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Density functional theory (DFT) is the most successful and widely used approach for computing the electronic
structure of matter. However, for tasks involving large sets of candidate malecules, running DFT separately
for every possible compound of interest is forbiddingly expensive. In this ﬁ)er, we propose a neural network
based machine learning algorithm which, assuming a sufficiently large tr sample of actual DFT results,
can instead learn to predict certain properties of molecules purely from lar graphs. Our algorithm

is based on the recently proposed covariant compositional networks
reduction operations that are covariant with respect to permutations of
some of the representational limitations of other neural networks that*aze p
graphs, and yields promising results in numerical experiments

molecular datasets.

I. INTRODUCTION

Density functional theoryl (DFT) is the workhorse of

modern quantum chemistry, due to its ability to calcu-
late many properties of molecular systems with high a
curacy. However, this accuracy comes at a significan
computational cost, generally making DFT too costly
applications such as chemical search and drug scr 1
which may involve hundreds of thousands of compou
Methods that help overcome this limitation co cad
rapid developments in biology, medicine, and %

t

engineering.
Recent advances in machine learning, \et{ﬁNc ly,
deep learning?, combined with the a nce, of large
datasets of molecular properties obtaine&%}uzxperi—
mentally and theoretically*™ present an oppertunity to
learn to predict the properties unds from their
chemical structure rather th ‘“3@ them explic-
itly with DFT. A machine ledrning medel could allow for
rapid and accurate exploration of huge ‘molecular spaces
to find suitable candid\azg for des;/ed molecule.
Central to any machifie chnique is the choice

of a suitable set
parametrize and déscr

crip , or features used to
ﬁthe input data. A poor choice
expressiveness of the learning ar-
e predictions impossible. On
ov1d1yg too many features may make
c"l’t espegially when training data is limited.
been a significant amount of work
atures for molecular systems. Pre-
s of energetics based on molecular geometry have
tensively, using a variety of parametriza-
n@% igiincludes bond types and/or angles®, radial
anc

istributions?, the Coulomb matrix and related
, the Smooth Overlap of Atomic Positions
, permutation-invariant distanced1?, symme-

a)Electronic mail: risi@cs.uchicago.edu

als,

CN) framework, and involves tensor
atoms. This new approach avoids
lar in learning from molecular

t%ﬂar d Clean Energy Project and QM9
—~—

r atomic positiond!®7 Moment Tensor
_afd Scattering Networks'?.,

try fungtions
P t.entla

\céhfly, the problem of learning from the structure
of chemical bonds alone, i.e., the molecular graph, has

cted a lot of interest, espemally in light of the ap-
earance of a series of neural network architectures de-
signed specifically for learning from graphs?®26. Much
of the success of these architectures stems from their
ability to pick up on structure in the graph at multi-
ple different scales, while satisfying the crucial require-
ment that the output be invariant to permutations of
the vertices (which, in molecular learning, correspond to
atoms). However, as will explain, the specific way that
most of these architectures ensure permutation invari-
ance still limits their representaional power.

In this paper, we propose a new type of neural net-
work for learning from molecular graphs, based on the
the idea of covariant compositional networks (CCNs),
recently introduced in Ref 27, Importantly, CCNs are
based on explicitly decomposing compound objects (in
our case, molecular graphs) into a hierarchy of subparts
(subgraphs), offering a versatile framework that is ideally
suited to capturing the multiscale nature of molecular
structures from functional groups through local structure
to overall shape. In a certain sense, the resulting models
are the neural networks analog of coarse graining. In ad-
dition, CCNs offer a more nuanced take on permutation
invariance than other graph learning algorithms: while
the overall output of a CCN is still invariant to the per-
mutation of identical atoms, internally, the activations of
the network are covariant rather than invariant, allowing
us to better preserve information about the relationships
between atoms. We demonstrate the success of this ar-
chitecture through experiments on benchmark datasets,
including QM9 and the Harvard Clean Energy Project?
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FIG. 1.

Left: Molecular graphs for C1sHgN30SSe and C2H15NSeSi from t
with corresponding adjacency matrices. Center and right: The co
into a hierarchy of subgraphs {P;} and forming a neural network N i
subgraphs, and receives inputs from other neurons that correspond to

shows how this can equivalently be thought of as an algorithm in which eac

}‘I) d Clean Enery Project (HCEP)? dataset
graph G is constructed by decomposing G
which each“{neuron” n; corresponds to one of the P;
aller %Jbgraphs contained in P;. The center pane

x of G receives and aggregates messages from

its neighbors. To keep the figure simple, we only marked aggrega@t a single vertex in each round (layer).

