Mondrian
Parallel blocked matrix library, v0.0

Current snapshot: January 2017

Risi Kondor
Department of Computer Science, The University of Chicago
4. Blocked vectors/matrices .. 36
 BlockedVector<VECTOR> .. 36
 BlockedMatrix<MATRIX> .. 40

5. Vector/matrix views ... 45
 VectorView<VECTOR> ... 45
 MatrixView<MATRIX> ... 46
 BlockedVectorView<VECTOR> .. 47
 BlockedMatrixView<MATRIX> .. 48

6. Active vectors/matrices .. 49
 ActiveVector<VECTOR> ... 49
 OrderedVector<VECTOR> .. 49
 AccumulatedVector<VECTOR> ... 50

Operators, etc. ... 51
7. Operators ... 51
 GivensRotation .. 51
 KpointOp<k> ... 52
 MatrixSum<MATRIX> ... 53
 MatrixProduct<MATRIX> ... 54
 OuterProduct<CLASS1,CLASS2> .. 55
 BiMatrix<MATRIX1,MATRIX2> ... 56

8. Index maps ... 57
 IndexMap ... 57
 IndexBiMap .. 59
 BindexMap ... 61
 BtoBindexMap .. 62
 Activemap ... 65
 Bactivemap ... 67

Multithreading ... 69
9. Basic multithreading ... 69
 ThreadManager .. 69
 MultiLoop ... 70
 ThreadBank .. 70

10. Atomic objects .. 71
 AtomicVector<VECTOR> .. 71
 AtomicMatrix<MATRIX> ... 72

11. Parallelized objects ... 73
 MatrixXm<VECTOR> ... 73
 SymmMatrixXm<VECTOR> ... 73

Other Objects .. 74
12. Wrappers ... 74
 Detached<CLASS> .. 74

Bibliography ... 75
Overview

Mondrian is a C++11 software library intended to serve as the intermediate layer between low level matrix libraries such as BLAS and high level numerical algebra, optimization and machine learning code. Mondrian was originally developed as in-house code for implementing parallel matrix algorithms in the author’s research group. The library was designed with the following objectives in mind:

1. **Interoperability:** Mondrian provides a unified interface to a range of dense and sparse vector/matrix formats, making it possible to write high level code that does not commit to a specific low level matrix representation.

2. **Performance:** Mondrian is designed with large scale computations on parallel architectures in mind, so every effort was made to make the code as efficient as possible.

3. **Ease of use:** Mondrian has a simple syntax and consistent, object oriented design.

4. **Easy linking:** Mondrian is a template library, therefore the overhead of installing it is minimal. To call Mondrian from C++11 code, just include the appropriate header files.\(^1\)

Mondrian is in the development phase and has not yet reached the stage of a numbered release. The present snapshot of the code is released to the community on a strictly “as-is” basis. In the following list of features, features whose implementation or documentation is not yet complete appear in gray.

1. **Vector/matrix classes:**
 (a) Custom dense matrix/vector classes based on native C arrays (Cvector and Cmatrix).
 (b) Custom sparse matrix/vector classes based on stl containers (Vectorv, Vectorl, Vectorh, etc.).
 (c) Custom matrix types for representing low rank matrices.
 (d) Interface to Eigen.

2. **Blocked vector/matrix classes:**
 (a) Blocked vector/matrix template classes supporting the same linear algebra operations as the elementary matrix types, but with automatic block-level parallelism.
 (b) Support for hierarchical matrices (HODLR, H1, H2, HSS) via recursive blocking.
 (c) Fast, parallel routines for blocking matrices by clustering rows/columns, and for reblocking matrices from one block structure to another.

3. **Operators:**
 (a) Specialized, highly optimized classes for elementary operators such as Givens rotations, k-point rotations, and so on.

4. **Abstractions:**
 (a) Matrix/vector views providing access to subvectors/submatrices without copying elements.
 (b) Methods for mapping functions or lambda expressions over elements of objects such as vectors and matrices in a functional programming style.
 (c) Active containers that automatically perform certain operations when their contents in changed.
 (d) Polymorphic vector/matrix classes that delegate operations to the derived type.
 (e) Generalized matrix classes to encapsulate products/sums of operators and other matrices.
 (f) Atomic vectors/matrices protected from race conditions in multithreaded code.

\(^1\) Currently the only exceptions to this rule are the CMatrixLA and SymmCMatrixLA classes, which provide functionality from Eigen[1], and are separately compiled to isolate the two libraries and thus reduce compilation time.
5. **Parallelism:**
 (a) Multithreading support with a configurable custom thread scheduler.

6. **Transparency and convenience functions:**
 (a) Consistent object oriented design fully utilizing C++11 features.
 (b) Expression templates for matrix/vector operations.

7. **Input/output:**
 (a) Capability to load/save vectors and matrices in some of the most common file formats.
 (b) Capability to load/save almost all objects in binary format.
 (c) Ability to print most objects directly to `stdout` for diagnostic purposes.

8. **Interfaces to other languages and environments:**
 (a) Matlab and Python interfaces to most objects.

Mondrian was conceived and developed at The University of Chicago by Risi Kondor, starting in 2016. Certain parts of the library are based on the earlier `pMFF` library by Risi Kondor, Nedelina Teneva and Pramod K Mudrakarta [2].

Mondrian is free software, released into the public domain in source code format under the terms of the GNU Public License (GPL) version 3.0 [3]. Users are encouraged to modify and extend the code, incorporate it in their own projects, and distribute it to others. However, all derived code must also carry the GPL license, and commercial use is restricted. The copyright to *Mondrian* and this documentation is retained by the authors. The authors reserve the right to separately license the code in part or in whole for commercial use.
Usage

Mondrian is distributed in C++ source code format. Using the library requires
1. A C++11 compatible compiler, such as clang or a recent version of gcc.
2. The Standard Template Library (STL) included in any C++11 installation.

The following optional components have additional dependencies:
1. The CmatrixLA and SymmCmatrixLA classes require the Eigen linear algebra library for higher level linear
 algebra operations [1].

Installation

Mondrian is primarily a header library, that does not require any specific installation or compilation process.
To use the library it is sufficient to download it from http://github.com/risi-kondor/Mondrian, place it
in an appropriate location on your local file system, and call Mondrian objects directly from your own C++
programs.

A small subset of the library (at the present time only the CmatrixLA and SymmCmatrixLA classes) plus the
tutorial examples need to be compiled into object files/executables. To this end:
1. Edit Makefile.options to reflect the location of certain components on your system (see table below).
2. At the root level of the library issue the command make all (it is assumed that make is installed on
 your system).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>Name of the compiler. Example: clang.</td>
</tr>
<tr>
<td>EIGENDIR</td>
<td>Path to the directory in which Eigen is found. If empty, Mondrian will be</td>
</tr>
<tr>
<td></td>
<td>compiled without Eigen support. Example: /usr/local/include.</td>
</tr>
</tbody>
</table>

Customization

The library can be customized by changing the following typedefs and preprocessor variables in the global
header file include/Mondrian_base.hpp.

<table>
<thead>
<tr>
<th>Type name</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCALAR</td>
<td>double</td>
<td>The basic numeric type used in all Vector and Matrix objects, as well as most</td>
</tr>
<tr>
<td>INDEX</td>
<td>int</td>
<td>computations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The type used for vector/matrix indices (in part of the code this is fixed as int).</td>
</tr>
</tbody>
</table>
Deep copying/assigning large objects is an expensive operation which, for the most part, should be avoided. If these variables are set (defined), a warning will be written to `cout` whenever an object of the given category is copied or assigned.

C++11’s so-called move semantics can often circumvent having to make expensive deep copies of objects. If these variables are set (defined), a warning will be written to `cout` whenever an object of the given category is moved or move-assigned.

To access Mondrian objects, simply `#include` the appropriate Mondrian headers in your source code. Note that Mondrian has its own namespace, therefore, to use, e.g., the `Cmatrix` class, refer to it as `Mondrian::Cmatrix`, or use the command `using namespace Mondrian;`.

Mondrian uses a small number of global variables (see below for a partial list). To make sure that these are appropriately defined, any top level executable should `#include` the file `include/Mondrian_base.inc`.

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mondrian::multithreading</td>
<td>true</td>
<td>Multithreading is disabled if <code>false</code>.</td>
</tr>
<tr>
<td>Mondrian::threadManager</td>
<td></td>
<td>The global thread manager object. The maximum number of threads that can be simultaneously active is controlled by setting <code>threadManager.maxthreads</code>.</td>
</tr>
</tbody>
</table>
Tutorial Examples

1. Basic matrix/vector operations

The following example demonstrates how to define vectors and matrices in Mondrian and perform elementary linear algebra operations.

```cpp
#include "Cmatrix.hpp"
#include "Mondrian_base.inc"
using namespace Mondrian;

int main(int argc, char** argv) {
    Cvector v = {1, 0, 3};
cout << "v=\n"; v.print();
    SCALAR s = v.dot(v);
cout << "s=\n"; s.print();
    Cmatrix A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
cout << "A=\n"; A.print();
    Cvector u = A * v;
cout << "u=\n"; u.print();
}
```
example1.cpp

Most of the code is self-explanatory:

- Line 7 creates a vector $v = (1, 0, 3)^T$ and stores it in a Cvector object.
- Line 10 computes the dot product $v \cdot v$ (equivalently, $v^T v$).
- Line 13 creates the Cmatrix $A = [1, 4, 7; 2, 5, 8; 3, 6, 9]$ (in Matlab notation). Note that the matrix elements are listed in column major order.
- Line 16 computes the matrix/vector product Av.

Note the simple syntax for printing each of the objects v, A and s to standard output in lines 8, 11, 14 and 17. Also note the `#include` statement in line 2: `Mondrian_base.inc` declares certain static objects required by the library, so this file must be included in all top level executables. Finally, the `using namespace Mondrian` directive is included to make the code a little easier to read: without it, we would have to preface the name of each Mondrian object such as Cvector, Cmatrix, etc. with Mondrian::. The output of the code is as follows.
2. Accessing matrix/vector elements

The following example demonstrates the basic ways to access individual vector/matrix elements.

```cpp
#include "Cmatrix.hpp"
#include "Mondrian_base.inc"
using namespace Mondrian;

int main(int argc, char ** argv){
    Cvector v=Cvector::Gaussian(5);
    cout <<"v=" << v << endl;
    cout <<"v (2) = " << v(2) << endl;

    Cmatrix A=Cmatrix::Bernoulli(5,5);
    cout <<A << endl;
    cout <<"A (2,3) = " << A(2,3) << endl;
    A(2,3)=2;
    cout <<"A (2,3) = " << A(2,3) << endl;

    cout <<" row 1 : " << A.row< Cvector >(1) << endl;
    cout <<" column 2: " << A.column< Cvector >(2) << endl;
    cout <<" diagonal: " << A.diag< Cvector >() << endl;
    //cout <<" submatrix:" << A.submatrix(2,2) << endl;
}
```
\[v = (-1.23974, -0.407472, 1.61201, 0.399771, 1.3828) \]

3. Copying, moving and assigning objects

The following example illustrates four different ways of copying/assigning objects.

```cpp
#include "Cmatrix.hpp"
#include "Mondrian_base.inc"
using namespace Mondrian;

int main(int argc, char ** argv) {
    Cmatrix A(4,4); // Construct a 4-by-4 matrix called A
    for(int i=0; i<4; i++) // Fill its entries with something
        for(int j=0; j<4; j++)
            A(i,j)=i+j;
    cout << "A=" << endl << A << endl; // Print out A

    Cmatrix B(A); // Initialize B from A (copying)
    cout << "B=" << endl << B << endl;

    Cmatrix C;
    C=A; // Set C=A (assignment)
    cout << "C=" << endl << C << endl;

    Cmatrix D;
    D=A*A; // Set D=A*A (move-assignment)
    cout << "D=" << endl << D << endl;

    Cmatrix E=A.copy(); // Set E=A (silent copy)
    cout << "E=" << endl << E << endl;
}
```

Output of example2.cpp
The four different ways are the following:

(a) Line 15 constructs B from A, which is done with the Cmatrix class’s copy constructor.
(b) Line 19 set C to the same value as A, which again involves explicit copying, this time using the the Cmatrix class’s assignment operator.
(c) Line 23 sets D=A*A which seemingly again involves calling the assignment operator. However, as this statement is executed, the compiler knows that A*A is a temporary object (a so-called r-value), therefore it can use the move-assignment operator which is generally more efficient because it can avoid explicit copying.
(d) Line 26 is equivalent to writing E=A except that the copy() function suppresses the copy warning.

