
Predicting Molecular Properties with Covariant Compositional Networks
Truong Son Hy,1 Shubhendu Trivedi,2 Horace Pan,1 Brandon M. Anderson,1 and Risi Kondor1, 3, a)
1)Department of Computer Science, The University of Chicago
2)Toyota Technological Institute at Chicago
3)Department of Statistics, The University of Chicago

(Dated: 2 June 2018)

Density functional theory (DFT) is the most successful and widely used approach for computing the electronic
structure of matter. However, for tasks involving large sets of candidate molecules, running DFT separately
for every possible compound of interest is forbiddingly expensive. In this paper, we propose a neural network
based machine learning algorithm which, assuming a sufficiently large training sample of actual DFT results,
can instead learn to predict certain properties of molecules purely from their molecular graphs. Our algorithm
is based on the recently proposed covariant compositional networks (CCN) framework, and involves tensor
reduction operations that are covariant with respect to permutations of the atoms. This new approach avoids
some of the representational limitations of other neural networks that are popular in learning from molecular
graphs, and yields promising results in numerical experiments on the Harvard Clean Energy Project and QM9
molecular datasets.

I. INTRODUCTION

Density functional theory1 (DFT) is the workhorse of
modern quantum chemistry, due to its ability to calcu-
late many properties of molecular systems with high ac-
curacy. However, this accuracy comes at a significant
computational cost, generally making DFT too costly for
applications such as chemical search and drug screening,
which may involve hundreds of thousands of compounds.
Methods that help overcome this limitation could lead to
rapid developments in biology, medicine, and materials
engineering.

Recent advances in machine learning, specifically,
deep learning2, combined with the appearance of large
datasets of molecular properties obtained both experi-
mentally and theoretically3–5 present an opportunity to
learn to predict the properties of compunds from their
chemical structure rather than computing them explic-
itly with DFT. A machine learning model could allow for
rapid and accurate exploration of huge molecular spaces
to find suitable candidates for a desired molecule.

Central to any machine learning technique is the choice
of a suitable set of descriptors, or features used to
parametrize and describe the input data. A poor choice
of features will limit the expressiveness of the learning ar-
chitecture and make accurate predictions impossible. On
the other hand, providing too many features may make
training difficult, especially when training data is limited.
Hence, there has a been a significant amount of work
on designing good features for molecular systems. Pre-
dictions of energetics based on molecular geometry have
been explored extensively, using a variety of parametriza-
tions6,7. This includes bond types and/or angles8, radial
distance distributions9, the Coulomb matrix and related
structures10–12, the Smooth Overlap of Atomic Positions
(SOAP)13,14, permutation-invariant distances15, symme-

a)Electronic mail: risi@cs.uchicago.edu

try functions for atomic positions16,17, Moment Tensor
Potentials18, and Scattering Networks19.

Recently, the problem of learning from the structure
of chemical bonds alone, i.e., the molecular graph, has
attracted a lot of interest, especially in light of the ap-
pearance of a series of neural network architectures de-
signed specifically for learning from graphs20–26. Much
of the success of these architectures stems from their
ability to pick up on structure in the graph at multi-
ple different scales, while satisfying the crucial require-
ment that the output be invariant to permutations of
the vertices (which, in molecular learning, correspond to
atoms). However, as will explain, the specific way that
most of these architectures ensure permutation invari-
ance still limits their representaional power.

