: The interactions of boundary conditions in PDE codes.
FErari can be used as a matrix-free method.

May be of interest for multi-core processors.

Figure 12: The interactions required to use FErari in PDE codes.
Mathematics may be incomplete

What is a C^0 element? Cubic Hermite?!

Figure 13: Requirements for a definition of global finite elements.
Software automation paradigm

Figure 14: Components of the software automation paradigm.

Current (functional) PL research fits this paradigm:

Figure 15: PL paradigm as software automation.
Is Software Automation CS? Is it Math?

Many areas now claim to be both

Algorithms and complexity

Combinatorics

Computational biology

Software Automation is clearly Computational Mathematics
FFC examples

Copyright (c) 2005 Johan Jansson.
Licensed under the GNU GPL Version 2

The bilinear form \(e(u) : e(u) \) for linear
elasticity with \(e(u) = \text{grad}(u) + \text{grad}(u)^T \)

Compile this form with FFC: ffc Elasticity.form

element = FiniteElement("Vector Lagrange", "tetrahedron", 1)

v = BasisFunction(element)
u = BasisFunction(element)

a = (u[i].dx(j) + u[j].dx(i)) * (v[i].dx(j) + v[j].dx(i)) * dx
The bilinear form for the nonlinear term in the Navier-Stokes equations with fixed convective velocity.

Compile this form with FFC: ffc NavierStokes.form

element = FiniteElement("Vector Lagrange", "tetrahedron", 1)

v = BasisFunction(element)
u = BasisFunction(element)
w = Function(element)

a = w[j]*u[i].dx(j)*v[i]*dx

This compiles to 388 lines of C++ code (38665 characters)
3 Code generation example: matrix formation

Formation of matrices takes substantial time in finite element computations.

Disadvantage of finite elements over finite differences.

But standard algorithm can be far from optimal.

A general formalism can be automated called FErari:

Finite Element ReArRangementment of Integrals

Eliminates efficiency penalty of finite elements.
3.1 Computation of Bilinear Form Matrices

The matrix associated with a bilinear form,

\[A_{ij} := a(\phi_i, \phi_j) = \sum_e a_e(\phi_i, \phi_j) \quad (3.1) \]

for all \(i, j \), can be computed by assembly. First, set all the entries of \(A \) to zero. Then loop over all elements \(e \) and local element numbers \(\lambda \) and \(\mu \) and compute

\[A_{\nu(e,\lambda),\nu(e,\mu)} = K^{e}_{\lambda,\mu} = \sum_{m,m'} G^{e}_{m,m'} K_{\lambda,\mu,m,m'} \quad (3.2) \]

where \(G^{e}_{m,m'} \) and \(K_{\lambda,\mu,m,m'} \) are defined via

\[G^{e}_{m,m'} = \det(J) \sum_{j=1}^{d} \frac{\partial \xi_m}{\partial x_j} \frac{\partial \xi_{m'}}{\partial x_j} \quad (3.3) \]

\[K_{\lambda,\mu,m,m'} = \int_T \frac{\partial}{\partial \xi_m} \phi_\lambda(\xi) \frac{\partial}{\partial \xi_{m'}} \phi_\mu(\xi) \, d\xi \quad (3.4) \]
3.2 Matrix computation strategy

We optimize the computation of each

\[K^e_{\lambda,\mu} = \sum_{m,m'} G^e_{m,m'} K_{\lambda,\mu,m,m'} \]

(3.5)

where \(G^e_{m,m'} = \det(J) \sum_{j=1}^{d} \frac{\partial \xi_m}{\partial x_j} \frac{\partial \xi_{m'}}{\partial x_j} \)

\[K_{\lambda,\mu,m,m'} = \int_T \frac{\partial}{\partial \xi_m} \phi_\lambda(\xi) \frac{\partial}{\partial \xi_{m'}} \phi_\mu(\xi) \, d\xi \]

Collection of dot products of fixed vectors (\(K\)) with varying set of vectors (\(G\)’s encode “geometry” information of elements).