Note that lines 15 and 19 (by default) generate explicit copy warnings. To an inexperienced programmer it is sometimes not clear where exactly the compiler will make explicit copies, which, in the case of large objects can be very expensive. Mondrian tries to discourage unnecessary copying by issuing these explicit warnings. In the rare cases where it is absolutely necessary to make a copy, instead of standard copy constructor or assignment operator, the copy method should be used, which makes it immediately obvious in the code that a copy is being constructed, but does not issue a copy warning at run time.
4. Mapping functions over vectors and matrices

Mondrian supports functional programming style operations that maps functions or lambda expressions over elements of objects. In the following example, a lambda expression is mapped over each element of vector, to compute the sum of the elements.

```cpp
#include "Cmatrix.hpp"
#include "Mondrian_base.inc"
using namespace Mondrian;

int main(int argc, char** argv){
    Cvector u=Cvector::Gaussian(7);
    cout<<"u="<<u<<endl;

    double t=0;
    u.for_each([&t](int i, SCALAR d){t+=d;});
    cout<<"Sum of elements: "<<t<<endl;
}
```

Output of example4.cpp

```
u= (-1.23974, -0.407472, 1.61201, 0.399771, 1.3828, 0.0523187, -0.904147)
Sum of elements: 0.895546
```
Classes

General design

Standard methods

The following standard methods are implemented by most classes in Mondrian, and are not listed separately for each class. CLASS stands for the name of the class, and x for the class instance.

CONSTRUCTORS AND COPYING

CLASS(const CLASS& y)
Construct a deep copy of y. Making a deep copy involves copying not just the member variables of y, but also recursively constructing a copy of every object owned by y. For large objects this is an expensive operation, which can often be avoided with the move-contructor paradigm (see below). To discourage deep copying, by default, the copy constructor of many classes, including all matrix classes, prints a copy warning to standard output.

CLASS(CLASS&& y)
Move-construct a copy of y. In C++11, && signifies an rvalue reference, which means that this method is invoked instead of the regular copy constructor when y is a temporary. In contrast to deep copying, the move constructor changes the ownership of each object owned by y, rather than copying them, potentially resulting in large run-time savings. Mondrian extensively uses this paradigm.

CLASS copy()
Create a deep copy of x. The behavior of this member function is identical to the behavior of the copy constructor except that it does not generate a copy warning. This is the function that should be used when it is unavoidable to make an explicit copy of an object such as a matrix.

CLASS shallow()
Create a shallow copy of x, i.e., copy each of its member variables and pointers to the objects it owns, without making copies of the owned objects. This is the function used by the Detached<CLASS> wrapper to create a detached version of x. Therefore, every class derived from the abstract class Detachable must implement this method.

ASSIGNMENT OPERATORS

CLASS& operator=(const CLASS& y)
Delete the current content of x, make x a deep copy of y, and finally return a reference to x. Similarly to the copy constructor, in most classes the assignment operator prints a warning to standard output.
CLASS& operator=(CLASS&& y)
Move-assign y to x. The same as above, except with move semantics, similarly to the move-copy constructor.

DESTRUCTOR

~CLASS()
Recursively delete every object owned by x, and then delete x itself.

COMPARATORS

bool operator==(const CLASS& y)
The equality operator. Returns TRUE if x is equal to y.
bool operator!=(const CLASS& y)
Returns TRUE if x is not equal to y.

BINARY I/O (SERIALIZATION)

CLASS(const Filename& filename)
saveto(const Filename& filename)
Load/save x from/to the binary file named filename.
CLASS(Bifstream& ifs)
serialize(Bofstream& ofs)
Load x from the binary file stream ifs / save x to the binary file stream ofs.

PRETTY PRINTING

static string classname()
Return the name of the class CLASS.
string str()
Return a human-readable representation of x as a string. In some classes, str can take arguments, for example, Dense(), to signify that a matrix is to be printed to string in dense format.
ostream& operator<<(ostream& os, const CLASS& x)
Write a human-readable representation of x to the stream os.
Property classes

Mondrian uses abstract classes to signify that classes derived from them have certain specific properties:
1. **Detachable**. The `Detached<CLASS>` wrapper allows constructing an interface to data stored in another object. The resulting object is said to be detached, because deleting it does not delete the original object (of type `CLASS`). `Detachable` is the abstract base class of all classes whose instances can be detached via this mechanism.

2. **Serializable**. The process of recursively saving objects in a binary file is called serialization. `Serializable` is the abstract base class of all classes that support this facility.

3. **Interruptable**. An interruptable method in a class derived from the abstract class `Interruptable` can be stopped from another thread by calling the `halt()` method. This is useful for classes with time consuming operations on large data objects.

Packages

It often happens that a function needs to return two or more separate objects (e.g., the eigenvalues and eigenvectors of a matrix). In Mondrian this is accomplished with the `package` helper class. Let us assume that `foo()` is a function that needs to return a `Cmatrix A` and a `Cvector v`. Then:
(a) The return type of `foo` would be `package<Cmatrix,Cvector>`.
(b) The actual return statement in `foo` is `return package<Cmatrix,Cvector>(A,v);`.
(c) If `P` is the package returned by `foo`, then the matrix part is extracted by calling `P.first()` and the vector part by calling `P.second()` (other ways are also possible).

All the above operations are done by move constructors and move assignment operators, so the overhead of using packages is usually minimal.

Downcasting operators

Mondrian has various instances of base class/derived class (parent class/child class) pairs where the two classes share the same data layout, and only differ in some of their methods. A simple example are the matrix classes `Cmatrix` and `SymmCmatrix`, which store matrices in exactly the same format, but in the latter case the matrix is assumed to be symmetric, hence some operations on it can be performed more efficiently.

Assume that a base class `Base` defines a method called `foo` that is overriden by a derived class `Derived`. Then if `x` is of type `Derived`, but for some reason one temporarily wishes to treat it as if it were a base class object (called upcasting), and call the `foo` method of the base class on it, this can easily be achieved by `x.Base::foo(...)`. However, in general, the opposite action of temporarily downcasting an object is not possible, since the base class need not have any knowledge of the derived class.

Mondrian offers a solution to this problem involving move-copying to a temporary object (which, in the above example would be called `AsDerived`, but is opaque to the user) and appropriate convenience functions. In particular:
(a) If `A` is a matrix object of any non-symmetric matrix type `MATRIX`, the convenience function `as_symmetric` temporarily downcasts it to the corresponding symmetric matrix type `SymmMatrix`.
(b) If `A` is a matrix object of type `MATRIX`, the convenience function `linalg` downcasts it to type `MATRIXLA`, which supports externally called linear algebra operations.
(c) If `A` is a non-multithreaded object of type `CLASS`, the convenience function `as_multithreaded` can downcast it to the corresponding multithreaded type `CLASSm`.

Example:
The 12 dimensional identity matrix
Cmatrix A=Cmatrix::Identity(12);

// A random Givens rotation
GivensRotation Q=GivensRotation::Random(12);

// Conjugate A with Q without taking advantage of symmetry
A.conjugate(Q);

// Conjugate A with Q with taking advantage of symmetry
as_symmetric(A).conjugate(Q);

Downcasting operators are also useful for differentiating between downcasting by conversion vs. downcasting by assumption, as illustrated by the following example:

Cmatrix A(12);

// Construct B by explicitly symmetrizing A, i.e., B=(A+A^T)/2
SymmCmatrix B(A);

// Construct C by assuming that A is symmetric
SymmCmatrix C(as_symmetric(A));
Vectors and matrices

1. Basic vectors

Mondrian supports both dense and sparse vector arithmetic. The basic dense vector class is Cvector, which simply stores the vector as a dense C-style array of numbers. The basic sparse vector classes are Vectorv, Vectorl and Vectorh, all three of which are based on stl containers: Vectorv stores the vector as an stl::vector of (index, value) pairs, Vectorl as a linked list, and Vectorh as a hash table. Which one of these three classes is the most appropriate for a given application depends on many factors, such as the size of the vector, what operations are to be performed on it, how often elements are to be inserted, and so on.

The important feature of each of these vector classes is that since they all inherit the same interface defined in the abstract class Vector, they are fully interchangeable. The preferred method for writing polymorphic code in Mondrian, specifically code that will work with any vector class, is the use of templates (generic programming). However, the library does provide an additional class called GenericVector, which, by encapsulating any of the elementary vector types and delegating operations to their respective methods, can function as a universal polymorphic vector class. This functionality however comes at a slight performance overhead, and may not be compatible with some higher level features, such as active vectors.
Vector

Vector is the abstract class that defines the common interface to all classes in Mondrian that represent finite dimensional vectors, \(\mathbf{v} = (v_1, v_2, \ldots, v_n)^T \in \mathbb{F}^n \). Each vector component \(v_i \) (also referred to as the \(i \)’th element of \(\mathbf{v} \)) is of type SCALAR. Every concrete vector class VECTOR provides each of the constructors and methods listed below.

Mondrian supports both dense and sparse vectors (see the attribute isSparse()). Sparse vector classes only allocate storage for a subset of their elements. These elements are said to be filled in. Typically the filled in elements are the non-zero elements of \(\mathbf{v} \), although when a non-zero element is set to zero, it might remain filled in. In dense vector classes all elements are filled in.

CONSTRUCTORS

VECTOR()
Create a new zero dimensional vector.

VECTOR(int n)
Create a new \(n \) dimensional vector, \(\mathbf{v} \in \mathbb{F}^n \). Storage is allocated but the entries of \(\mathbf{v} \) are not initialized.

VECTOR(const initializer_list<SCALAR>& list)
VECTOR(int n, const initializer_list<ivpair>& list)
Initialize \(\mathbf{v} \) from the initializer list list (see example1.cpp).

NAMED CONSTRUCTORS

VECTOR::Zero(int n)
The \(n \) dimensional zero vector, \(\mathbf{0} \in \mathbb{F}^n \).

VECTOR::Filled(int n, SCALAR t)
An \(n \) dimensional vector in which each element is initialized to \(t \).

VECTOR::Uniform(int n)
VECTOR::Gaussian(int n)
VECTOR::Bernoulli(int n, double p=0.5)
An \(n \) dimensional random vector in which each element is drawn from (a) the Uniform(0, 1) distribution; (b) the Normal(0, 1) distribution; (c) the Bernoulli(\(p \)) distribution.

ATTRIBUTES

bool isSparseFormat() const
Return true if VECTOR is a sparse vector class.

ELEMENT ACCESS

SCALAR read(int i) const
SCALAR operator()(int i) const
Return the value of the matrix element \(v_i \).
void set(int i, SCALAR x)
 Set $v_i = x$.

SCALAR& operator()(int i)
 Return a reference to v_i. For most vector types $v(i) = x$ can be used as a simpler alternative to $v.set(i, x)$.

bool isFilled(int i) const
 Return $true$ if v_i is filled in. For dense vectors always $true$.

int nFilled() const
 The number of filled in elements of v.

ITERATORS

void for_each(std::function<void(INDEX,SCALAR&)> lambda)
void for_each(std::function<void(INDEX,const SCALAR)> lambda) const
 Apply the function λ to each element of v. The two arguments of λ are i and (a reference to) v_i.

void for_each_filled(std::function<void(INDEX,SCALAR&)> lambda)
void for_each_filled(std::function<void(INDEX,const SCALAR)> lambda) const
 Apply the function λ to each filled in element of v. The two arguments of λ are i and (a reference to) v_i.

VIEWS

VectorView<VECTOR> operator()(const IndexMap& phi)
const VectorView<VECTOR> operator()(const IndexMap& phi) const
 Given an index map $\phi: \{0, 1, 2, \ldots, n_s - 1\} \mapsto \{0, 1, 2, \ldots, m - 1\}$, return a view of the subvector $(v_{\phi(1)}; v_{\phi(2)}; \ldots; v_{\phi(n_s - 1)})^\top$.

CONVERSIONS

VECTOR(const Cvector v)
 Convert the Cvector v to a VECTOR.

operator Cvector() const
 Convert v to a Cvector (this method is repeated in the description of the Cvector class).

VECTOR(const BlockedVector<VECTOR>& w)
 Convert the blocked vector w to plain (non-blocked) vector format.

REMAPPINGS

VECTOR remap(const IndexMap& map) const
VECTOR remap(const Inverse<IndexMap>& map) const
 Remap the elements of v by map or the inverse of map.
IN-PLACE ARITHMETIC

VECTOR& operator+=(SCALAR c)
VECTOR& operator-=(SCALAR c)
VECTOR& operator**(SCALAR c)
VECTOR& operator/=(SCALAR c)
Increment/decrement/multiply/divide each element of \(v \) by \(c \).