Il.  LEARNING FROM MOLECULAR GRAPHS

This paper addresses the problem of predicting h\

L
tation ¢(G) learned or implied by our graph learning al-
orithm must be invariant to these transformations. Nat-
urally, in the case of molecules, invariance is restricted to

ical properties directly from each compound’s mo Q.U_Kp_ermutations that map each atom to another atom of the

lar graph, which we will denote G (Figure
such, it is related to the sizable literature on
from graphs. In the kernel machines d
cludes algorithms based on random walk
subgraphs®L, spectral idead32, label pr
proaches have also appeared, starting with Ref. Some
of the proposed graph learni gt‘élurem di-
rectly seek inspiration fromghe type of £lassical convo-
lutional neural networks ( used for image
recognition®®3%, These
across vertices to crea ture representations of each
vertex based on its Mrhoods. Other notable
works on graph n r:ﬁetwork include Refs. 24, 40}
showed that many of these

at we change the numbering of the ver-
lying a permutation . The adjacency matrix
will then change to A’, with

Al = Ao-ii) 01

However, topologically, A and A’ still represent the same
graph. Permutation invariance means that the represen-

same type.

The multiscale property is equally crucial for learning
molecular properties. For example, in the case of a pro-
tein, an ideal graph learning algorithm would represent
G in a manner that simultaneously captures structure at
the level of individual atoms, functional groups, interac-
tions between functional groups, subunits of the protein,
and the protein’s overall shape.

A. Compositional networks

The idea of representing complex objects in terms
of a hierarchy of parts has a long history in machine
learning®3™8 We have recently introduced a general
framework for encoding such part-based models in a spe-
cial type of neural network, called covariant composi-
tional networks (CCNs)?T. In this paper we show how
the CCN formalism can be specialized to learning from
graphs, specifically, the graphs of molecules. Our starting
point is the following definition.

Definition 1 Let G be the graph of a molecule made up
of n atoms {e1,...,en}. The compositional neural
network (comp-net) corresponding to G is a directed
acyclic graph (DAG) N in which each node (neuron) n;
is associated with a subgraph P; of G and carries an ac-
tivation f;. Moreover,
1. If n; is a leaf node, then P; is just a single vertex of
G, i.e., an atom eg(;), and the activation f;, is some
initial label ;. In the simplest case, f; is a “one-hot”
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rithm 1 ngh level schematic of message passing
Spe algorithms?? in the notations of the present paper.
are the starting labels, and ne?, ..., ne} denote
the neighbors of vertex 1.
for each vertex ¢

ol
for £=1 to L

for each vertex ¢

fl H\I/(fne"v---afnek)
¢(G)7f7"<_m (f17"'7fn)

vector that identifies what type of atom resides at the
given vertex.
2. N has a unique root node n, for which P, =G, and
the corresponding f, represents the entire molecule.
3. For any two nodes n; and n;, if n; is a descendant of
n;, then P; is a subgraph of P;, and

fi = ¢i(f017f027"'7f0k)7

where fe,,..., fc, denote the activations of the chil-
dren of n;. Here, ®; is called the aggregation function
of node i.

each round ¢ = 1,...,L, every vertex collects the la-
bels of its immediate neighbors, applies a nonlinear func-
tion ¥, and updates its own label accordingly. From
the neural networks point of view, the rounds corre-
spond to layers and the labels correspond to the ff
activations (Algorithm . More broadly, the classic
Weisfeiler-Lehman test of isomorphism follows the same
logicd®51 and so does the related Weisfeiler-Lehman
kernel, arguably the most successful kernel-based ap-
proach to graph learrzzg@.
In the above mention

collection of all s
a comp-net can

base case when {P/} is the
G of radii £ = 0,1,2,...,
0 be' thought of as a message passing

e centered at i (note that thls
st“she neighbors of ¢, but also i itself).
Convefsely, Ns can be seen as comp-nets, where Pf
is the'subgraph defined by the receptive field of vertex 4
ﬁun (. AJcommon feature of MPNNs, however, is
i

contains n

at the gregation functions that they employ are
riant to permuting their arguments. Most often, ¥
just sums all incoming messages and then applies a non-
rity. This certainly guarantees that the final output
network, ¢(G) = f,., will be permutation invariant

lin:
Note that we now have two separate graphs: the origi of ¢ . ’ —Jr . A
. ub ever, in the next section we argue that it comes at

graph G, and the network A/ that represents the “is@ s
graph of” relationships between different subgraphs
One of the fundamantal ideas of this paper is that N

is a “neuron” that receives inputs (fe,, fe,6 . s
outputs the activation f; = ®;(fe,, feq,- -
right). For now we treat the acti Q\
ice is {P;}, where
11?1‘2%ius of £ of ver-
its of the immediate
neighbors of 4, plus i itself: i
function is discussed in détai

Conceptually, comp-fiets are c
lutional neural netw (Mwhich are the mainstay
of neural networks4n lc%puter ision. In particular,
N only aggregates information
rons from the previous layer,

similarly to ?node of a comp-net only aggre-
i m its children.

graphs is defined, but the defa
P! is the subgraph of vertices
tex i. In this case, P? = {i}

in a«CN e., the image patches for which each neu-
roh is responsible for, form a hierarchy of nested sets
Sini e hlerarchy of {P;} subgraphs.
I his S NN are a specific kind of compositional
ne where the atoms are pixels. Because of this

v, 1\55he following we will sometimes refer to P; as
tive field of neuron i, dropping the “effective”
qualifier for brevity.