In this paper, we propose a new type of neural net-
work for learning from molecular graphs, based on the
the idea of covariant compositional networks (CCNs),
recently introduced in Ref 27. Importantly, CCNs are
based on explicitly decomposing compound objects (in
our case, molecular graphs) into a hierarchy of subparts
(subgraphs), offering a versatile framework that is ideally
suited to capturing the multiscale nature of molecular
structures from functional groups through local structure
to overall shape. In a certain sense, the resulting models
are the neural networks analog of coarse graining. In ad-
dition, CCNs offer a more nuanced take on permutation
invariance than other graph learning algorithms: while
the overall output of a CCN is still invariant to the per-
mutation of identical atoms, internally, the activations of
the network are covariant rather than invariant, allowing
us to better preserve information about the relationships
between atoms. We demonstrate the success of this ar-
chitecture through experiments on benchmark datasets,
including QM93 and the Harvard Clean Energy Project4.

mailto:risi@cs.uchicago.edu
http://dx.doi.org/10.1063/1.5024797

2

f1

n1

f2

n2

f3

n3

f4

n4

f5

n5

f6

n6

f7

n7

f8

n8

f9

n9

f10

n10

fr nr

FIG. 1. Left: Molecular graphs for C18H9N3OSSe and C22H15NSeSi from the Harvard Clean Enery Project (HCEP)4 dataset
with corresponding adjacency matrices. Center and right: The comp-net of a graph G is constructed by decomposing G
into a hierarchy of subgraphs {Pi} and forming a neural network N in which each “neuron” ni corresponds to one of the Pi

subgraphs, and receives inputs from other neurons that correspond to smaller subgraphs contained in Pi. The center pane
shows how this can equivalently be thought of as an algorithm in which each vertex of G receives and aggregates messages from
its neighbors. To keep the figure simple, we only marked aggregation at a single vertex in each round (layer).

II. LEARNING FROM MOLECULAR GRAPHS

This paper addresses the problem of predicting chem-
ical properties directly from each compound’s molecu-
lar graph, which we will denote G (Figure 1, left). As
such, it is related to the sizable literature on learning
from graphs. In the kernel machines domain this in-
cludes algorithms based on random walks28–30, counting
subgraphs31, spectral ideas32, label propagation schemes
with hashing33,34, and even algebraic ideas35.

Recently, a sequence of neural network based ap-
proaches have also appeared, starting with Ref. 36. Some
of the proposed graph learning architectures21,22,37 di-
rectly seek inspiration from the type of classical convo-
lutional neural networks (CNNs) that are used for image
recognition38,39. These methods involve moving a filter
across vertices to create feature representations of each
vertex based on its local neighborhoods. Other notable
works on graph neural networks include Refs. 24, 40–
42. Very recently, Ref. 25 showed that many of these
approaches can be seen as message passing schemes,
and coined the term message passing neural networks
(MPNNs) to refer to them collectively.

Regardless of the specifics, the two major issues that
graph learning methods need to grapple with are invari-
ance to permutations and capturing structure at multiple
different scales. Let A denote the adjacency matrix of G,
and suppose that we change the numbering of the ver-
tices by applying a permutation σ. The adjacency matrix
will then change to A′, with

A′i,j = Aσ−1(i),σ−1(j).

However, topologically, A and A′ still represent the same
graph. Permutation invariance means that the represen-

tation φ(G) learned or implied by our graph learning al-
gorithm must be invariant to these transformations. Nat-
urally, in the case of molecules, invariance is restricted to
permutations that map each atom to another atom of the
same type.

The multiscale property is equally crucial for learning
molecular properties. For example, in the case of a pro-
tein, an ideal graph learning algorithm would represent
G in a manner that simultaneously captures structure at
the level of individual atoms, functional groups, interac-
tions between functional groups, subunits of the protein,
and the protein’s overall shape.

A. Compositional networks

The idea of representing complex objects in terms
of a hierarchy of parts has a long history in machine
learning43–48. We have recently introduced a general
framework for encoding such part-based models in a spe-
cial type of neural network, called covariant composi-
tional networks (CCNs)27. In this paper we show how
the CCN formalism can be specialized to learning from
graphs, specifically, the graphs of molecules. Our starting
point is the following definition.