VECTOR& operator+=(const VECTOR2& x)
VECTOR& operator-=(const VECTOR2& x)
VECTOR& operator**(const VECTOR2& x)
VECTOR& operator/=(const VECTOR2& x)
Increment/decrement/multiply/divide each element of \(v \) by the corresponding element of \(x \).

VECTOR& apply(const OPERATOR& Q)
VECTOR& applyT(const OPERATOR& Q)
Apply the operator \(Q \) or the transpose of \(Q \) to \(v \) in place.

SCALAR VALUED ARITHMETIC

SCALAR dot(const VECTOR& x) const
Return the dot product of \(v \) with \(x \).

VECTOR VALUED ARITHMETIC

VECTOR mult(SCALAR c) const
VECTOR plus(const VECTOR& x) const
VECTOR minus(const VECTOR& x) const
Compute \(cv, v+x \) or \(v-x \).

VECTOR mult(const OPERATOR& Q) const
VECTOR multT(const OPERATOR& Q) const
Apply the operator \(Q \) or the transpose of \(Q \) to \(v \) and return the result.

VECTOR operator*(SCALAR c) const
VECTOR operator+(const VECTOR& x) const
VECTOR operator-(const VECTOR& x) const
Synonyms of the mult, plus and minus methods.

VECTOR& add(const VECTOR& x)
VECTOR& add(const VECTOR& x, SCALAR c)
Compute \(v+x \) or \(v+cx \). These methods are performance critical, because they are used e.g., when applying Givens rotations from the right to MatrixX<VECTOR> matrices.

SCALAR METHODS

SCALAR max() const
SCALAR max_abs() const
int argmax() const
int argmax_abs() const
The value of the largest (resp. largest in absolute value) element of \(v \). (c-d) the index of the largest (resp. largest in absolute value) element of \(v \). If not unique, then the index of the first (lowest index) maximal element is returned.

SCALAR min() const
SCALAR min_abs() const
int argmin() const
int argmin_abs() const
The same as above, but for the least (in absolute value) element.

SCALAR sum() const
The sum of the vector elements, \(\sum_{i=1}^{n} v_i \).

SCALAR norm1() const
The \(\ell_1 \) norm of \(v \), \(\|v\|_1 = \sum_{i=1}^{n} |v_i| \).

SCALAR norm2() const
The squared \(\ell_2 \)-norm of \(v \), \(\|v\|^2 \).

SCALAR diff2(const VECTOR& x) const
The squared \(\ell_2 \)-norm difference \(\|v - x\|^2 \).

int nnz() const
The number of non-zero elements of \(v \). Different from \texttt{nFilled} in that it does not count zero-valued, but filled in elements.

FORMATTED I/O

VECTOR(MatrixIF& file)
Load \(v \) from the file \texttt{file} (see the section on matrix filetypes).

saveto(MatrixOF& file) const
Save \(v \) to the file \texttt{file} (see the section on matrix filetypes).

PYTHON INTERFACE

VECTOR(<array>)
Initialize \(v \) from the \texttt{numpy} array \texttt{<array>}.

np()
Return \(v \) in the form of a \texttt{numpy} array.

VARIABLES

int n
The dimensionality of the vector, \(n \).
Cvector

Cvector is *Mondrian*’s most basic dense vector class, which simply stores v in a C-style array `SCALAR[n]`. Cvector provides all the functionality defined in `Vector`, plus the following additional methods.

Derived from: `Vector`, `Detachable`, `Serializable`

CONVERSIONS

Cvector(const VECTOR& v)

Convert v to Cvector format. While this method looks like a Cvector constructor, it is implemented as a conversion operator `VECTOR::operator Cvector()` and defined in the source class `VECTOR` rather than in Cvector (see the documentation for the abstract class `Vector`).

VIEWS

Detached<Cvector> subvectorView(const int i, const int n)

const Detached<Cvector> subvectorView(const int i, const int n) const

Return a view of the subvector \((v_i, v_{i+1}, \ldots, v_{i+n-1})\).

VARIABLES

SCALAR* array

The array of vector elements.
Vector\textsubscript{v}, Vector\textsubscript{l}, Vector\textsubscript{h}

Vector\textsubscript{v}, Vector\textsubscript{l} and Vector\textsubscript{h} are sparse vector classes directly built atop Standard Template Library containers:

1. Vector\textsubscript{v} stores \(v \) as a std::vector of IndexValuePair objects,
2. Vector\textsubscript{l} stores \(v \) as a std::vector of IndexValuePair objects,
3. Vector\textsubscript{h} stores \(v \) as a hash map std::unordered_map<INDEX,SCALAR> that maps indices to the corresponding matrix elements.

All three classes inherit the generic Vector interface.

Derived from: SparseVector, (Vector), (Serializable), \{std::vector<IndexValuePair> or std::list<IndexValuePair> or std::unordered_map<INDEX,SCALAR>\}

GenericVector

GenericVector is Mondrian’s polymorphic vector class which can represent a vector of any class derived from Vector. GenericVector is implemented as a wrapper: the encapsulated concrete vector is pointed to by obj pointer. In contrast to the deafult way that polymorphism is implemented in C++, function calls to a GenericVector are delegated to the actual class of *obj rather than being handled by the base class.

Derived from: Vector, (Detachable), (Serializable)
Owned objects: The concrete vector object *obj.

VARIABLES

Vector* obj
Pointer to the concrete vector object.
2. Basic matrices

Similarly to the vector classes, the basic division between Mondrian’s matrix classes is between the dense and sparse cases. While this kept opaque to the user, to optimize performance, matrix/matrix and matrix/vector operations are generally separately implemented for all combinations of operands. For example, the expression $A \cdot v$ where A is a matrix and v is a vector will be evaluated using different methods based on whether A is of type `Cmatrix` or `MatrixX<VECTOR>` (for some vector type `VECTOR`) and whether v is of type `Cvector`, `Vectorv`, `Vectorl` or `Vectorh`. However, similarly to the vector types, all matrix classes conform to the same API given in `Matrix`. `GenericMatrix` is the universal polymorphic matrix class.

Classes prefaced by `Symm` are for storing matrices that are known to be symmetric. In general, these classes do not use less storage, but certain operations on them are faster. The “LA” classes (standing for “linear algebra”) provide methods for higher level linear algebra operations, such as eigendecomposition, by calling an appropriate external library, which, in the present version of the code is `Eigen`.

![Diagram of matrix classes](image-url)
Matrix defines the common interface to all matrix classes in Mondrian. Every concrete matrix class MATRIX provides the following methods and constructors, either by inheritance or separate implementation.

CONSTRUCTORS

MATRIX()
Create a new 0×0 matrix.

MATRIX(int n, int m)
Create a new $n \times m$ dimensional matrix $A \in \mathbb{R}^{n \times m}$. Storage is allocated but the entries of A are not initialized. To ensure that matrix elements default to 0, use the Zero constructor, below.

MATRIX(const initializer_list<Cvector>& list)
MATRIX(const initializer_list<ivtriple>& list)
Initialize A from an initializer list of Cvector objects or (INDEX, INDEX, SCALAR) triples (see example1.cpp for an example of usage).

NAMED CONSTRUCTORS

MATRIX::Zero(int n, int m)
The $n \times m$ dimensional zero matrix.

MATRIX::Identity(int n)
The $n \times n$ dimensional identity matrix.

MATRIX::Filled(int n, int m, SCALAR t)
The constant matrix $A \in \mathbb{R}^{n \times m}$ in which $A_{i,j} = t$ for all i and j.

MATRIX::Diagonal(const Cvector& v)
The diagonal matrix in which $A_{i,i} = v_i$.

MATRIX::Uniform(int n, int m)
MATRIX::Gaussian(int n, int m)
MATRIX::Bernoulli(int n, int m, double p=0.5)
An $n \times m$ random matrix in which each element is drawn i.i.d. from (a) the Uniform($0, 1$) distribution; (b) the Normal($0, 1$) distribution; (c) the Bernoulli(p) distribution. In symmetric matrix classes such as SymmCMatrix and SymmMatrixX<VECTOR>, the upper triangle of the matrix is mirrored into the lower triangle to ensure symmetry.

ATTRIBUTES

bool isSparseFormat() const
Return true if MATRIX is a sparse matrix class.

bool isSymmetricFormat() const
Return true if MATRIX is a symmetric matrix class.
ELEMENT ACCESS

SCALAR read(const int i, const int j) const
Return the value of the matrix element $A_{i,j}$.

SCALAR operator()(const int i, const int j) const
Return a reference to the matrix element $A_{i,j}$.

SCALAR set(const int i, const int j, const SCALAR v)
Set $A_{i,j} = v$. In most cases this is equivalent to $A(i,j)=v$ except that when there are restrictions on
A (i.e., that it must be symmetric), SCALAR& operator() might be disabled.

bool isFilled(const int i, const int j) const
Returns true if element (i,j) is filled in. For dense matrices always true.

int nFilled() const
The number of filled in elements of A.

SUBVECTORS

VECTOR row<VECTOR>(const int i) const
Return the i'th row of A.

VECTOR column<VECTOR>(const int j) const
Return the j'th column of A.

VECTOR diag<VECTOR>() const
Return the vector of diagonal elements of A.

ITERATORS

void for_each_filled(std::function<void(INDEX,INDEX,SCALAR&)> lambda)
void for_each_filled(std::function<void(INDEX,INDEX,const SCALAR)> lambda) const
Apply the function lambda to each filled in entry $A_{i,j}$ of A. The three arguments of lambda are i, j
and (a reference to) $A_{i,j}$.

void for_each_filled_in_row(const int i, std::function<void(INDEX,SCALAR&)> lambda)
void for_each_filled_in_row(const int i, std::function<void(INDEX,const SCALAR)> lambda) const
Apply the function lambda to each filled in entry $A_{i,j}$ in row i of A. The two arguments of lambda are
j and (a reference to) $A_{i,j}$.

void for_each_filled_in_column(const int j, std::function<void(INDEX,SCALAR&)> lambda)
void for_each_filled_in_column(const int j, std::function<void(INDEX,const SCALAR)> lambda) const
Apply the function lambda to each filled in entry $A_{i,j}$ in column j of A. The two arguments of lambda are
i and (a reference to) $A_{i,j}$.

VIEWS

MatrixView<MATRIX> operator()(const IndexMap& rmap, const IndexMap& cmap)
const MatrixView<MATRIX> operator()(const IndexMap& rmap, const IndexMap& cmap) const
Return a MatrixView referencing the submatrix of A cut out by rows $rmap$ and columns $cmap$.
CONVERSIONS

MATRIX(const Cmatrix X)

Convert the Cmatrix X to a MATRIX.

operator Cmatrix() const

Convert M to a Cmatrix (this method is repeated in the description of the Cmatrix class).

MATRIX(const BlockedMatrix<MATRIX>& B)

Convert the blocked matrix B to plain (non-blocked) format.

REMAPPINGS

MATRIX2 remapRows(const IndexMap& map) const

MATRIX2 remapRows(const Inverse<IndexMap>& map) const

Remap the rows of M by map / the inverse of map. If MATRIX is a non-symmetric matrix type, MATRIX2=MATRIX. For symmetric matrix types, MATRIX2 is the non-symmetric version of MATRIX. For example, if MATRIX is SymmCmatrix, then MATRIX2 will be Cmatrix.

MATRIX2 remapCols(const IndexMap& map) const

MATRIX2 remapCols(const Inverse<IndexMap>& map) const

Remap the columns of M by map / the inverse of map. See the comment about types above.

MATRIX2 remap(const IndexMap& rmap, const IndexMap& cmap) const

MATRIX2 remap(const Inverse<IndexMap>& rmap, const Inverse<IndexMap>& cmap) const

Remap the rows and columns of M by (the inverse of) rmap and cmap. See the comment about types above.

IN-PLACE ARITHMETIC

MATRIX& operator+=(const SCALAR c)

MATRIX& operator-=(const SCALAR c)

MATRIX& operator*=(const SCALAR c)

MATRIX& operator/=(const SCALAR c)

Increment/decrement/multiply/divide each element of A by c.

MATRIX& operator+=(const MATRIX2& B)

MATRIX& operator-=(const MATRIX2& B)

MATRIX& operator*=(const MATRIX2& B)

MATRIX& operator/=(const MATRIX2& B)

Increment/decrement/multiply/divide each element of A by the corresponding element of B.
IN-PLACE OPERATIONS

MATRIX & symmetrize()
Set A to $(A + A^\top)/2$.

MATRIX & normalizeRows()
MATRIX & normalizeColumns()
Normalize each row/column of A so that it sums to 1.

MATRIX & multiplyRowsBy(const VECTOR& v)
MATRIX & divideRowsBy(const VECTOR& v)
Multiply/divide the i'th row of A by v_i.