Pre-computations can be done, based on relations among the \(K\)’s, that reduce computational effort substantially.
3.3 Tensor K for quadratics

Zero entries, trivial entries and colinear entries ($-4K_{3,1} = K_{3,4} = K_{4,1}$)

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>0</th>
<th>0</th>
<th>-1</th>
<th>1</th>
<th>1</th>
<th>-4</th>
<th>-4</th>
<th>0</th>
<th>4</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4</td>
<td>-4</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>-4</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>-4</td>
<td>-8</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4</td>
<td>8</td>
<td>4</td>
<td>-8</td>
<td>-4</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4</td>
<td>-8</td>
<td>4</td>
<td>8</td>
<td>-4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>-8</td>
<td>-4</td>
<td>8</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
<td>4</td>
<td>0</td>
<td>-4</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>
3.4 Computing K for quadratics

Taking advantage of these simplifications, each K^e for quadratics in two dimensions can be computed with at most 18 floating point operations instead of 288 floating point operations: an improvement of a factor of sixteen in computational complexity.

On the other hand, there are only 64 nonzero entries in each K. So eliminating multiplications by zero gives a four fold improvement. Sparse matrix accumulation requires at least 76 ($=36+36+4$) memory references, not including sparse matrix indexing. Even if the matrix is stored in symmetric form, at least 46 ($=21+21+4$) memory references are needed.

Computational complexity can be less than cost of memory references.
3.5 Computing K for general Lagrange elements

<table>
<thead>
<tr>
<th>n</th>
<th>Entries</th>
<th>Zero</th>
<th>Equal</th>
<th>CoL</th>
<th>1 entry</th>
<th>ED1</th>
<th>2 entry</th>
<th>LC</th>
<th>MAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>6</td>
<td>11</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>6</td>
<td>41</td>
<td>10</td>
<td>4</td>
<td>16</td>
<td>8</td>
<td>15</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>225</td>
<td>0</td>
<td>98</td>
<td>6</td>
<td>4</td>
<td>35</td>
<td>16</td>
<td>66</td>
<td>209</td>
</tr>
<tr>
<td>5</td>
<td>441</td>
<td>0</td>
<td>183</td>
<td>15</td>
<td>4</td>
<td>51</td>
<td>28</td>
<td>160</td>
<td>446</td>
</tr>
<tr>
<td>6</td>
<td>784</td>
<td>0</td>
<td>342</td>
<td>21</td>
<td>4</td>
<td>75</td>
<td>32</td>
<td>310</td>
<td>784</td>
</tr>
</tbody>
</table>

Figure 16: Key: CoL=Colinear, ED1=edit distance 1, LC=linear combination

Using FErari to compute finite element matrices for

Laplace’s equation in two dimensions using continuous Lagrange elements of degree n.

37
from Numeric import zeros
G=zeros(4,"d")
def K(K,jinv):
detinv = 1.0/(jinv[0,0]*jinv[1,1] - jinv[0,1]*jinv[1,0])
G[0] = (jinv[0,0]**2 + jinv[1,0]**2) * detinv
G[1] = (jinv[0,0]*jinv[0,1]+jinv[1,0]*jinv[1,1]) * detinv
G[3] = (jinv[0,1]**2 + jinv[1,1]**2) * detinv
K[1,1] = 0.5 * G[0]
K[1,0] = -0.5 * G[1]- K[1,1]
K[2,1] = 0.5 * G[2]
K[2,0] = -0.5 * G[3]- K[2,1]
K[0,0] = -1.0 * K[1,0] + -1.0 * K[2,0]
K[2,2] = 0.5 * G[3]
K[0,1] = K[1,0]
K[0,2] = K[2,0]
K[1,2] = K[2,1]
return K

Generated code for computing the stiffness matrix for linear basis functions.
3.6 Efficient Computation of co-planarity

One vector can be written as a linear combination of two others if and only if the three vectors (and the origin) are co-planar.

A (nearly) quadratic algorithm determines set of planes generated by all pairs of vectors and checks for equality of planes.

Quadratic is optimal because there can be $2k^2$ common planes among $6k$ vectors.

Figure 17: Example of lattice with $k = 4$. For each point on the lower line, there are exactly four planes. Only the planes for $i = 1, 2, 3, 4$ are shown.
Other software automation projects

Spiral: signal processing

Tensor contraction engine: quantum chemistry

Cactus: Gravitational Physics

FLAME: dense linear algebra

as well as the FEniCS project
References