As mentioned above, an alternative popular framework
for learning from graphs is message passing neural net-
works (MPNNs)25, An MPNN operates in rounds: in

Nle price of a significant loss of representational power.

I1l.  COVARIANT COMPOSITIONAL NETWORKS

One of the messages of the present paper is that in-
variant aggregation functions, of the type popularized
by message passing neural networks, are not the most
general way to build compositional models for compound
objects, such as graphs. To understand why this is the
case, once again, an analogy with image recognition is
helpful. Classical CNNs face two types of basic image
transformations: translations and rotations. With re-
spect to translations (barring pooling, edge effects and
other complications), CNNs behave in a quasi-invariant
way, in the sense that if the input image is translated by
an integer amount (¢,,t,), the activations in each layer
£ =1,2,...L translate the same way: the activation of
neuron nf j 1s simply transferred to neuron nt,, et L€

"ty jet=J1;- This is the simplest manifestation of a
well studied property of CNNs called equivariancé>253,

With respect to rotations, however, the situation is
more complicated: if we rotate the input image by, e.g.,
90 degrees, not only will the part of the image that fell

in the receptive field of neuron ne move to the receptive

field of a different neuron n’ . but the orientation of

the receptive field will also change For example, features
which were previously picked up by horizontal filters will
now be picked up by vertical filters. Therefore, in general,
—] 7 #fzej (Flgure
It can be shown t at one cannot construct a CNN for
images that behaves in a quasi-invariant way with respect
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FIG. 2. In a convolutional neural network if the input image
is translated by some amount (t1,t2), what used to fall in
the receptive field of neuron nf,j is moved to the receptive
field of ng+t1,j+tz~ Therefore, the activations transform in the

will have
very simple way f’ f+t17j+t2 = fﬁ ;- In contrast, rotations no \e verbex or not.
only move the receptive fields around, but also permute th
neurons in the receptive field internally, so the activatl&&

in

transform in a more complicated manner. The rights han
figure shows that if the CNN has a horizontal filter
and a vertical one (red), then after a rotation by 90 degrees
their activations are exchanged. In steerable CNNsjif*(4
moved to (i, ') by the transformation, then f%, .

reversible way, /@_M = R(f'gj

nificant literature in bothdclal
and the neural networ

The situation in positional networks is similar.
The comp-net an m%%nge passing architectures that
i , by virtue of the aggregation
in its arguments, are all quasi-
ect to permutations) in the sense
two comp-nets for the same graph

. ,e;,.} as a set, and not on the internal ordering of
0s ej,, .. ., ¢ej, making up the receptive field. At
first sight this seems desirable, since it is exactly what we
expect from the overall representation ¢(G). On closer
examination, however, we realize that this property is
potentially problematic, since it means that n; loses all

single tound ofg@nessage passing (red arrows), the labels (ac-
at, ve§ices 2 and 3 will be identical in both graphs.

erefore, e second round of message passing vertex 1
ill get same messages in both graphs (blue arrows), and

way of distinguishing whether 5 and 5 are the

mation about which vertex in its receptive field has

leyLeontributed what to the aggregate information f;. In the

CNN analogy, we can say that we have lost information
about the orientation of the receptive field. In particu-
lar, if higher up in the network f; is combined with some
other feature vector f; from a node with an overlapping
receptive field, the aggregation process has no way of
taking into account which parts of the information in f;
and f; come from shared vertices and which parts do not
(Figure (3)).

The solution is to regard the P; receptive fields as or-
dered sets, and explicitly establish how f; co-varies with
the internal ordering of the receptive fields. To empha-
size that henceforth the P; sets are ordered, we will use
parentheses rather than braces to denote them.

Definition 2 Assume that N is the comp-net of a graph
G, and N is the comp-net of the same graph but after
its vertices have been permuted by some permutation o.
Given any n; € N with receptive field Py = (ep, . .-, €p,.),
let n;- be the corresponding node in N' with receptive field
P = (eq,---s¢eq,). Assume that m €S, is the permuta-
tion that aligns the orderings of the two receptive fields,
i.e., for which eq . = ep,. We say that the comp-nets
are covariant to permutations if for any w, there is a
corresponding function R, such that f]’ = R.(f:)-

To make the form of covariance prescribed by this def-
inition more specific, we make the assumption that the
{f = R:(f)}res,, maps are linear. This allows us to
treat them as matrices, {R;}res, . Furthermore, linear-
ity also implies that {R; }rcs,, form a representation of
Sy, in the group theoretic sense of the Word(this notion
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FIG. 4.

of representation should not be confused with the neural
networks sense of representations of objects, as in “f; is
a representation of P;”).