MATRIX & multiplyColumnsBy(const VECTOR& v)
MATRIX & divideColumnsBy(const VECTOR& v)
Multiply/divide the j'th column of A by v_j.

MATRIX & applyFromLeft(const OPERATOR& Q)
MATRIX & applyFromLeftT(const OPERATOR& Q)
Apply the operator Q or the transpose of Q from the left in place. In matrix notation, $A \leftarrow QA$ or $A \leftarrow Q^\top A$.

MATRIX & applyFromRight(const OPERATOR& Q)
MATRIX & applyFromRightT(const OPERATOR& Q)
Apply the operator Q or the transpose of Q to v from the right in place. In matrix notation, $A \leftarrow AQ^\top$ or $A \leftarrow QA$. Note that applying the operator from the right corresponds to multiplication by Q^\top.

MATRIX & conjugateBy(const OPERATOR& Q)
MATRIX & conjugateByT(const OPERATOR& Q)
Conjugate A by (the transpose of) Q in place. In matrix notation, $A \leftarrow QAQ^\top$ or $A \leftarrow Q^\top A$.

VECTOR VALUED ARITHMETIC

VECTOR & mult(const VECTOR& v) const
VECTOR & dot(const VECTOR& v) const
Compute the matrix/vector products Av and $A^\top v$, respectively. Here VECTOR can be any concrete vector class, such as a Cvector, Vectorv, etc..

VECTOR & operator*(const VECTOR& v) const
Synonym of mult.

MATRIX VALUED ARITHMETIC

MATRIX mult(const SCALAR c) const
Compute cA.

MATRIX plus(const MATRIX& B) const
MATRIX minus(const MATRIX& B) const
Compute $A + B$ or $A - B$.

MATRIX mult(const MATRIX& B) const
MATRIX dot(const MATRIX& B) const
MATRIX outer(const MATRIX& B) const
MATRIX dott(const MATRIX& B) const
Compute the matrix/matrix product (a) AB, (b) $A^\top B$, and (c) AB^\top and (d) $A^\top B^\top$.
MATRIX operator*(const SCALAR c) const
MATRIX operator+(const MATRIX& B) const
MATRIX operator-(const MATRIX& B) const
MATRIX operator*(const MATRIX& B) const

Synonyms of plus, minus and mult methods.

MATRIX rowGram() const
MATRIX colGram() const

Compute the symmetric matrix G defined (a) $G_{i,j} = A_{i,*} \cdot A_{j,*}$ (b) $G_{i,j} = A_{*,i} \cdot A_{*,j}$.

SCALAR VALUED METHODS

int nnz() const
The number of non-zero matrix elements of A.

SCALAR norm2() const
The squared Frobenius norm of the matrix, $\|A\|_{\text{Frob}}^2$.

SCALAR diff2(const MATRIX& X) const
The squared Frobenius norm difference between A and X, i.e., $\|A - X\|_{\text{Frob}}^2$.

FORMATTED I/O

MATRIX(MatrixIF& file)
Load A from the file file (see the section on matrix filetypes).

saveto(MatrixOF& file) const
Save A to the file file (see the section on matrix filetypes).

PYTHON INTERFACE

MATRIX(<array>)
Initialize A from the numpy array <array>.

np()
Return A in the form of a numpy array.

VARIABLES

int nrows
The number of rows, n.

int ncols
The number of columns, m.
Cmatrix

Cmatrix is the simplest concrete matrix class, which simply stores \(A \) in the form of a C-style array \(\text{SCALAR}[\text{rows} \times \text{ncols}] \) in column major order. This class provides all the standard matrix methods described in Matrix, plus the following additional methods.

Derived from: Matrix, Detachable, Serializable

CONVERSIONS

\(\text{Cmatrix(const MATRIX& X)} \)

Convert \(X \) to Cmatrix format. While syntactically this method looks like a Cmatrix constructor, it is actually a conversion operator of type \(\text{MATRIX::operator Cmatrix()} \), defined in the source class.

VIEWS

\(\text{Detached<\text{Cvector}> viewOfColumn(const int j)} \)
\(\text{const Detached<\text{Cvector}> viewOfColumn(const int j)} \) const

Return a view of the \(j \)'th column of \(A \) in the form of a detached Cvector.

\(\text{Detached<\text{Cmatrix}> viewOfColumns(const int j, const int k)} \)
\(\text{const Detached<\text{Cmatrix}> viewOfColumns(const int j, const int k)} \) const

Return a view of columns \(j, j+1, \ldots, j+k-1 \) in the form of a detached Cmatrix.

VECTOR VALUED METHODS

\(\text{Cvector vectorize()} \) const

Reshape \(A \) into an \(nm \) dimensional vector.

MATRIX VALUED METHODS

\(\text{Cmatrix reshape(const int nnew, const int mnew)} \) const

Reshape \(A \) into an \(n_{new} \times m_{new} \) dimensional matrix.

VARIABLES

\(\text{SCALAR* array} \)

An \(n \times m \) column major array holding the matrix elements of \(A \).
MatrixX<VECTOR>

MatrixX<VECTOR> is Mondrian’s basic sparse matrix class, which represents $A \in \mathbb{F}^{n \times m}$ as m VECTORs, where VECTOR can be any (dense or sparse) vector class. MatrixX<VECTOR> implements all the methods in Matrix.

Derived from: Matrix, Detachable, Serializable

Owned objects: The VECTOR objects storing each column of the matrix.

VIEWS

Detached<VECTOR> viewOfColumn(const int j)

const Detached<VECTOR> viewOfColumn(const int j) const

Return a view of the j’th column of A in the form of a detached VECTOR.

VARIABLES

vector<VECTOR*> column

Pointers to the VECTOR objects storing the individual columns of A.
GenericMatrix

GenericMatrix is Mondrian’s polymorphic matrix class, which can represent a matrix of any class. The class is implemented as a wrapper: the encapsulated concrete matrix is pointed to by the obj pointer. In contrast to the default way that polymorphism is implemented in C++, function calls to a GenericMatrix are delegated to the actual class of *obj rather than being handled by the base class.

Derived from: Matrix, (Detachable), (Serializable)
Owned objects: The concrete vector object *obj.

VARIABLES

Vector* obj
 Pointer to the concrete vector object.
3. Specialized matrices

SymmCmatrix

SymmCmatrix is the symmetric variant of the Cmatrix class. While the two classes store A in exactly the same format (which makes conversions between them easy) the fact that the matrix stored in SymmCmatrix is known to be symmetric allows SymmCmatrix to perform certain operations much faster.

Derived from: Cmatrix, (Matrix), (Detachable), (Serializable)

NAMED CONSTRUCTORS

ColumnGram(const MATRIX& B)
RowGram(const MATRIX& B)

Initialize A to be the column Gram matrix $B^T B$ or the row Gram matrix $B B^T$. Computing Gram matrices is often a time critical operation, so these constructors are implemented separately for various different MATRIX classes.

CONVERSIONS

SymmCmatrix(const Cmatrix& M)
SymmCmatrix(Cmatrix&& M)

Construct A by symmetrizing M, i.e $A = (M + M^T)/2$. Move construction is possible because SymmCmatrix and Cmatrix use the same storage format.

SymmCmatrix(assume_symmetric(const Cmatrix& M))
SymmCmatrix(assume_symmetric(Cmatrix&& M))

The same as above, except without explicit symmetrization, because M is assumed to be already symmetric. The second of these methods effectively just changes the data type of M without any computations, and therefore incurs almost no computational overhead.
SymmMatrixX<VECTOR>

SymmMatrixX<VECTOR> is the symmetric variant of the MatrixX<VECTOR> class. While the two classes store the elements of A in exactly the same format (which makes conversions between them easy) the fact that the matrix stored in SymmMatrixX<VECTOR> is known to be symmetric allows SymmMatrixX<VECTOR> to perform certain operations much faster.

Derived from: MatrixX<VECTOR>, (Matrix), (Detachable), (Serializable)

NAMED CONSTRUCTORS

ColumnGram(const MATRIX& B)
RowGram(const MATRIX& B)

Initialize A to be the column Gram matrix $B^\top B$ or the row Gram matrix BB^\top. Computing Gram matrices is often a time critical operation, so these constructors are implemented separately for various different MATRIX classes.

CONVERSIONS

SymmMatrixX<VECTOR>(const MatrixX<VECTOR>&& M)
SymmMatrixX<VECTOR>(MatrixX<VECTOR>&& M)

Construct A by symmetrizing M, i.e $A = (M + M^\top)/2$. Move construction is possible because SymmMatrixX<VECTOR> and MatrixX<VECTOR> use the same storage format.

SymmMatrixX<VECTOR>(as_symmetric(const MatrixX<VECTOR>& M))
SymmMatrixX<VECTOR>(as_symmetric(MatrixX<VECTOR>&& M))

The same as above, except without explicit symmetrization, because M is assumed to be already symmetric. The second of these methods effectively just changes the data type of M without any computations, and therefore incurs almost no computational overhead (see the section on downcasting).
CmatrixLA

CmatrixLA is an extension of the Cmatrix class that includes certain linear algebra operations, such as eigendecomposition, that are performed by calling routines from outside linear algebra packages, in the current implementation of the library, Eigen.

CmatrixLA is separated from Cmatrix to keep the library modular and simplify compilation. In particular, Cmatrix is a “header only” class, therefore it can be directly #include-ed in user code with no separate compilation. Any functions in Cmatrix that use Eigen would greatly slow down compiling user code, because they would “pull in” a large number of header files from Eigen. Segregating these functions in CmatrixLA solves this problem because CmatrixLA is a compiled class.

Derived from: Cmatrix, (Matrix), (Detachable), (Serializable)

OPERATIONS

package<CmatrixLA,Cvector> symmetricEVD() const
Returns a matrix whose rows are the eigenvectors of A and a vector holding the corresponding eigenvalues. It is assumed that A is symmetric.
4. Blocked vectors/matrices

BlockedVector<VECTOR>

A BlockedVector v consists of \(n_b\) blocks, where each block is a vector of type VECTOR. Here VECTOR can be any dense or sparse matrix type derived from the abstract class Vector.

Derived from: Vector, Detachable, Serializable

CONSTRUCTORS

BlockedVector<VECTOR>(const int nb)
Create a blocked vector consisting of \(nb\) zero dimensional blocks constructed using the VECTOR class's default constructor VECTOR().

BlockedVector<VECTOR>(const BlockStructure& st)
Create a blocked vector with block structure \(st=\{b_1, \ldots, b_p\}\). The \(i\)'th block is constructed using the VECTOR class's VECTOR\(\{n\}\) constructor with \(n=b_i\).

BlockedVector<VECTOR>(VECTOR&& w)
BlockedVector<VECTOR>(const VECTOR& w)
Create a blocked vector with a single block, \(w\). The first method destroys the original vector.

BlockedVector<VECTOR>(vector<VECTOR>&& vlist)
BlockedVector<VECTOR>(const vector<const VECTOR>& vlist)
Create a blocked vector composed of the elements of \(vlist\). The first of these constructors destroys the original vectors.

BlockedVector<VECTOR>(vector<BlockedVector<VECTOR>>&& vlist)
BlockedVector<VECTOR>(const vector<const BlockedVector<VECTOR>>& vlist)
Create a blocked vector composed of each of the blocks of the blocked vectors in \(vlist\). The first of these constructors destroys the original blocked vectors.

NAMED CONSTRUCTORS

BlockedVector<VECTOR>::Zero(BlockStructure& bstruct)
BlockedVector<VECTOR>::Filled(BlockStructure& bstruct, const SCALAR t)
BlockedVector<VECTOR>::Uniform(BlockStructure& bstruct)
BlockedVector<VECTOR>::Gaussian(BlockStructure& bstruct)
BlockedVector<VECTOR>::Bernoulli(BlockStructure& bstruct, const double p=0.5)
Create a bstruct–structured blocked vector with block structure bstruct, composed of blocks constructed with the appropriate constructors of VECTOR.
BLOCK LEVEL ACCESS

- `VECTOR& block(const int i)`
 - Returns a reference to the i'th block of v.
- `VECTOR block(const int i) const`
- `VECTOR* block_ptr(const int i)`
 - Returns a pointer to the i'th block of v.
- `Detached<BlockedVector<VECTOR>> blocks(const IndexMap& phi)`
 - Returns a detached blocked vector of blocks \((v_{\phi(0)}, \ldots, v_{\phi(k-1)})^T\).