Definition 1 Let G be the graph of a molecule made up
of n atoms {e1, . . . , en}. The compositional neural
network (comp-net) corresponding to G is a directed
acyclic graph (DAG) N in which each node (neuron) ni
is associated with a subgraph Pi of G and carries an ac-
tivation fi. Moreover,
1. If ni is a leaf node, then Pi is just a single vertex of
G, i.e., an atom eξ(i), and the activation fi, is some
initial label li. In the simplest case, fi is a “one-hot”

http://dx.doi.org/10.1063/1.5024797

3

Algorithm 1 High level schematic of message passing
type algorithms25 in the notations of the present paper.
Here li are the starting labels, and nei1, . . . ,neik denote
the neighbors of vertex i.
for each vertex i

f0
i ← li

for `= 1 to L
for each vertex i
f `
i ← Ψ(f `−1

nei1
, . . . , f `−1

nei
k
)

φ(G) ≡ fr ← Ψr(fL
1 , . . . , f

L
n)

vector that identifies what type of atom resides at the
given vertex.

2. N has a unique root node nr for which Pr = G, and
the corresponding fr represents the entire molecule.

3. For any two nodes ni and nj, if ni is a descendant of
nj, then Pi is a subgraph of Pj, and

fi = Φi(fc1 , fc2 , . . . , fck),

where fc1 , . . . , fck denote the activations of the chil-
dren of ni. Here, Φi is called the aggregation function
of node i.

Note that we now have two separate graphs: the original
graph G, and the networkN that represents the “is a sub-
graph of” relationships between different subgraphs of G.
One of the fundamantal ideas of this paper is that N can
be interpreted as a neural network, in which each node ni
is a “neuron” that receives inputs (fc1 , fc2 , . . . , fck) and
outputs the activation fi = Φi(fc1 , fc2 , . . . , fck) (Figure
1, right). For now we treat the activations as vectors,
but will soon generalize them to be tensors.

There is some freedom in how the system {Pi} of sub-
graphs is defined, but the default choice is {P`i }, where
P`i is the subgraph of vertices within a radius of ` of ver-
tex i. In this case, P0

i = {i}, P` consits of the immediate
neighbors of i, plus i itself, and so on. The aggregation
function is discussed in detail in Section IV.

Conceptually, comp-nets are closely related to convo-
lutional neural networks (CNNs), which are the mainstay
of neural networks in computer vision. In particular,
1. Each neuron in a CNN only aggregates information

from a small set of neurons from the previous layer,
similarly to how each node of a comp-net only aggre-
gates information from its children.

2. The so-called effective receptive fields of the neurons
in a CNN, i.e., the image patches for which each neu-
ron is responsible for, form a hierarchy of nested sets
similar to the hierarchy of {Pi} subgraphs.

In this sense, CNNs are a specific kind of compositional
network, where the atoms are pixels. Because of this
analogy, in the following we will sometimes refer to Pi as
the receptive field of neuron i, dropping the “effective”
qualifier for brevity.

As mentioned above, an alternative popular framework
for learning from graphs is message passing neural net-
works (MPNNs)25. An MPNN operates in rounds: in

each round ` = 1, . . . , L, every vertex collects the la-
bels of its immediate neighbors, applies a nonlinear func-
tion Ψ, and updates its own label accordingly. From
the neural networks point of view, the rounds corre-
spond to layers and the labels correspond to the f `i
activations (Algorithm 1). More broadly, the classic
Weisfeiler–Lehman test of isomorphism follows the same
logic49–51, and so does the related Weisfeiler–Lehman
kernel, arguably the most successful kernel-based ap-
proach to graph learning33.

In the above mentioned base case when {P`i } is the
collection of all subgraphs of G of radii ` = 0, 1, 2, . . .,
a comp-net can also be thought of as a message passing
algorithm: the messages received by vertex i in round
` are the activations {f `−1uj | uj ∈B(i, 1)}, where B(i, 1)

is the ball of radius one centered at i (note that this
contains not just the neighbors of i, but also i itself).
Conversely, MPNNs can be seen as comp-nets, where P`i
is the subgraph defined by the receptive field of vertex i
in round `. A common feature of MPNNs, however, is
that the Ψ aggregation functions that they employ are
invariant to permuting their arguments. Most often, Ψ
just sums all incoming messages and then applies a non-
linearity. This certainly guarantees that the final output
of the network, φ(G) = fr, will be permutation invariant.
However, in the next section we argue that it comes at
the price of a significant loss of representational power.