The representation theory of symmetric groups is a
rich subject that goes beyond the scope of the prese
paper®l. However, there is one particular representation
of S,,, that is likely familiar even to non-algebraists, t

=1 (
Feature tensors in a first order CCN for ethylene (C2Hs) assuming three cha HM green, and blue). Vertices

e1, €2, €5, ¢ are hydrogen atoms, while vertices es, es are carbons. Edge (es,e4) is
bonds. (a) At the input layer, the receptive field for each atom is just the atom itse
At level £ =1 the size of the receptive field of each atom grows depending on th
hydrogen atoms grows to include its neighboring carbon atom, resulting in a feature
the carbon atoms grow to include four atoms each, and therefore have size

carbons will include every atom in the molecule, while the receptive fields o

o)
)

double bo the other edges are single
e feature matrix has size 1 x 3. (b)
ology. The receptive fields for each
size 2 X 3; the receptive fields of
ayer £ =2, the receptive fields of the

Ne)
13}!d{gens will only be of size 4.

—
it clearthat fe}ture vectors that transform this way ex-
@ relatignships between the different constituents of

e receptive field. Note, in particular, that if we de-
fine"Alp Jas the restriction of the adjacency matrix to
(lé'lf Pi = (ep17 R epm) then [A*LPi]tl’b = AP&an)’
thenyA|p transforms exactly as F; does in the equation
ove.

so-called defining representation, given by the P, gRZX"
permutation matrices . ““Definition 4 We say that n; is a second order co-

1 ifn(j)=1
(Pali = b):
0 otherwise.

It is easy to verify that P

S\

271

field, or

e interaction of
0th9{s collectively. We

specific atom in the recep
that specific atom withall t
call this case first ordef, p

utatien covariance.

Definition 3 We %t n; is @ first order covariant
node in a comp if ander the permutation of its re-
ceptive field P; by a% T&S|p,|, its activation transforms

tation of a group &, the matri-

ces (Rg® ce also form a representation. Thus, one
step “in theshietarchy from P,—covariant comp-nets
are ® P,—dovariant comp-nets, where the f; feature
vectors “aze now |P;|> dimensional vectors that trans-
f r permutations of the internal ordering by 7
as fy (R, @ Pr)f;. If we reshape f; into a matrix

F; e RI?i1XIPil then the action
Fi+ P, F;P]

is equivalent to P, ® P, acting on f;. In the following, we
will prefer this more intuitive matrix view, since it makes

vartant node in a comp-net if under the permutation
of its receptive field P; by any m € Syp,|, its activation
transforms as F; — P F; PJ.

Taking the pattern further lets us define third, fourth,
and general, k’th order nodes, in which the activations
are k’th order tensors, transforming under permutations
as F; — F!, where

[Filjs e = [Prlju gy Prlingy - [Prliey Filjge.g-

(1)
Here and in the following, for brevity, we use the Einstein
summation convention, whereby any dummy index that
appears twice on the right hand side of an equation is
automatically summed over.

In general, we will call any quantity which trans-
forms under permutations according to a k’th or-
der P-temsor. Saying that a given quantity is a P-
tensor then not only means that it is representable by
an mxmx... X m array, but also that this array trans-
forms in a specific way under permutations.

Since scalars, vectors and matrices can be considered
0", 1%t and 2°¢ order tensors, the following definition
covers both quasi-invariance and first and second order
covariance as special cases. To unify notation and termi-
nology, in the following we will always talk about feature
tensors rather than feature vectors, and denote the acti-
vations as F; rather than f;.

drodl |

Definition 5 We say that n; is a k’th order covari-
ant node in a comp-net if the corresponding activation
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‘ s IEP a k’th order P—tensor, i.e., it transforms under
r

permutations of P; according to , or the activation is
: nce of d separate P—tensors F,7,...,F." corre-

Publishi d te Pt FY, @
spondaing to d distinct channels.

A covariant compositional network (CCN) is a
comp-net in which each node’s activation is covariant
to permutations in the above sense. Hence we can talk
about first, second, third, etc. order CCNs (CCN 1D,
2D,...). In the first few layers of the network, however,
the order of the nodes might be lower (Figure [4)).

The real significance of covariance, both here and in
classical CNNs, is that while it allows for a richer internal
representation of the data than fully invariant architec-
tures, the final ouput of the network can still easily be
made invariant. In covariant comp-nets this is achieved
by collapsing the input tensors of the root node n, at
the top of the network into invariant scalars, for exam-
ple by computing their sums and traces (reducing them
to zeroth order tensors), and outputting permutation in-
variant combinations of these scalars, such as their sum.