ELEMENT ACCESS

- `SCALAR& operator()(const int i)`
- `SCALAR operator()(const int i) const`
- `SCALAR& operator()(const int I, const int i)`
- `SCALAR operator()(const int I, const int i) const`
- `SCALAR& operator()(const IndexPair& ip)`
- `SCALAR operator()(const IndexPair& ip) const`
 - Returns a reference to \(v_i\) or \(v_{(I,i)}\). In the case of sparse vectors, a potential side effect of returning a reference is that it might fill in \(v_{(I,i)}\), even if the intent is only to read it. To avoid this behavior, use the read method.
- `SCALAR read(const int i) const`
- `SCALAR read(const int I, const int i) const`
- `SCALAR read(const IndexPair& ip) const`
 - Returns the value of \(v_i\) or \(v_{(I,i)}\), guaranteeing side effect free behavior, even when v is not const.
- `bool isFilled(const int i) const`
- `bool isFilled(const int I, const int i) const`
- `bool isFilled(const IndexPair& ip) const`
 - Returns true if \(v_i\) or \(v_{(I,i)}\) is filled in. For dense vectors always true.
- `int nFilled() const`
 - The number of filled in elements of v.

ITERATORS

- `void for_each_block(std::function<void(INDEX,VECTOR&)> lambda)`
- `void for_each_block(std::function<void(INDEX,const VECTOR&)> lambda) const`
 - Applies the function lambda to each block of v. The two arguments are i and a reference to \(v_i\).

VIEWS

- `BlockedVectorView<VECTOR> operator()(const BindexMap& map)`
- `const BlockedVectorView<VECTOR> operator()(const BindexMap& map) const`
 - Returns a view of the subvector \((v_{\phi(0)}, v_{\phi(1)}, \ldots, v_{\phi(k-1)})^T\).
CONVERSIONS

BlockedVector<VECTOR>(const BlockedVector<Cvector> w)
Covert w to a BlockedVector<VECTOR> type vector.

MERGING

void merge(VECTOR&& w)
void merge(const VECTOR& w)
Add w to v as its last block. The first method destroys w.

void merge(BlockedVector<VECTOR>&& w)
void merge(const BlockedVector<VECTOR>& w)
Merge w to v by adding its blocks to the end of v. The first method destroys w.

REMAPPINGS

VECTOR remap(const BindexMap& map) const
VECTOR remap(const Inverse<BindexMap>& map) const
Remap the elements of v by map or the inverse of map.

IN-PLACE ARITHMETIC

BlockedVector<VECTOR>& operator+=(const SCALAR c)
BlockedVector<VECTOR>& operator-=(const SCALAR c)
BlockedVector<VECTOR>& operator*=(const SCALAR c)
BlockedVector<VECTOR>& operator/=(const SCALAR c)
Increment/decrement/multiply/divide each element of v by c.

BlockedVector<VECTOR>& operator+=(const BlockedVector<VECTOR2>& x)
BlockedVector<VECTOR>& operator-=(const BlockedVector<VECTOR2>& x)
Set v to v + x or v - x, respectively.

SCALAR VALUED ARITHMETIC

SCALAR dot(const BlockedVector<VECTOR2>& x) const
The dot product of v with x. v and x must have the same block structure.

VECTOR VALUED ARITHMETIC

BlockedVector<VECTOR> mult(const SCALAR c) const
BlockedVector<VECTOR> plus(const BlockedVector<VECTOR2>& x) const
BlockedVector<VECTOR> minus(const BlockedVector<VECTOR2>& x) const
Compute cv, v + x and v - x, respectively.
BlockedVector<VECTOR> operator*(const SCALAR c) const
BlockedVector<VECTOR> operator+(const BlockedVector<VECTOR2>& x) const
BlockedVector<VECTOR> operator-(const BlockedVector<VECTOR2>& x) const
 Synonyms of mult, plus and minus.

MATRIX VALUED ARITHMETIC

BlockedMatrix<MATRIX> outer<MATRIX>(const BlockedVector<VECTOR>& x) const
 Compute the outer product $v x^\top$.

OTHER METHODS

BlockStructure structure() const
 Return the block structure of v.

FORMATTED I/O

BlockedVector<VECTOR>(const BlockStructure& st, const MatrixIF& file)
 Load v from the file file and block it according to st.
saveto(MatrixOF& file)
 Save v to the file file.

VARIABLES

int n
 The total dimensionality of the vector (inherited from Vector).
int nb
 The number of blocks.
VECTOR** blockp
 An array of pointers to the individual blocks of v.

BlockedMatrix<MATRIX>

A BlockedMatrix M consists of $n_b \times m_b$ blocks, where each block is a matrix of type MATRIX. Here MATRIX can be any dense or sparse matrix type derived from the abstract class Matrix. The i’th block of rows we sometimes call the i’th **street**, and the j’th column of blocks the j’th **tower**.

Derived from: Matrix, Detachable, Serializable
Owned objects: The individual blocks pointed to by the elements of the array blocks.

CONSTRUCTORS

BlockedMatrix<MATRIX>(const int nb, const int mb)
Construct a blocked matrix consisting of $nb \times mb$ zero dimensional blocks constructed using the MATRIX class’s MATRIX() constructor.

BlockedMatrix<MATRIX>(const Bstructure& rst, const Bstructure& cst)
Construct a blocked matrix that is blocked horizontally according to rst and vertically according to cst. The individual blocks are constructured using the MATRIX class’s MATRIX(n,m) constructor.

BlockedMatrix<MATRIX>(MATRIX&& B)
BlockedMatrix<MATRIX>(const MATRIX& B)
Create a blocked matrix with a single block, B. The first method destroys the original matrix.

BlockedMatrix<MATRIX>(const Bstructure& rst, const Bstructure& cst, const MATRIX& B)
Convert B to blocked matrix format with block structure given by rst and cst.

NAMED CONSTRUCTORS

BlockedMatrix<MATRIX>::Zero(const BlockStructure& rst, const BlockStructure& cst)
BlockedMatrix<MATRIX>::Filled(const BlockStructure& rst, const BlockStructure& cst)
BlockedMatrix<MATRIX>::RandomUniform(const BlockStructure& rst, const BlockStructure& cst)
BlockedMatrix<MATRIX>::RandomGaussian(const BlockStructure& rst, const BlockStructure& cst)
BlockedMatrix<MATRIX>::RandomBernoulli(const BlockStructure& rst, const BlockStructure& cst, const double p=0)
Create an rstxcst structured blocked matrix whose individual blocks are constructed with the appropriate constructor of MATRIX.

BlockedMatrix<MATRIX>::Identity(const BlockStructure& st)
Construct the stxst structured identity matrix.

BlockedMatrix<MATRIX>::Diagonal(const BlockedVector& v)
Construct a diagonal blocked matrix whose diagonal elements are given by v and whose block structure is dictated by the block structure of v.

BlockedMatrix<MATRIX>::ConcatVertically(vector<BlockedMatrix<MATRIX>&& blist>)
BlockedMatrix<MATRIX>::ConcatVertically(const vector<const BlockedMatrix<MATRIX>& blist>)
Construct a blocked matrix by concatenating the elements of blist vertically. The first method destroys the elements of blist.

BlockedMatrix<MATRIX>::ConcatHorizontally(vector<BlockedMatrix<MATRIX>&& blist>)
BlockedMatrix<MATRIX>::ConcatHorizontally(const vector<const BlockedMatrix<MATRIX>& blist>)
Construct a blocked matrix by concatenating the elements of blist horizontally. The first method destroys the elements of blist.
BLOCK LEVEL ACCESS

`MATRIX& block(const int i, const int j)`

Return (a reference to) the \((i,j)\) block of \(M\).

`MATRIX* block_ptr(const int i, const int j)`

const `MATRIX* block_ptr(const int i, const int j)` const

Return a pointer to the \((i,j)\) block of \(M\).

`Detached<BlockedMatrix<MATRIX>> blocks(const IndexMap& phi, const IndexMap& psi)`

const `Detached<BlockedMatrix<MATRIX>> blocks(const IndexMap& phi, const IndexMap& psi)` const

Return a detached blocked matrix \(B\) in which \(B_{i,j} = M_{\phi(i),\psi(j)}\).

ELEMENT ACCESS

`SCALAR& operator()(const int i, const int j)`

`SCALAR operator()(const int i, const int j)` const

`SCALAR& operator()(const int I, const int i, const int J, const int j)`

`SCALAR operator()(const int I, const int i, const int J, const int j)` const

`SCALAR& operator()(const IndexPair& ip, const IndexPair& jp)`

`SCALAR operator()(const IndexPair& ip, const IndexPair& jp)` const

Return (a reference to) the \(M_{i,j}\) or \(M_{(I;i)(J;j)}\) matrix element. In sparse matrix classes, returning a reference might have the unintended side effect of filling in the matrix element (assuming that it is not already filled in), even when the intent is to just read it. To avoid this behavior, use the `read` method, below.

`SCALAR read(const int i, const int j)` const

`SCALAR read(const int I, const int i, const int J, const int j)` const

`SCALAR read(const IndexPair& ip, const IndexPair& jp)` const

Return the value of \(M_{i,j}\) or \(M_{(I;i)(J;j)}\), guaranteeing side effect free behavior, even when \(M\) is not const.

`BlockedVector<Cvector> row(const int i)` const

`BlockedVector<Cvector> row(const int I, const int i)` const

`BlockedVector<Cvector> row(const IndexPair& ip)` const

Return the \(i\)'th or \((I,i)\) row of \(M\).

`BlockedVector<Cvector> column(const int j)` const

`BlockedVector<Cvector> column(const int J, const int j)` const

`BlockedVector<Cvector> column(const IndexPair& jp)` const

Return the \(j\)'th or \((J,j)\) column of \(M\).

`BlockedVector<Cvector> diag()` const

Return the vector of diagonal elements of \(M\).

ITERATORS

`void for_each_block(std::function<void(INDEX, INDEX, MATRIX&)> lambda)`

`void for_each_block(std::function<void(INDEX, INDEX, const MATRIX&)> lambda)` const

Apply the function \(\lambda\) to each block of \(M\). The three arguments of \(\lambda\) are \(I, J\), and a reference to \([M]_{I,J}\).
void for_each_block_in_street(I, std::function<void(INDEX, MATRIX&)> lambda)
void for_each_block_in_street(I, std::function<void(INDEX, const MATRIX&)> lambda) const
 Apply the function lambda to each block of M. The two arguments of lambda are J, and a reference to \([M]_{i,j}\).

void for_each_block_in_tower(J, std::function<void(INDEX, MATRIX&)> lambda)
void for_each_block_in_tower(J, std::function<void(INDEX, const MATRIX&)> lambda) const
 Apply the function lambda to each block of M. The two arguments of lambda are I, and a reference to \([M]_{i,j}\).

VIEWS

BlockedMatrixView<VECTOR> operator()(const BindexMap& phi, const BindexMap& psi) const
 Return a view to the submatrix \(B\) in which \(B_{i,j} = M_{\phi(i),\psi(j)}\).

CONVERSIONS

BlockedMatrix<MATRIX>(const BlockedMatrix<MATRIX>&& B)
 Convert B to a BlockedMatrix<MATRIX> type matrix.

MERGING

void mergeVertically(BlockedMatrix<MATRIX>&& B)
void mergeVertically(const BlockedMatrix<MATRIX>& B)
 Merge B to M vertically, i.e., as its last streets. The first method destroys B.

void mergeHorizontally(BlockedMatrix<MATRIX>&& B)
void mergeHorizontally(const BlockedMatrix<MATRIX>& B)
 Merge B to M horizontally, i.e., as its last towers. The first method destroys B.

REMAPPINGS

BlockedMatrix<MATRIX> remapRows(const BindexMap& map) const
BlockedMatrix<MATRIX> remapRows(const Inverse<BindexMap>& map) const
 Remap the rows of M by map / the inverse of map.

BlockedMatrix<MATRIX> remapCols(const BindexMap& map) const
BlockedMatrix<MATRIX> remapCols(const Inverse<BindexMap>& map) const
 Remap the columns of M by map / the inverse of map.