III. COVARIANT COMPOSITIONAL NETWORKS

One of the messages of the present paper is that in-
variant aggregation functions, of the type popularized
by message passing neural networks, are not the most
general way to build compositional models for compound
objects, such as graphs. To understand why this is the
case, once again, an analogy with image recognition is
helpful. Classical CNNs face two types of basic image
transformations: translations and rotations. With re-
spect to translations (barring pooling, edge effects and
other complications), CNNs behave in a quasi-invariant
way, in the sense that if the input image is translated by
an integer amount (tx, ty), the activations in each layer
` = 1, 2, . . . L translate the same way: the activation of
neuron n`i,j is simply transferred to neuron n`i+t1,j+t2 , i.e.,
f ′`i+t1,j+t2= f `i,j . This is the simplest manifestation of a
well studied property of CNNs called equivariance52,53.

With respect to rotations, however, the situation is
more complicated: if we rotate the input image by, e.g.,
90 degrees, not only will the part of the image that fell
in the receptive field of neuron n`i,j move to the receptive

field of a different neuron n`−j,i, but the orientation of
the receptive field will also change. For example, features
which were previously picked up by horizontal filters will
now be picked up by vertical filters. Therefore, in general,
f ′`−j,i 6=f `i,j (Figure 2).

It can be shown that one cannot construct a CNN for
images that behaves in a quasi-invariant way with respect

http://dx.doi.org/10.1063/1.5024797

4

FIG. 2. In a convolutional neural network if the input image
is translated by some amount (t1, t2), what used to fall in
the receptive field of neuron n`i,j is moved to the receptive
field of n`i+t1,j+t2 . Therefore, the activations transform in the
very simple way f ′`i+t1,j+t2 = f `

i,j . In contrast, rotations not
only move the receptive fields around, but also permute the
neurons in the receptive field internally, so the activations
transform in a more complicated manner. The right hand
figure shows that if the CNN has a horizontal filter (blue)
and a vertical one (red), then after a rotation by 90 degrees,
their activations are exchanged. In steerable CNNs, if (i, j) is
moved to (i′, j′) by the transformation, then f ′`i′,j′ =R(f `

i,j),
where R is some fixed linear function of the rotation angle.

to both translations and rotations, unless every filter is
directionless. It is, however, possible to construct a CNN
in which the activations transform in a predictable and
reversible way, f ′`−j,i = R(f `i,j), for some fixed function
R. This phenomenon is called steerability, and has a sig-
nificant literature in both classical signal processing54–58

and the neural networks field59.

The situation in compositional networks is similar.
The comp-net and message passing architectures that
we have examined so far, by virtue of the aggregation
function being symmetric in its arguments, are all quasi-
invariant (with respect to permutations) in the sense
that if N and N ′ are two comp-nets for the same graph
differing only in a reordering σ of the vertices of the un-
derlying graph G, and ni is a neuron in N while n′j is
the corresponding neuron in N ′, then fi = f ′j for any
permutation σ ∈ Sn.

Quasi-invariance amounts to asserting that the acti-
vation fi at any given node must only depend on Pi =
{ej1 , . . . , ejk} as a set, and not on the internal ordering of
the atoms ej1 , . . . , ejk making up the receptive field. At
first sight this seems desirable, since it is exactly what we
expect from the overall representation φ(G). On closer
examination, however, we realize that this property is
potentially problematic, since it means that ni loses all