IV. COVARIANT AGGREGATION FUNCTIONS

It remains to explain how to define the ® aggregatio
functions so as to guarantee covariance. Specific
show how to construct ® such that if the F;,, ...
puts of a given node n, at level £ are covariant
P-tensors, then F, = ®(F,,..., F,, ) will
order P—tensor. The aggregation functio t
fine consists of five operations executed in seqtﬁﬁﬁ
motion, stacking, reduction, mixing, a Nﬁ\fn wise
nonlinear transform. Practically relevant send to
have multiple channels, so each F,«is actually awsequence
of d separate P—tensors Fc(il)7 L Fe 7 SHowever, except
for the mixing step, each channeleghavesiindependently,
so for simplicity, for now wefdrop, thesghénnel index.

A 4/

Dcaptures information about a
.., so before combining them
b, to a [Pyl X ... X |P,] ten-
1510}{5 are indexed by the vertices of
ices in each P.,. Assuming that
» 1) and Py = (ep,, ..., €py ), this is
Pal| x| Pe,;| indicator matrix

1. Promotion

Each child tenso
different receptive fiel

done Py defini

sxgiﬁa _ 1 if q; = Pi
B “J 0 otherwise,
-

and setging

[Fci}jlr“vjk =
X750 X

gy - T g et

O

I

F3

I3

é
s = SnLiis

. 5. gaematic of the aggregation process at a given vertex
Q{'n-a second order CCN not involving tensor products
with"d|p, and assuming a single input channel. Feature ten-
rs o, ..., F3 are collected from the neighbors of v as well
as from v itself, promoted, and stacked to form a third order
nsor 7. In this example we compute just three reductions
Q1,Q2,Q3. These are then combined them with the we ;
weights and passed through the o nonlinearity to form the
output tensors (F(l)7 F®), F®)). For simplicity, in this figure
the “¢” and “a” indices are suppressed.

where, once again, Einstein summation is in use, so sum-
mation over ji, ..., is implied. Effectively, the promo-
tion step aligns all the child tensors by permuting the
indices of F,, to conform to the ordering of the atoms in
P, and padding with zeros where necessary.

2. Stacking

Now that the promoted tensors fcl, - ﬁcs all have the
same shape, they can be stacked to form a |P,|x...Xx|P,]
dimensional &+ 1’th order tensor T', with

[ﬁci]jOa-u)jk if P., is the subgraph
Tio..ojr = centered at e, ,
0 otherwise.

It is easy to see that T itself transforms as a P-tensor of
order (k+1).

We may also add additional information to 7" by taking
its tensor product with another P-tensor. In particular,
to explicitly add information about the local topology,
we may tensor multiply 7" by [Alp ]ij = Ae, e, , the
restriction of the adjacency matrix to P,. This will give
an order (k + 3) tensor S = T ® Alp . Otherwise, we
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l:Pet S =T. Note that in most other graph neural
tworks, the topology of the underlying graph is only

PUbI|§;héﬂ1g1 d for implicitly, by the pattern in which differ-
ent activations are combined. Being able to add the local
adjacency matrix explicitly greatly extends the represen-
tational power of CCNs.

3. Reduction

Stacking and the optional tensor product increase the
order of our tensors from k to k+1 or k+ 3. We reduce
this to k again by a combination of generalized tensor
contractions, more accurately called tensor reductions.
For example, one way to drop the rank of S from k + 3
to k is to sum out three of its indices,

Qilw-,ik = Z

ial 1ia2 7io¢3

Si1;<-~77;k'

Note that while this notation does not make it explicit,
Tay, bay A0d 44, must be removed from amongst the in-
dices of Q). Another way to drop the rank is to contract
over three indices,

Qin,.yi = E Sit it Oy iy iy ?

Gaysiagriag

where 5%171.&2,1.&3 is the generalized Kronecker symbol.
third way is fo contract over two indices and sum
index, and so on. The crucial fact is that fesult
of these tensor operations is still a covarian

In general, the number of different
k—+q tensor S can be reduced to order k
q and k. For example, when k=2 and ¢ =3,
different possible tensor reductio uding diagonals).
In contrast, when ¢ =1 (i.e., are notymultiplying by
the adjacency matrix), we 1 possibilities,

corresponding to summin its dimensions.
No matter which case wefare

ach

howeter, and how many

contractions Q1, ..., Q¢ our net actually computes
(in our experiments 'ngMi order nodes, we com-
pute 18 different @hes), jwhat 15 important is that the
resulting order ksten

£

4. Mixing with, lea ble/weights

s satify the P—tensor property.

The rggu ion s&zp can potentially produce quite a
large humber er k tensors, Q1,...,Q,. We reduce
linearly mizing Q1,...,Q,, i.e., taking
combinations of the form

QW =3 "w" ;. (2)
j=1

This is again a covariant operation, and the mixing
weights are the actual learnable parameters of our neural
network.