BlockedMatrix<MATRIX> remap(const BindexMap& rmap, const BindexMap& cmap) const
BlockedMatrix<MATRIX> remap(const Inverse<BindexMap>& rmap, const Inverse<BindexMap>& cmap) const
 Remap the rows and columns of M by (the inverse of) rmap and cmap.
IN-PLACE ARITHMETIC

\[
\text{BlockedMatrix}<\text{MATRIX}>\&\ \operator+=(\text{const SCALAR} \ c)
\]
\[
\text{BlockedMatrix}<\text{MATRIX}>\&\ \operator-=\(\text{const SCALAR} \ c\)
\]
\[
\text{BlockedMatrix}<\text{MATRIX}>\&\ \operator*=\(\text{const SCALAR} \ c\)
\]
\[
\text{BlockedMatrix}<\text{MATRIX}>\&\ \operator/=(\text{const SCALAR} \ c)
\]
Increment/decrement/multiply/divide each element of \(M\) by \(c\).

\[
\text{BlockedMatrix}<\text{MATRIX}>\&\ \operator++=(\text{const BlockedMatrix}<\text{MATRIX}>2\& \ B)
\]
\[
\text{BlockedMatrix}<\text{MATRIX}>\&\ \operator--=(\text{const BlockedMatrix}<\text{MATRIX}>2\& \ B)
\]
Set \(M\) to \(M + B\) or \(M - B\), respectively.

IN-PLACE OPERATIONS

\[
\text{BlockedMatrix}<\text{MATRIX}>\&\ \text{multiplyRowsBy}(\text{const BlockedVector}<\text{Cvector}>\& \ v)
\]
\[
\text{BlockedMatrix}<\text{MATRIX}>\&\ \text{divideRowsBy}(\text{const BlockedVector}<\text{Cvector}>\& \ v)
\]
Multiply/divide the \(i\)'th row of \(M\) by \(v_i\).

\[
\text{BlockedMatrix}<\text{MATRIX}>\&\ \text{multiplyColsBy}(\text{const BlockedVector}<\text{Cvector}>\& \ v)
\]
\[
\text{BlockedMatrix}<\text{MATRIX}>\&\ \text{divideColsBy}(\text{const BlockedVector}<\text{Cvector}>\& \ v)
\]
Multiply/divide the \(j\)'th column of \(M\) by \(v_j\).

VECTOR VALUED ARITHMETIC

\[
\text{BlockedVector}<\text{VECTOR}>\ \text{mult}(\text{const BlockedVector}<\text{VECTOR}>\& \ v)\ \text{const}
\]
\[
\text{BlockedVector}<\text{VECTOR}>\ \text{dot}(\text{const BlockedVector}<\text{VECTOR}>\& \ v)\ \text{const}
\]
Compute \(Mv\) or \(M^Tv\). The block structure of \(v\) must match the column resp. row structure of \(M\).

\[
\text{BlockedVector}<\text{VECTOR}>\ \text{operator\text{*}}(\text{const BlockedVector}<\text{VECTOR}>\& \ v)\ \text{const}
\]
Synonym of \text{mult}.

MATRIX VALUED ARITHMETIC

\[
\text{BlockedMatrix}<\text{MATRIX}>\ \text{mult}(\text{const SCALAR} \ c)\ \text{const}
\]
Compute \(cA\).

\[
\text{BlockedMatrix}<\text{MATRIX}>\ \text{plus}(\text{const BlockedMatrix}<\text{MATRIX}>\& \ B)\ \text{const}
\]
\[
\text{BlockedMatrix}<\text{MATRIX}>\ \text{minus}(\text{const BlockedMatrix}<\text{MATRIX}>\& \ B)\ \text{const}
\]
Compute \(A + B\) or \(A - B\).

\[
\text{BlockedMatrix}<\text{MATRIX}>\ \text{mult}(\text{const BlockedMatrix}<\text{MATRIX}>\& \ B)\ \text{const}
\]
\[
\text{BlockedMatrix}<\text{MATRIX}>\ \text{dot}(\text{const BlockedMatrix}<\text{MATRIX}>\& \ B)\ \text{const}
\]
\[
\text{BlockedMatrix}<\text{MATRIX}>\ \text{outer}(\text{const BlockedMatrix}<\text{MATRIX}>\& \ B)\ \text{const}
\]
\[
\text{BlockedMatrix}<\text{MATRIX}>\ \text{dott}(\text{const BlockedMatrix}<\text{MATRIX}>\& \ B)\ \text{const}
\]
Compute the matrix/matrix product (a) \(AB\), (b) \(A^TB\), and (c) \(AB^T\) and (d) \(A^TB^T\).

\[
\text{BlockedMatrix}<\text{MATRIX}>\ \text{rowGram}()\ \text{const}
\]
\[
\text{BlockedMatrix}<\text{MATRIX}>\ \text{colGram}()\ \text{const}
\]
Compute the symmetric matrix \(G\) defined (a) \(G_{i,j} = A_{i,*} \cdot A_{j,*}\) (b) \(G_{i,j} = A_{*,i} \cdot A_{*,j}\).
BlockedMatrix<MATRIX> operator*(const SCALAR c) const
BlockedMatrix<MATRIX> operator+(const BlockedMatrix<MATRIX>& B) const
BlockedMatrix<MATRIX> operator-(const BlockedMatrix<MATRIX>& B) const
BlockedMatrix<MATRIX> operator*(const BlockedMatrix<MATRIX>& B) const

Synonyms of plus, minus and mult methods.

OTHER METHODS

Bstructure rowStructure() const
Bstructure columnStructure() const
Return the row/column structure of M.

FORMATTED I/O

BlockedMatrix<MATRIX>(const Bstructure& rst, const Bstructure& cst, const MatrixIF& file)
Load M from the file file and block it according to rst and cst.
saveto(MatrixOF& file)
Save M to the file file.

VARIABLES

int nb, mb
The number of rows/columns of blocks in M (inherited from BlockedArray).
int nrows, ncols
The total number of rows/columns of matrix elements in M (inherited from Matrix).
MATRIX** blockp
An nb×mb column major array of pointers to the individual blocks.
5. Vector/matrix views

VectorView<VECTOR>

Given a parent object \(\mathbf{v} \) of type VECTOR and an index map \(\phi \), VectorView<VECTOR> provides an interface to a subvector \(\mathbf{w} = (v_{\phi(1)}, v_{\phi(2)}, \ldots, v_{\phi(k)}) \) of \(\mathbf{v} \) as if it were a separate \(k \) dimensional vector. All the usual vector functionality is available to \(\mathbf{w} \), but its elements remain tied to \(\mathbf{v} \): changing \(v_{\phi(i)} \) will change \(w_i \), and vice versa. Destroying \(\mathbf{v} \) before \(\mathbf{w} \) might result in an error or undefined behavior.

Derived from: Vector, (Detachable), (Serializable)
Dependent on: The parent vector, \(\mathbf{v} \).

CONSTRUCTORS

VectorView<VECTOR>(VECTOR& v, const IndexMap& phi)
VectorView<VECTOR>(VECTOR& v, IndexMap&& phi)

Create a view of \((v_{\phi(1)}, v_{\phi(2)}, \ldots, v_{\phi(k)}) \). The second version destroys phi.

CONVERSIONS

operator Cvector()

Copy the view into a Cvector. While defined generically in Vector, this method is repeated here because it is the standard way of extracting a subvector of a vector.

ASSIGNMENTS

operator=(const VECTOR2& u)

Set each element of \(\mathbf{w} \) equal to the corresponding element of \(\mathbf{u} \). Note that, in contrast to the usual definition of operator=, this method cannot change the size of \(\mathbf{w} \), therefore \(\mathbf{u} \) and \(\mathbf{w} \) must be of the same dimension.

VARIABLES

VECTOR& v

A reference to the parent object, \(\mathbf{v} \).

IndexMap map

The index map defining which elements of \(\mathbf{v} \) are included in \(\mathbf{w} \).
MatrixView<MATRIX>

MatrixView<MATRIX> provides an interface to a submatrix of a MATRIX object as if it were a separate matrix. If A is a MatrixView<MATRIX> of a parent matrix M (of type Matrix), then all the usual matrix functionality is available to A, but its elements will remain tied to the corresponding elements of M. Destroying M before A may result in an error or undefined behavior.

Derived from: Matrix, (Detachable), (Serializable)
Dependent on: The parent MATRIX M.

CONSTRUCTORS

MatrixView<MATRIX>(MATRIX& M, const IndexMap& phi, const IndexMap& psi)
MatrixView<MATRIX>(MATRIX& M, const IndexMap&& phi, const IndexMap&& psi)
Create a view of the submatrix of M at the intersection of rows phi and columns psi. The second version destroys phi and psi.

MatrixView<MATRIX>(MATRIX& M, const IdentityIndexMap& dummy, const IndexMap& psi)
MatrixView<MATRIX>(MATRIX& M, const IdentityIndexMap&& dummy, const IndexMap&& psi)
Create a view of the submatrix of M consisting of the columns psi. The second version destroys psi.

MatrixView<MATRIX>(MATRIX& M, const IndexMap& phi, const IdentityIndexMap& dummy)
MatrixView<MATRIX>(MATRIX& M, const IndexMap&& phi, const IdentityIndexMap&& dummy)
Create a view of the submatrix of M consisting of the rows phi. The second version destroys phi.

MatrixView<MATRIX>(MATRIX& M, const IndexMap& phi)
MatrixView<MATRIX>(MATRIX& M, const IndexMap&& phi)
Synonyms of the above.

CONVERSIONS

operator Cmatrix()
Copy the view into a Cmatrix. While defined generically in Matrix, this method is repeated here because it is the standard way of extracting a submatrix of a matrix.

ASSIGNMENTS

operator=(const MATRIX2& B)
Set each element of A equal to the corresponding element of B. Note that, in contrast to the usual definition of operator=, this method cannot change the dimensions of A, therefore A and B must be the same size.

VARIABLES

MATRIX& M
A reference to the parent object
IndexMap rmap, cmap
The index sets defining which rows/columns of M are included in A.
BlockedVectorView<VECTOR>

Given a parent object \(v \) of type VECTOR and an index set \(I = (i_1, \ldots, i_k) \), BlockedVectorView<VECTOR> provides an interface to a subvector \(w = (v_{i_1}, v_{i_2}, \ldots, v_{i_k}) \) of \(v \) as if it were a separate \(k \) dimensional vector. All the usual vector functionality is available to \(w \), but its elements remain tied to \(v \): changing \(v_{ij} \) will change the corresponding element of \(w \), and vice versa, changing \(w \) changes the corresponding elements of \(v \).

Destroying \(v \) before \(w \) results in an error or undefined behavior.

Derived from: Vector, (Detachable), (Serializable)

Dependent on: The parent vector \(v \).

CONSTRUCTORS

\[
\text{BlockedVectorView<VECTOR>(BlockedVector<VECTOR>& v, const BindexMap& phi)}
\]

Create a view of \((v_{i_1}, v_{i_2}, \ldots, v_{i_k})\), where \(I = (i_1, \ldots, i_k) \).

CONVERSIONS

\[
\text{operator \ Cmatrix()}\]

Copy the view into a Cvector. While defined generically in Vector, this method is repeated here because it is the standard way of extracting a subvector of a vector.

ASSIGNMENTS

\[
\text{operator=(const VECTOR2& u)}\]

Set each element of \(w \) equal to the corresponding element of \(u \). Note that, in contrast to the usual definition of \text{operator=}, this method cannot change the size of \(w \), therefore \(u \) and \(w \) must be of the same dimension.

VARIABLES

\[
\text{BlockedVector<VECTOR>& v}\]

A reference to the parent object

\[
\text{BindexMap map}\]

The index set defining which elements of \(v \) are included in \(w \).
BlockedMatrixView<MATRIX>

BlockedMatrixView<MATRIX> provides an interface to a submatrix of a MATRIX object as if it were a separate matrix. If A is a BlockedMatrixView<MATRIX> of a parent matrix M (of type Matrix), then all the usual matrix functionality is available to A, but its elements will remain tied to the corresponding elements of M. Destroying M before A may results in an error or undefined behavior.

Derived from: Matrix, (Detachale), (Serializable)
Dependent on: The parent MATRIX M.

CONSTRUCTORS

BlockedMatrixView<MATRIX>(BlockedMatrix<MATRIX>& M, const BindexMap& phi, const BindexMap& psi)
BlockedMatrixView<MATRIX>(BlockedMatrix<MATRIX>& M, const BindexMap&& phi, const BindexMap&& psi)

Create a view of the submatrix of M at the intersection of rows phi and columns psi.

CONVERSIONS

operator Cmatrix()
Copy the view into a Cmatrix. While defined generically in Vector, this method is repeated here because it is the standard way of extracting a submatrix of a matrix.

ASSIGNMENTS

operator=(const MATRIX2& B)
Set each element of A equal to the corresponding element of B. Note that, in contrast to the usual definition of operator=, this method cannot change the dimensions of A, therefore A and B must be the same size.

VARIABLES

BlockedMatrix<MATRIX>& M
A reference to the parent object
BindexMap rmap, cmap
The index sets defining which rows/columns of M are included in A.
6. Active vectors/matrices

ActiveVector<VECTOR>

An `ActiveVector<VECTOR>` object behaves the same way as a `VECTOR` except that every time one of its elements changes, the `changed` method gets called. What this method actually does is defined in the concrete classes derived from `ActiveVector<VECTOR>` (see below).