1

32

4 5 65′

1

32

4 5 6

FIG. 3. These two graphs are not isomorphic, but after a
single round of message passing (red arrows), the labels (ac-
tivations) at vertices 2 and 3 will be identical in both graphs.
Therefore, in the second round of message passing vertex 1
will get the same messages in both graphs (blue arrows), and
will have no way of distinguishing whether 5 and 5′ are the
same vertex or not.

information about which vertex in its receptive field has
contributed what to the aggregate information fi. In the
CNN analogy, we can say that we have lost information
about the orientation of the receptive field. In particu-
lar, if higher up in the network fi is combined with some
other feature vector fj from a node with an overlapping
receptive field, the aggregation process has no way of
taking into account which parts of the information in fi
and fj come from shared vertices and which parts do not
(Figure 3).

The solution is to regard the Pi receptive fields as or-
dered sets, and explicitly establish how fi co-varies with
the internal ordering of the receptive fields. To empha-
size that henceforth the Pi sets are ordered, we will use
parentheses rather than braces to denote them.

Definition 2 Assume that N is the comp-net of a graph
G, and N ′ is the comp-net of the same graph but after
its vertices have been permuted by some permutation σ.
Given any ni ∈N with receptive field Pi = (ep1 , . . . , epm),
let n′j be the corresponding node in N ′ with receptive field
P ′j = (eq1 , . . . , eqm). Assume that π ∈ Sm is the permuta-
tion that aligns the orderings of the two receptive fields,
i.e., for which eqπ(a)

= epa . We say that the comp-nets
are covariant to permutations if for any π, there is a
corresponding function Rπ such that f ′j = Rπ(fi).

To make the form of covariance prescribed by this def-
inition more specific, we make the assumption that the
{f 7→ Rπ(f)}π∈Sm maps are linear. This allows us to
treat them as matrices, {Rπ}π∈Sn . Furthermore, linear-
ity also implies that {Rπ}π∈Sm form a representation of
Sm in the group theoretic sense of the word60(this notion

http://dx.doi.org/10.1063/1.5024797

5

e1

e2

e3 e4

e5

e6

`= 0

e1

e2

e3 e4

e5

e6

`= 1

e1

e2

e3 e4

e5

e6

`= 2

FIG. 4. Feature tensors in a first order CCN for ethylene (C2H4) assuming three channels (red, green, and blue). Vertices
e1, e2, e5, e6 are hydrogen atoms, while vertices e3, e4 are carbons. Edge (e3, e4) is a double bond, the other edges are single
bonds. (a) At the input layer, the receptive field for each atom is just the atom itself, so the feature matrix has size 1× 3. (b)
At level `= 1 the size of the receptive field of each atom grows depending on the local topology. The receptive fields for each
hydrogen atoms grows to include its neighboring carbon atom, resulting in a feature tensor of size 2× 3; the receptive fields of
the carbon atoms grow to include four atoms each, and therefore have size 4× 3. (c) At layer `= 2, the receptive fields of the
carbons will include every atom in the molecule, while the receptive fields of the hydrogens will only be of size 4.

of representation should not be confused with the neural
networks sense of representations of objects, as in “fi is
a representation of Pi”).

The representation theory of symmetric groups is a
rich subject that goes beyond the scope of the present
paper61. However, there is one particular representation
of Sm that is likely familiar even to non-algebraists, the
so-called defining representation, given by the Pπ ∈Rn×n
permutation matrices

[Pπ]i,j =

{
1 if π(j) = i

0 otherwise.

It is easy to verify that Pπ2π1 = Pπ2Pπ1 for any π1,π2 ∈
Sm, so {Pπ}π∈Sm is indeed a representation of Sm. If the
transformation rules of the fi activations in a given comp-
net are dictated by this representation, then each fi must
necessarily be a |Pi| dimensional vector, and intuitively
each component of fi carries information related to one
specific atom in the receptive field, or the interaction of
that specific atom with all the others collectively. We
call this case first order permutation covariance.

Definition 3 We say that ni is a first order covariant
node in a comp-net if under the permutation of its re-
ceptive field Pi by any π ∈ S|Pi|, its activation transforms
as fi 7→ Pπfi.