N

—
o

It is natural to interpret @(1), ceey @(d/) as d' separate
channels, in neural network terminology. Recall that we
also allow the input tensors to have multiple channels,
but up to now the corresponding index has been sup-
pressed. The mixing step is the point where these chan-
nels are all allowed to interact, so becomes

~(c ¢ <
QW =" wl Q) (3)

¢
and the learnable w/g of the network at each level
form a third ordepftensor Wy — (wgz,v i)e,erj- The chan-
nel index ¢ is no ﬁonfused with ¢y, ..., cr denoting
the children of{nodeé%a. Equation [2] is the main mecha-
nism whereby CCNg are'aple to learn increasigly complex
features as gwe move up the network.

H
5. N nlineari%

Finally, get the actual activation of our neuron
Ngeowe add an additive bias by ., and an elementwise

onlin&r' y o (specifically, the ReLU operator o(z) =
max{0,x}), as is standard in neural networks. Thus, ul-
timagely, the output of the aggregation function is the
ction of P—covariant tensors

d r
R o[ 3,00 ]

o'=1j=1

with ¢ € {1,2,...,d'}. As usual in neural networks, the
W, weight tensors are learned by backpropagation and
some form of stochastic gradient descent.

V. EXPERIMENTS

We tested our CCN framework on three different
types of datasets that involve learning the properties of
molecules from their structure: (a) four relatively small
datasets of small molecules that are standard bench-
marks in the kernels literature (MUTAG, PTC, NCI1 and
NCI109), (b) the Harvard Clean Energy Project?, and (c)
QM93. The first two types of datasets are pure graph
classification/regression tasks. QM9 also has physical
(spatial) features, which go somewhat beyond the scope
of the present paper. Therefore, on QM9 we conducted
separate experiments with and without these physical
features (QM9(b) vs. QM9(a)).

In each case, we used second order CCNs (CCN2D)
and included the tensor product with the restricted ad-
jacency matrix, as described in Section [V 2] However,
for computational reasons, we only used 18 of the 50
possible contractions. The base features of each vertex
were initialized with computed histogram alignment ker-
nel features® of depth up to 10: each vertex receives a
base label I; = concat;2, H; (i) where H;(i) € R? (with d
being the total number of distinct discrete node labels) is
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zs I g [ MUTAG | PTC [ NCIT [ NCIL09

51fe ler-Lehman kernel*? 84.50 + 2.16 59.97 + 1.60 84.76 + 0.32 85.12 £ 0.29
|:’Ub|l< & ler Lehman edge kernel®® 82.04 £ 2.33 | 60.18 £2.19 | 84.65 £025 | 85.32 % 0.34
DﬂOI‘Eebt path kernel*” 85.50 £ 2.50 59.53 + 1.71 73.61 + 0.36 73.23 + 0.26
Graphlets kernel* 82.44 £+ 1.29 55.88 £ 0.31 62.40 £+ 0.27 62.35 £ 0.28
Random walk kernel*® 80.33 + 1.35 59.85 + 0.95 TIMED OUT TIMED OUT
Multiscale Laplacian graph kernel®? 87.94 £+ 1.61 63.26 £ 1.48 81.75 £ 0.24 81.31 £ 0.22

PSCN(k = 1037 88.05 £ 4.37 | 62.29 & 5.68 76.34 + 1.68 N/A
Neural graph fingerprints< 89.00 &+ 7.00 57.85 + 3.36 62.21 4 4.72 56.11 4+ 4.31
Second order CCN (our method) 91.64 £ 7.24 70.62 £ 7.04 £6 27 £ 4.13 75.54 £ 3.36

TABLE 1. Classification results on the kernel datasets (accuracy dwmatlon

the vector of relative frequencies of each label for the set
of vertices at distance equal to j from vertex i. The net-
work was chosen to be three levels deep, with the number
of output channels at each level fixed to 10.

To run our experiments, we used our own custom-built
neural network library called GraphFlow®®. Writing our
own deep learning software became necessary because at
the time we started work on the experiments, none of the
standard frameworks such as TensorFlow®, PyTorchf8

purpose deep learning library that offers automatic d1

d in"Ref. 62 (C-SVM algorithm with
1 kernel?3, Welsfeller Lehman edge

nel results repo
the Weisfei
kernel?3,

tiscale Laplacian Graph Kernel62),
erprints?l (with up to 3 levels and a
0) and the “patchy-SAN” convolutional
N)37, The results are presented in Ta-

or MXNet®? had efficient support for the type of tenso
operations required by CCN. GraphFlow is a fast, gen rN arvard Clean Energy Project

entiation, dynamic computation graphs, multithr
and GPU support for tensor contractions. In additl

d splits and av-
. Our train-

1076. 5

A. Graph kern
—

set of €xpériments involved three standard
" datasets: (1) MUTAG, which is a dataset
aromatic and heteroaromatic com-
TC, which consists of 344 chemical com-

daéxsets

71 (3) NCI1 and NCI109, which have
27 Compounds respectively, each screened
for actiyity against small cell lung cancer and ovar-
ian cancer lines™. In each of these datasets, each
molecule has a discrete label (i.e., toxic/non-toxic, aro-
matic/heteroaromatic) and the goal is to predict this
label. We compare CCN 2D against the graph ker-

The Harvard Clean Energy Project ( HCEP)IZI dataset
consists of 2.3 million organic compounds that are can-
didates for use in solar cells. The inputs are molecu-
lar graphs (derived from their SMILES strings), and the
regression target is power conversion efficiency (PCE).
The experiments were ran on a random sample of 50,000
molecules.