Derived from: `VECTOR`, `(Vector)`, `(Detachable)`, `(Serializable)`

CHANGE FUNCTIONS

```cpp
virtual void changed(const INDEX i, const SCALAR x)
    This method is called every time element some vector element \( v_i \) is changed to value \( x \).

void changed(const INDEX i)
    A shortcut for `changed(i, VECTOR::read(i))`.
```

OrderedVector<VECTOR>

An `OrderedVector<VECTOR>` is an active vector that behaves identically to `VECTOR` except that it internally maintains and automatically updates an ordering of its elements.

Derived from: `ActiveVector<VECTOR>`, `VECTOR`, `(Vector)`, `(Detachable)`, `(Serializable)`

METHODS

```cpp
int best(const int k=0)
    Return the index of the \( k+1 \)'th element of \( v \) from the top according to the ordering.

int worst(const int k=0)
    Return the index of the \( k+1 \)'th element of \( v \) from the bottom according to the ordering.
```
AccumulatedVector<VECTOR>

An AccumulatedVector<VECTOR> is an active vector that behaves identically to VECTOR except that it internally maintains and automatically updates an accumulation (in the default case, the sum) of its elements.

Derived from: ActiveVector<VECTOR>, (VECTOR), (Vector), (Detachable), (Serializable)

CONSTRUCTORS

SCALAR sum() const
 Return the sum of the elements.
Operators, etc.

7. Operators

GivensRotation

A Givens rotation is a 2×2 elementary rotation

$$G_\theta = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

on some pair of indices (i_1, i_2). Being able to apply Givens rotations to vectors/matrices fast is critical, and strongly dependent on the exact way that the matrix/vector is stored. Therefore, implementing multiplication by Givens rotations is left to the vector and matrix classes, rather than being defined here.

CONSTRUCTORS

GivensRotation(int i1, int i2, double cos, double sin)

A new Givens rotation on i_1 and i_2.

GivensRotation(int i1, int i2, double theta)

A new Givens rotation on i_1 and i_2 with angle θ.

NAMED CONSTRUCTORS

GivensRotation::Random(int n)

A random Givens rotation, where i_1 and i_2 are chosen from $\{1, 2, \ldots, n\}$ (and are distinct), while $\theta \sim \text{Uniform}(0, 2\pi)$.

VARIABLES

int i1, i2

The two indices i_1 and i_2.

double cos, sin

cos θ and sin θ.

51
KpointOp<k>

A `KpointOp<k>` object represents a $k \times k$ elementary rotation on some set of indices (i_1, i_2, \ldots, i_k). As for Givens rotations, being able to apply such rotations to matrices and vectors fast is critical, therefore the implementation of this operation is relegated to the matrix and vector classes.

CONSTRUCTORS

`KpointOp<k>(const int k)`

A new k-point rotation, in which `map` and `q` are allocated but uninitialized.

`KpointOp<k>(const IndexMap& map)`

`KpointOp<k>(const IndexMap& map, const Cmatrix& M)`

`KpointOp<k>(IndexMap&& map, const cmatrix&& M)`

A new k-point operator initialized from `map` and `M`.

CONVERSIONS

`operator Cmatrix() const`

Return the $k \times k$ non-trivial block of 0 as a `Cmatrix`.

METHODS

`applyTo(SCALAR* v)`

`applyTo(SCALAR* v)`

Apply the (transpose of) T to the k-element array v.

`applyTo(SCALAR** vptr)`

`applyTo(SCALAR** vptr)`

Apply the (transpose of) T to $[*vptr[0],*vptr[1],\ldots,*vptr[k]]$.

VARIABLES

`IndexMap& map`

The index map ϕ.

`double* q`

The $k \times k$ block stored as a raw $k \times k$ array.
MatrixSum<MATRIX>

A MatrixSum<MATRIX> object represents a sum \(M_1 + M_2 + \ldots + M_k \), where each \(M_i \) is a matrix of type MATRIX. MatrixSum supports all the usual matrix operations, except, of course, direct assignments to a MatrixSum object are not possible.

Derived from: Matrix, (Detachable), (Serializable)

Owned objects: The MATRIX constituents

CONSTRUCTORS

MatrixSum<MATRIX>(const vector<MATRIX> mlist)
MatrixSum<MATRIX>(vector<MATRIX>&& mlist)

Create a MatrixSum composed of the elements of mlist. The second of these constructors destroys the original matrices.

VARIABLES

vector<MATRIX> matrix

The individual MATRIX terms of this sum.
MatrixProduct< MATRIX >

A MatrixProduct< MATRIX > object represents a product $M_1 M_2 \ldots M_k$, where each M_i is a matrix of type MATRIX. MatrixProduct supports all the usual matrix operations, except, of course, direct assignments to a MatrixProduct object are not possible.

Derived from: Matrix, (Detachable), (Serializable)

Owned objects: The MATRIX constituents

CONSTRUCTORS

MatrixProduct< MATRIX >(const vector< MATRIX >& mlist)
MatrixProduct< MATRIX >(vector< MATRIX >& amp mlist)

Create a MatrixProduct composed of the elements of mlist. The second of these constructors destroys the original matrices.

VARIABLES

vector< MATRIX > matrix

The individual MATRIX factors of this sum.
OuterProduct<CLASS1,CLASS2>

Given a matrix or vector object \(V \) of type \(\text{CLASS1} \) and another one, \(V \) of type \(\text{CLASS2} \) an object of type \(\text{OuterProduct}<\text{CLASS1},\text{CLASS2}> \) formed from them represents \(UV^T \). The OuterProduct class supports all the usual matrix operations, except, of course, direct assignments to a OuterProduct object are not possible.

Derived from: Matrix, (Detachable), (Serializable)

CONSTRUCTORS

\[
\begin{align*}
\text{OuterProduct}<\text{CLASS1},\text{CLASS2}>(\text{const CLASS1}& \ U, \text{const CLASS2}& \ V) \\
\text{OuterProduct}<\text{CLASS1},\text{CLASS2}>(\text{CLASS1}& \ U, \text{const CLASS2}& \ V)
\end{align*}
\]

VARIABLES

\[
\begin{align*}
\text{CLASS1} & \ U \\
\text{CLASS2} & \ V \\
\text{The left and the right factors in the outer product.}
\end{align*}
\]
BiMatrix\texttt{<MATRIX1,MATRIX2>}

Some composite matrix types mix blocks of different types. For example, each block in a HODLR matrix is either a low rank matrix (i.e, an \texttt{OuterProduct}) or a smaller HODLR matrix. \texttt{BiMatrix} makes such composite blocked matrices possible by functioning as a wrapper for two matrices at the same time, of different types.

Derived from: Matrix, (Detachable), (Serializable)

CONSTRUCTORS

\begin{verbatim}
BiMatrix<MATRIX1,MATRIX2>(const MATRIX1& M1, const MATRIX2& M2)
BiMatrix<MATRIX1,MATRIX2>(MATRIX1&& M1, const MATRIX2&& M2)
\end{verbatim}

VARIABLES

\begin{verbatim}
bool type
 Switch to determine whether this object functions as a MATRIX1 or MATRIX2.
MATRIX1 M1
MATRIX2 M2
 The alternative matrix object.
\end{verbatim}
8. Index maps

IndexMap

An IndexMap \(\phi \) maps \(\{0, 1, 2, \ldots, n - 1\} \) to (a subset of) the row or column indices \(\{0, 1, 2, \ldots, m - 1\} \) of a vector or a matrix. IndexMap is normally used in one of the following two ways: (a) to define a subset of the indices of a vector or a matrix (for example to construct a VectorView), (b) to define a (possibly non-surjective) mapping from the indices of one vector to the indices of another (for example, in VECTOR::remap).

CONSTRUCTORS

IndexMap(const int n)
An IndexMap with domain \(\{0, 1, 2, \ldots, n - 1\} \) whose elements are uninitialized.

IndexMap(const initializer_list<INDEX> list)
Initialize the IndexMap from the initializer list list.

NAMED CONSTRUCTORS

IndexMap::Identity(const int n)
The identity map from \(\{0, 1, 2, \ldots, n - 1\} \) to itself.

IndexMap::Random(const int n, const int m)
A random index map from \(\{0, 1, 2, \ldots, n - 1\} \) to \(\{0, 1, 2, \ldots, m - 1\} \).

CONVERSIONS

IndexMap(const IndexBiMap& psi)
IndexMap(IndexBiMap&& psi)
Upcast an IndexBiMap to an IndexMap.

ELEMENT ACCESS

INDEX& operator()(const int i)
INDEX operator()(const int i) const
Return (a reference to) \(\phi(i) \).
METHODS

void sort()
 Permute \(\phi\) from the left so that \(\phi(0) \leq \phi(1) \leq \ldots \leq \phi(n)\).

IndexMap inverse() const
 Compute the inverse map \(\phi^{-1}\).

IndexMap& applyFromLeft(const IndexMap& psi)
 Apply psi to phi in place to get the composite map \(\psi \circ \phi\).

IndexMap& applyFromRight(const IndexMap& psi)
 Apply psi to phi in place to get the composite map \(\phi \circ \psi^{-1}\).

VARIABLES

int nsource

INDEX* forward
 The \(i\)'th element of this array is \(\phi(i)\).
IndexBiMap

An IndexBiMap is a bidirectional index map ϕ from $\phi: \{1, 2, \ldots, n\}$ to $\{1, 2, \ldots, m\}$. The map might or might not be a bijection. If $i \in \{0, 1, 2, \ldots, n-1\}$ is not mapped to any $\{0, 1, 2, \ldots, m-1\}$ by ϕ, $\text{forw}(i)$ (equivalent to $\text{operator}()$) returns -1. Similarly, if $j \in \{0, 1, 2, \ldots, m-1\}$ is not the preimage of any $i \in \{0, 1, 2, \ldots, n-1\}$, then $\text{backw}(j)$ returns -1.

Derived from: IndexMap

CONSTRUCTORS

IndexBiMap(const int k)
An uninitialized IndexBiMap from $\{0, 1, 2, \ldots, k-1\}$ to itself.

IndexBiMap(const initializer_list<INDEX> list)
Initialize the IndexBiMap from the initializer list list.

NAMED CONSTRUCTORS

IndexBiMap::Identity(const int n)
The identity map from $\{0, 1, 2, \ldots, n-1\}$ to itself.

IndexBiMap::Random(const int n, const int m)
A random index map from $\{0, 1, 2, \ldots, n-1\}$ to $\{0, 1, 2, \ldots, m-1\}$.

CONVERSIONS

IndexBiMap(const IndexMap& psi, const int m=-1)
IndexBiMap(IndexMap&& psi, const int m=-1)
Construct an IndexBiMap from ψ with range $\{0, 1, 2, \ldots, m-1\}$. If $m=-1$, then m will be the largest index in the range of ψ.

ELEMENT ACCESS

INDEX operator()(const int i) const
INDEX forw(const int i)
Return $\phi(i)$ or -1 is i is not mapped to any element of $\{1, 2, \ldots, m\}$.

INDEX backw(const int j)
Return $\phi^{-1}(j)$ or -1 is j is not the preimage of any $i \in \{1, 2, \ldots, n\}$.

METHODS

void sort()
Permute ϕ from the left so that $\phi(0) \leq \phi(1) \leq \ldots \leq \phi(n)$.
IndexBiMap& swap(const int i1, const int i2)
 Swap the locations where i_1 and i_2 are mapped.

IndexBiMap inverse() const
 Return the inverse map ϕ^{-1}.

IndexBiMap& applyFromLeft(const IndexMap& psi)
 Apply psi to phi in place to get the composite map $\psi \circ \phi$.

IndexBiMap& applyFromRight(const IndexMap& psi)
 Apply psi to phi in place to get the composite map $\phi \circ \psi^{-1}$.

VARIABLES

int nsource n
int ndest m
INDEX* forward
 The i'th element of this array is $\phi(i)$ (inherited from IndexMap).
INDEX* backward
 The j'th element of this array is $\phi^{-1}(j)$.
BindexMap

A BindexMap \(\phi \) (short for “blocked index map”) maps \(\{0, 1, 2, \ldots, n-1\} \) to (a subset of) the row or column indices of a blocked vector or a blocked matrix. Therefore, for any \(i \in \{0, 1, 2, \ldots, n-1\} \), \(\phi(i) \) is a block/index pair \((J,j)\) stored in an iipair object.

CONSTRUCTORS

BindexMap(const int n)
An uninitialized index map with domain \(\{0, 1, 2, \ldots, n-1\} \).