If (Rg)g∈G is a representation of a group G, the matri-
ces (Rg⊗Rg)g∈G also form a representation. Thus, one
step up in the hierarchy from Pπ–covariant comp-nets
are Pπ ⊗ Pπ–covariant comp-nets, where the fi feature
vectors are now |Pi|2 dimensional vectors that trans-
form under permutations of the internal ordering by π
as fi 7→ (Pπ ⊗ Pπ)fi. If we reshape fi into a matrix
Fi ∈R|Pi|×|Pi|, then the action

Fi 7→ PπFiP
>
π

is equivalent to Pπ⊗Pπ acting on fi. In the following, we
will prefer this more intuitive matrix view, since it makes

it clear that feature vectors that transform this way ex-
press relationships between the different constituents of
the receptive field. Note, in particular, that if we de-
fine A↓Pi as the restriction of the adjacency matrix to
Pi (i.e., if Pi = (ep1 , . . . , epm) then [A↓Pi]a,b = Apa,pb),
then A↓Pi transforms exactly as Fi does in the equation
above.

Definition 4 We say that ni is a second order co-
variant node in a comp-net if under the permutation
of its receptive field Pi by any π ∈ S|Pi|, its activation

transforms as Fi 7→ PπFiP
>
π .

Taking the pattern further lets us define third, fourth,
and general, k’th order nodes, in which the activations
are k’th order tensors, transforming under permutations
as Fi 7→ F ′i , where

[F ′i]j1,...,jk = [Pπ]j1,j′1 [Pπ]j2,j′2 . . . [Pπ]jk,j′k [Fi]j′1,...,j′k .

(1)
Here and in the following, for brevity, we use the Einstein
summation convention, whereby any dummy index that
appears twice on the right hand side of an equation is
automatically summed over.

In general, we will call any quantity which trans-
forms under permutations according to (1) a k’th or-
der P-tensor. Saying that a given quantity is a P–
tensor then not only means that it is representable by
an m×m× . . .×m array, but also that this array trans-
forms in a specific way under permutations.

Since scalars, vectors and matrices can be considered
0th, 1st and 2nd order tensors, the following definition
covers both quasi-invariance and first and second order
covariance as special cases. To unify notation and termi-
nology, in the following we will always talk about feature
tensors rather than feature vectors, and denote the acti-
vations as Fi rather than fi.

Definition 5 We say that ni is a k’th order covari-
ant node in a comp-net if the corresponding activation

http://dx.doi.org/10.1063/1.5024797

6

Fi is a k’th order P–tensor, i.e., it transforms under
permutations of Pi according to (1), or the activation is
a sequence of d separate P–tensors F

(1)
i , . . . , F

(d)
i corre-

sponding to d distinct channels.

A covariant compositional network (CCN) is a
comp-net in which each node’s activation is covariant
to permutations in the above sense. Hence we can talk
about first, second, third, etc. order CCNs (CCN 1D,
2D,. . .). In the first few layers of the network, however,
the order of the nodes might be lower (Figure 4).

The real significance of covariance, both here and in
classical CNNs, is that while it allows for a richer internal
representation of the data than fully invariant architec-
tures, the final ouput of the network can still easily be
made invariant. In covariant comp-nets this is achieved
by collapsing the input tensors of the root node nr at
the top of the network into invariant scalars, for exam-
ple by computing their sums and traces (reducing them
to zeroth order tensors), and outputting permutation in-
variant combinations of these scalars, such as their sum.

IV. COVARIANT AGGREGATION FUNCTIONS

It remains to explain how to define the Φ aggregation
functions so as to guarantee covariance. Specifically, we
show how to construct Φ such that if the Fc1 , ..., Fck in-
puts of a given node na at level ` are covariant k’th order
P–tensors, then Fa = Φ(Fc1 , ..., Fck) will also be a k’th
order P–tensor. The aggregation function that we de-
fine consists of five operations executed in sequence: pro-
motion, stacking, reduction, mixing, and an elementwise
nonlinear transform. Practically relevant CCNs tend to
have multiple channels, so each Fci is actually a sequence
of d separate P–tensors F

(1)
ci , . . . , F

(d)
ci . However, except

for the mixing step, each channel behaves independently,
so for simplicity, for now we drop the channel index.