On this dataset we compared CCN to the follow-
ing algorithms: Lasso, ridge regression, random forests,
Gradient Boosted Trees (GBT), the Optimal Assign-
ment Wesifeiler—Lehman Graph Kernel?2, Neural Graph
Fingerprints?l, and PSCN2Z. For the first four of these
baseline methods, we created simple feature vectors from
each molecule: the number of bonds of each type (i.e.
number of H-H bonds, number of C-O bonds, etc.) and
the number of atoms of each type. Molecular graph fin-
gerprints uses atom labels of each vertex as base features.
For ridge regression and Lasso, we cross-validated over
A. For random forests and GBT, we used 400 trees, and
cross validated over maximum depth, minimum samples
for a leaf, minimum samples to split a node, and learning
rate (for GBT). For Neural Graph Fingerprints, we used
up to 3 layers and a hidden layer size of 10. In PSCN,
we used a patch size of 10 with two convolutional layers
and a dense layer on top as described in their paper.

C. QM9 Dataset

QM9 has recently emerged as a molecular dataset
of significant interest. QM9 contains ~134k organic
molecules with up to nine atoms (C, H, O, N and F)
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| Test MAE | Test RMSE

|

| WLGK | NGF [PSCN | CCN 2D |

1 Lasso 0.867 1.437 a (Bohr?) 3.75 3.51 | 1.63 1.30
Pub | iStiasg; gression 0.854 1.376 C, (cal/(molK))| 2.390 | 1.91 | 1.09 | 0.93
‘ Random forest 1.004 1.799 G (EV) 4.84 4.36 3.13 2.75
Gradient boosted trees 0.704 1.005 GAP (eV) 0.92 0.86 0.77 0.69
Weisfeiler—Lehman kernel” 0.805 1.096 H (eV) 5.45 4.92 3.56 3.14
Neural graph fingerprints>" 0.851 1.177 HOMO (eV) 0.38 0.34 0.30 0.23
PSCN (k= 10)"3‘ﬂ 0.718 0.973 LUMO (eV) 0.89 0.82 0.75 0.67
Second order CCN (our method)| 0.340 0.449 u (Debye) 1.03 0.94 | 081 0.72
wr (cm 1) 192016 | 168.14 | 152.13 | 120.10
TABLE II. HCEP regression results. Error of predicting R> (Bohr?) {4\1@ 137.43 | 61.70 53.28
power conversion efficiency in units of percent. U (eV) 5. 41“‘L4'89 3.54 3.02
Uo (eV) 586 | %85 | 3.50 2.99
ZPVE (eV) , w051 | 045 | 038 | 0.35
out of the GDB-17 universe of molecules. Each molecule TABLE III. M9 kession results (mean absolute er-
is described by a SMILES string, which is converted to  ror). Heregve %E‘ only“used the graph as the learning input
wysicaldeatures.

the molecular graph. The molecular properties are then
calculated using DFT at the level of either B3LYP or 6-

without any

(-\
L N

31G(2df,p), returning the spatial configurations of each 4
atom, along with thirteen molecular properties: ) | CCN | DFT error |
o . o (Bohr®) ™ 0.22 0.4
(a) Up: atomization energy at 0 Kelvin (eV), 7 (eal funol K)) 0.07 0.34
(b) U: atomization at room temperature (eV), \ G (V)4 0.06 01
(¢c) H: enthalpy of atomization at room temperatur, P (eV) 0.12 12
(eV), H (V) 0.06 0.1
(d) G: free energy of atomization (eV), \ ELOMO (eV) 0.09 2.0
(e) wy: highest fundamental vibrational fre - LUMO (eV) 0.09 2.6
(em™1), 1 (Debye) 0.48 0.1
(f) ZPVE: zero point vibrational energy (eV wi (em™ ") 2.81 28
(g) HOMO: highest occupied molecular orbita ,hrg-y. Ry (Bohr?) 4.00 -
of the highest occupied electronic sta V), U (eV) 0.06 0.1
(h) LUMO: lowest unoccupied molecular or N gy Uo (eV) 0.05 0.1
of the lowest unoccupied electroni V) ZPVE (eV) 0.0039 0.0097

(i) GAP: difference between HOMO an% (eV),
(j) R?: electronic spatial extent (Bohr?),
)
)

(k) p: norm of the dipole momént ve),
(1) a: norm of the static polarizability (Bohr®),
(m) C,: heat capacity at rgom tenp, (cal/mol/K).