BindexMap(const initializer_list<iipair> list)
Initialize the BindexMap from the initializer list list (see example1.cpp).

NAMED CONSTRUCTORS

BindexMap::Identity(const Bstructure& st)
Construct the identity index map from \(\{0, 1, 2, \ldots, n-1\} \) to st.

ELEMENT ACCESS

iipair& operator(const int i)
iipair operator(const int i) const
Return (a reference to) \(\phi(i) \).

VARIABLES

int nsrce
vector<iipair>

The \(i \)'th element of this vector is \(\phi(i) \).
BtoBindexMap

A BtoBindexMap $\phi: (I, i) \mapsto (J, j)$ (short for “blocked to blocked index map”) maps the (row or column) indices of one blocked vector or matrix to the (row or column) indices of another.

CONSTRUCTORS

BtoBindexMap(const int bsource)

An uninitialized index map with _nsource blocks in its domain.

NAMED CONSTRUCTORS

BtoBindexMap::Identity(const Bstructure& st)

Construct the identity index map from an index set of structure st to itself.

CONVERSIONS

BtoBindexMap(const BtoBindexBiMap& psi)
BtoBindexMap(BtoBindexBiMap&& psi)

Upcast psi to a BtoBindexMap.

ELEMENT ACCESS

iipair& operator(const int I, const int i)
iipair operator(const int I, const int i) const
iipair& operator(const iipair& ip)
iipair operator(const iipair& ip) const

Return (a reference to) $\phi((I, i))$.

METHODS

BtoBindexMap inverse() const

Return the inverse of ϕ (if it exists).

VARIABLES

int _nsource The number of source blocks
vector<BindexMap> _forward

The I'th element of this array is the BindexMap describing where each element of the I'th source block is mapped.
BtoBindexBiMap

A BtoBindexBiMap ϕ is a bidirectional BtoBIndexMap mapping the (row or column) indices of one blocked vector or matrix to the (row or column) indices of another.

Derived from: BtoBIndexMap

CONSTRUCTORS

BtoBindexBiMap(const int bsource, const int bdest)
 An uninitialized BtoBindexBiMap with bsource source blocks and bdest destination blocks.

NAMED CONSTRUCTORS

BtoBindexBiMap::Identity(const Bstructure& st)
 Construct the identity index map from an index set of structure st to itself.

CONVERSIONS

BtoBindexBiMap(const BtoBindexMap& psi)
BtoBindexBiMap(BtoBindexMap&& psi)
 Construct a bidirectional index map from psi.

ELEMENT ACCESS

iipair operator(const int I, const int i) const
iipair operator(const iipair& ip) const
iipair forw(const int I, const int i) const
iipair forw(const iipair& ip) const
 Return $\phi((I;i))$.

iipair backw(const int J, const int j) const
iipair backw(const iipair& jp) const
 Return $\phi^{-1}((J,j))$.

METHODS

BtoBindexMap inverse() const
 Return the inverse of ϕ (inherited from BtoBIndexMap).
VARIABLES

int nsource
The number of source blocks (inherited from BtoBIndexMap).

int ndest
The number of destination blocks.

vector<BIndexMap> forward
The I'th element of this array is the BIndexMap describing where each element of the I'th source block is mapped (inherited from BtoBIndexMap).

vector<BIndexMap> backward
The J'th element of this array is the BIndexMap describing where each element of the J'th source block is mapped by ϕ^{-1}.
Activemap

Various algorithms involve eliminating rows/columns of a matrix one-by-one. An Activemap is an IndexBiMap that is used in such situations to keep track of which rows/columns are active at any point in time.

Derived from: IndexBiMap

CONSTRUCTORS

Activemap::AllActive(const int n)
An active map in which all the indices \(0, 1, 2, \ldots, n-1\) are initialized to be active.

Activemap::NoneActive(const int n)
An active map in which all the indices \(0, 1, 2, \ldots, n-1\) are initialized to be inactive.

ELEMENT ACCESS

INDEX operator()(const int i)
Return the \(i\)'th active index (it is assumed that \(i < n_{\text{active}}\), and the indices do not necessarily appear in order).

MAPPING OVER ELEMENTS

void for_each_active(std::function<void(const INDEX)> lambda)
Apply the function lambda to each active index.

ACTIVATING/DEACTIVATING INDICES

void activate(const int j)
void deactivate(const int j)
Add/remove \(j\) to/from the list of active indices.

void activate_at_pos(const int j)
void deactivate_at_pos(const int j)
Add/remove the index at the \(i\)'th position to/from the list of active indices.

METHODS

INDEX random()
Return one of the \(n_{\text{active}}\) active indices, chosen uniformly at random.

IndexMap sample(const int k)
Sample \(k\) indices uniformly at random (without replacement) from the list of active indices.
VARIABLES

\texttt{nactive}

The number of active indices, \(n_{\text{active}}\).
Bactivemap

Bactivemap is the analog of Activemap for indexing into blocked vectors/matrices.

Derived from: BindexBiMap

CONSTRUCTORS

Bactivemap::AllActive(const Bstructure& st)
 An active map in which all the indices are initialized to be active.
Bactivemap::NoneActive(const Bstructure& st)
 An active map in which all the indices are initialized to be inactive.

ELEMENT ACCESS

iipair operator()(const int i)
 Return the ith active index block/index pair \((J,j)\) (it is assumed that \(i < n_{\text{active}}\)).

MAPPING OVER ELEMENTS

void for_each_active(std::function<void(const iipair)> lambda)
 Apply the function \(\text{lambda}\) to each active \((J,j)\) pair.

ACTIVATING/DEACTIVATING INDICES

void activate(const iipair& p)
void activate(const int J, const int j)
 Add \((J,j)\) to the list of active block/index pairs.
void deactivate(const iipair& p)
void deactivate(const int J, const int j)
 Remove \((J,j)\) from the list of active block/index pairs.
void activate_at_pos(const int i)
void deactivate_at_pos(const int i)
 Add/remove the block/index pair at the ith position to/from the list of active indices.

METHODS

INDEX random()
 Return one of the \(n_{\text{active}}\) active block/indices pairs, chosen uniformly at random.
IndexMap sample(const int k)
 Sample \(k\) block/index pairs uniformly at random (without replacement) from the active list.
VARIABLES

nactive
The number of active block/index pairs, n_{active}.
Multithreading

9. Basic multithreading

ThreadManager

Every Mondrian program must have a single global ThreadManager object, called threadManager (defined in the Mondrian_base.inc) which coordinates the sequence in which MultiLoop and ThreadBank objects launch threads. Amongst other things, threadManager ensures that the system’s limit on the number of enqueued threads is not exceeded.

Note that “launching” a thread in this context really means passing it to the system’s own low level thread scheduler. Similarly, by the number of active threads we mean the number of threads that are either running or waiting to be launched by the low level scheduler.

CONSTRUCTORS

ThreadManager(const int _maxthreads)

Construct a ThreadManager object, which will limit the total number of active threads (i.e., running or queued to the low level scheduler) to _maxthreads. In general, there is no advantage to _maxthreads exceeding the number of cores on the system.

METHODS

void enqueue(ThreadBank* bank)

Add bank to the list of ThreadBank objects waiting to launch a new thread. When a new slot becomes available (i.e., nthreads falls below maxthreads), the manager will signal to one of the ThreadBank objects on this list that it may launch a single new thread (see release).

void release(ThreadBank* bank)

This function is called when a thread from bank terminates. It decrements bank’s number of active threads and attempts to find another ThreadBank waiting to launch a new thread in place of the one that is terminating.

int get_nthreads()

Return the number of active threads, not counting privileged threads (see ThreadBank).
MultiLoop

MultiLoop is the simplest multithreading class in Mondrian, which simply implements a parallel for loop. Internally, every MultiLoop instance has its own ThreadBank.

CONSTRUCTORS

MultiLoop(const int n, std::function<void(int)> lambda)
 Execute the function lambda(const int i) a total of n times, in parallel, with i set to 1, 2, ..., n.

ThreadBank

The ThreadBank class is used to spawn independent threads in a given block of code and then wait for them to finish (the ThreadBank's destructor joins all the threads, therefore the code will wait on all the threads to finish before exiting the block). In addition to the global number of active threads being limited by threadManager.maxthreads, each ThreadBank can individually limit how many of its threads may be active at any one time. This can be useful for balancing resources in situations where multiple threads spawn further threads of their own via separate ThreadBank objects.

Another issue that may arise when n threads each attempt to launch further threads is that the global thread manager delays each of them because n already counts towards the number of active threads. To avoid this problem, each ThreadManager instance is allowed to have a certain number of “privileged” threads that do not count towards the grand total.

CONSTRUCTORS

ThreadBank(const int _maxthreads=1000, const int _maxprivileged=1)
 Construct a new ThreadBank in which the number of active threads is limited to _maxthreads, and which has the given number of privileged threads.

METHODS

void add(function lambda, const OBJ x)
 Launch lambda as an independent thread with argument x. The type of lambda must match the type of x. For example if OBJ is int, FUNCTION might be std::function<void(int)>. If the global limit on the number of active threads has not been reached, lambda is launched immediately. Otherwise, execution stalls until the global thread manager signals that a slot has become available.

void add(FUNCTION lambda, const OBJ1 x1, const OBJ2 x2)
void add(FUNCTION lambda, const OBJ1 x1, const OBJ2 x2, const OBJ3 x3)
 The same as above, but with multiple arguments.

bool is_ready()
 True if this ThreadBank has a launchable thread, and is waiting on the global manager for permission to launch it.
10. Atomic objects

AtomicVector<VECTOR>

When multiple threads concurrently try to access the same vector, race conditions may occur. This issue is particularly serious for sparse vectors, because if one thread forces the underlying data structure (such as an `std::vector` for `Vector`) to be reorganized, and another thread attempts to access it before the reorganization is complete, the code may crash.

The AtomicVector wrapper solves this problem by using a mutex to ensure that any one time only one thread is allowed to write to the vector. Read accesses are not protected from race conditions. In every other aspect `AtomicVector<VECTOR>` behaves the same way as a `VECTOR` object.

Derived from: VECTOR, (Vector),

PROTECTED MEMBER FUNCTIONS

```cpp
void for_each(std::function<void(INDEX,SCALAR&)> lambda)

VECTOR& operator+=(const SCALAR c)
VECTOR& operator-=(const SCALAR c)
VECTOR& operator*=(const SCALAR c)
VECTOR& operator/=(const SCALAR c)
VECTOR& operator+=(const VECTOR& x)
VECTOR& operator-=(const VECTOR& x)
void apply(const OPERATOR& Q)
void applyInv(const OPERATOR& Q)
```

VARIABLES

```cpp
mutex mx
```

The mutex used to block concurrent write accesses to v.
AtomicMatrix<MATRIX>

AtomicMatrix<MATRIX> functions similarly to AtomicVector<VECTOR> but for matrices.

Derived from: MATRIX, (Matrix)

PROTECTED MEMBER FUNCTIONS

void for_each(std::function<void(INDEX,INDEX,SCALAR&)> lambda)
void for_each_in_row(const int i, std::function<void(INDEX,SCALAR&)> lambda)
void for_each_in_column(const int j, std::function<void(INDEX,SCALAR&)> lambda)

MATRIX& operator+=(const SCALAR c)
MATRIX& operator-=(const SCALAR c)
MATRIX& operator*=(const SCALAR c)
MATRIX& operator/=(const SCALAR c)
MATRIX& operator+=(const MATRIX& x)
MATRIX& operator-=(const MATRIX& x)

MATRIX& MultiplyRowsBy(const Cvector& v)
MATRIX& DivideRowsBy(const Cvector& v)
MATRIX& MultiplyColsBy(const Cvector& v)
MATRIX& DivideColsBy(const Cvector& v)

void applyFromLeft(const OPERATOR& Q)
void applyFromLeftInv(const OPERATOR& Q)
void applyFromRight(const OPERATOR& Q)
void applyFromRightInv(const OPERATOR& Q)
Other Objects

11. Wrappers

Detached<CLASS>

The Detached<CLASS> wrapper allows constructing an interface to data stored in another object (called the mother object). The resulting object is said to be detached, because deleting it does not delete the mother object (of type CLASS). This mechanism is often used in situations where normally bare pointers might be employed.

The Detached wrapper works by overriding the destructor of the underlying object, together with some of its copy constructors and assignment operators. Any Mondrian object can be detached in this way, as long as its type, CLASS, is derived from the abstract property class Detachable. In particular, CLASS must define the shallow copy function shallow().

Derived from: CLASS
Dependent on: The mother object (of type CLASS).
Bibliography