1. Promotion

Each child tensor Fci captures information about a
different receptive field Pci , so before combining them
we must “promote” each Fci to a |Pa| × . . .× |Pa| ten-
sor F̃ci , whose dimensions are indexed by the vertices of
Pa rather than the vertices in each Pci . Assuming that
Pci = (eq1 , . . . , eq|Pci|

) and Pb = (ep1 , . . . , ep|Pp|), this is

done by defining a |Pa|× |Pci | indicator matrix

χci→ai,j =

{
1 if qj = pi
0 otherwise,

and setting

[F̃ci]j1,...,jk =

[χci→b]j1,j′1 [χci→b]j2,j′2 . . . [χci→b]jk,j′k [Fci]j′1,...,j′k ,

v

F3

F1

F2F0

T =

[Q1]i,j =
∑

k Ti,j,k

[Q2]i,j =
∑

k Ti,k,j

[Q1]i,j =
∑

k Ti,i,j

F (c) = σ
(∑

j

wc,jQj + bc1
)

FIG. 5. Schematic of the aggregation process at a given vertex
v of G in a second order CCN not involving tensor products
with A↓Pb and assuming a single input channel. Feature ten-
sors F0, . . . , F3 are collected from the neighbors of v as well
as from v itself, promoted, and stacked to form a third order
tensor T . In this example we compute just three reductions
Q1, Q2, Q3. These are then combined them with the wc,j

weights and passed through the σ nonlinearity to form the
output tensors (F (1), F (2), F (3)). For simplicity, in this figure
the “`” and “a” indices are suppressed.

where, once again, Einstein summation is in use, so sum-
mation over j′1, . . . , j

′
k is implied. Effectively, the promo-

tion step aligns all the child tensors by permuting the
indices of Fci to conform to the ordering of the atoms in
Pa, and padding with zeros where necessary.

2. Stacking

Now that the promoted tensors F̃c1 , ..., F̃cs all have the
same shape, they can be stacked to form a |Pa|×. . .×|Pa|
dimensional k+1’th order tensor T , with

Tj0,...,jk =





[F̃ci]j0,...,jk if Pci is the subgraph

centered at epj0 ,

0 otherwise.

It is easy to see that T itself transforms as a P -tensor of
order (k + 1).

We may also add additional information to T by taking
its tensor product with another P -tensor. In particular,
to explicitly add information about the local topology,
we may tensor multiply T by [A↓Pa]i,j = Aepi ,epj , the
restriction of the adjacency matrix to Pa. This will give
an order (k + 3) tensor S = T ⊗ A↓Pa . Otherwise, we

http://dx.doi.org/10.1063/1.5024797

7

just set S = T . Note that in most other graph neural
networks, the topology of the underlying graph is only
accounted for implicitly, by the pattern in which differ-
ent activations are combined. Being able to add the local
adjacency matrix explicitly greatly extends the represen-
tational power of CCNs.

3. Reduction

Stacking and the optional tensor product increase the
order of our tensors from k to k+1 or k+3. We reduce
this to k again by a combination of generalized tensor
contractions, more accurately called tensor reductions.
For example, one way to drop the rank of S from k + 3
to k is to sum out three of its indices,

Qi1,...,ik =
∑

iα1
,iα2

,iα3

Si1,...,ik .

Note that while this notation does not make it explicit,
iα1

, iα2
and iα3

must be removed from amongst the in-
dices of Q. Another way to drop the rank is to contract
over three indices,

Qi1,...,ik =
∑

iα1
,iα2

,iα3

Si1,...,ikδiα1,iα2
,iα3

,

where δiα1,iα2
,iα3

is the generalized Kronecker symbol. A
third way is to contract over two indices and sum over one
index, and so on. The crucial fact is that result of each
of these tensor operations is still a covariant P–tensor.