We performed two expéri {s ondthe QM9 dataset,
with the goal of providing a bemglimark of CCN as a
graph learning fram Worll:x&demonstrating that our
framework can predict moleculaw properties to the same
level as DFT. Ingbo ses, we trained our system on

each of the thi t properties of QM9 indepen-
dently, and rep

-

1, QMg() )

use\the QM9 dataset to benchmark the CCN ar-
chitecture against the Weisfeiler—-Lehman graph kernel,
Neural Graph Fingerprints, and PSCN. For this test we
consider only heavy atoms and exclude hydrogen. The

CCN architecture is as described above, and settings for
NGF and PSCN are as described for HCEP.

TABLE IV. The mean absolute error of CCN compared to
DFT error when using the complete set of physical features
used in Ref. in addition to the graph of each molecule.

2. QM9(b)

To compare to DFT error, we performed a test of
the QM9 dataset with each molecule including hydro-
gen atoms. We used both physical atomic informa-
tion (vertex features) and bond information (edge fea-
tures) including: atom type, atomic number, acceptor,
donor, aromatic, hybridization, number of hydrogens,
Euclidean distance and Coulomb distance between pairs
of atoms. All the information is encoded in a vectorized
format. Our physical features were taken directly from
the dataset used in Ref. without any special feature
engineering.

To include the edge features into our model along with
the vertex features, we used the concept of line graphs
from graph theory. We constructed the line graph for
each molecular graph in such a way that an edge of the
molecular graph corresponds to a vertex in its line graph,
and if two edges in the molecular graph share a common
vertex then there is an edge between the two correspond-
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e o ™ )

(2) (5)

€2 €6

FIG. 6. Molecular graph of CoHy (left) and its corresponding
line graph (right). The vertices of the line graph correspond
to edges of the molecular graph; two vertices of the line graph
are connected by an edge if their corresponding edges on the
molecular graph share a vertex.

ing vertices in the line graph. (See Fig. @ The edge
features become vertex features in the line graph. The
inputs of our model contain both the molecular graph
and its line graph. The feature vectors F; between the
two graphs are merged at each level /.

We present results for both the CCN 1D and CCN 2D
architectures. For CCN 1D, our network is seven layers
with 64 input channels; at the first and second layer the
number of channels is halved, and beyond that each layer
has 16 channels. For the CCN 2D architecture, we used
three layers, with 32 channels at the input and 16 and
the remaining layers. We report the mean average err
for each learning target in its corresponding physical
and compare it against the DF'T error given in Ref.

Overall, our CCN outperforms the other a %on
m

a s1gn1ﬁcant fraction of the experiments we implemented

On the subsampled HCEP dataset, CC t rms all
other methods by a very large margin. For t raph ker-
nels datasets, the SVM with the iler—-Lehman ker-
nels achieve the highest accura 0?1‘\%)3 and NCI109,
while CCN wins on MUTAG and PTC. Pgrhaps this poor

performance is to be expécted,fsince“the datasets are

e ctive. Indeed, neural
graph fingerprints a g&V\(JSO perform poorly com-
pared to the Weisféiler-Tiehman kernels. In the QM9(a)

ifls better results than the three

D. Discussion

other graph 1

gets

In the QN9(b) ex éent the error of CCN is smaller
than that itself on 11 of 12 learning targets
(Ref. ave DFT error for R2). However,

have obtained even stronger re-
ooking at our results, we find that values de-
ongly on position information, such as the
e'moment and average electronic spatial extent, are
:ted poorly when we include physical features. In
properties that are not expected to strongly de-
pend on spatial extent are predicted significantly better.
This suggests that our spatial input features were not
fully exploited, and that feature engineering position in-
formation could significantly enhance the power of our

CCN.

Our custom deep learning library®® enabled all the
above results to be obtained reasonably efficiently. The
prediction time for CCN 1D and CCN 2D on QM9(b)
comes out to 6.0 ms/molecule and 7.2 ms/molecule, re-
spectively, making it possible to search through a million
candidate molecules in under two hours.

VL. CONCLUSIONS

%n‘ce general framework called
i networks (CCNs) for learning
ules from their graphs. Central

In this paper
covariant com os

eneralizes message passing neural net-
aftd(2) the concept of covariant aggre-
ased on tensor algebra.

v in-a manner the MPNNs are not able to. We also
u@ the GraphFlow software library that provides
effigient implementation of CCNs. Using GraphFlow,
ere able to show that CCNs often outperform ex-
state-of-the-art algorithms in learning molecular

We argue tR&t
fqm ;ular graphs and keep track of the local topol-

we
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