In general, the number of different ways that an order
k+q tensor S can be reduced to order k depends on both
q and k. For example, when k= 2 and q= 3, there are 50
different possible tensor reductions (excluding diagonals).
In contrast, when q = 1 (i.e., we are not multiplying by
the adjacency matrix), we only have k+ 1 possibilities,
corresponding to summing S over each of its dimensions.
No matter which case we are in, however, and how many
contractions Q1, . . . , Qd′ our network actually computes
(in our experiments using second order nodes, we com-
pute 18 different ones), what is important is that the
resulting order k tensors satify the P–tensor property.

4. Mixing with learnable weights

The reduction step can potentially produce quite a
large number of order k tensors, Q1, . . . , Qr. We reduce
this number by linearly mixing Q1, . . . , Qr, i.e., taking
d′ < r linear combinations of the form

Q̃(i) =

r∑

j=1

w
(`)
i,j Qj . (2)

This is again a covariant operation, and the mixing
weights are the actual learnable parameters of our neural
network.

It is natural to interpret Q̃(1), . . . , Q̃(d′) as d′ separate
channels, in neural network terminology. Recall that we
also allow the input tensors to have multiple channels,
but up to now the corresponding index has been sup-
pressed. The mixing step is the point where these chan-
nels are all allowed to interact, so (2) becomes

Q̃(c) =
∑

c′,j

w
(`)
c,c′,j Q

(c′)
j , (3)

and the learnable weights of the network at each level
form a third order tensor W` = (w

(`)
c,c′,j)c,c′,j . The chan-

nel index c is not to be confused with c1, . . . , ck denoting
the children of node a. Equation 2 is the main mecha-
nism whereby CCNs are able to learn increasigly complex
topological features as we move up the network.

5. Nonlinearity

Finally, to get the actual activation of our neuron
na, we add an additive bias b`,c, and an elementwise
nonlinearity σ (specifically, the ReLU operator σ(x) =
max{0, x}), as is standard in neural networks. Thus, ul-
timately, the output of the aggregation function is the
collection of P–covariant tensors

F (c)
a = σ

[d∑

c′=1

r∑

j=1

w
(`)
c,c′,j Q

(c′)
j + b`,c 1

]
(4)

with c ∈ {1, 2, . . . , d′}. As usual in neural networks, the
W` weight tensors are learned by backpropagation and
some form of stochastic gradient descent.

V. EXPERIMENTS

We tested our CCN framework on three different
types of datasets that involve learning the properties of
molecules from their structure: (a) four relatively small
datasets of small molecules that are standard bench-
marks in the kernels literature (MUTAG, PTC, NCI1 and
NCI109), (b) the Harvard Clean Energy Project4, and (c)
QM93. The first two types of datasets are pure graph
classification/regression tasks. QM9 also has physical
(spatial) features, which go somewhat beyond the scope
of the present paper. Therefore, on QM9 we conducted
separate experiments with and without these physical
features (QM9(b) vs. QM9(a)).

In each case, we used second order CCNs (CCN2D)
and included the tensor product with the restricted ad-
jacency matrix, as described in Section IV 2. However,
for computational reasons, we only used 18 of the 50
possible contractions. The base features of each vertex
were initialized with computed histogram alignment ker-
nel features63 of depth up to 10: each vertex receives a
base label li = concat10j=1Hj(i) where Hj(i) ∈ Rd (with d
being the total number of distinct discrete node labels) is

http://dx.doi.org/10.1063/1.5024797

8

MUTAG PTC NCI1 NCI109

Wesifeiler–Lehman kernel33 84.50 ± 2.16 59.97 ± 1.60 84.76 ± 0.32 85.12 ± 0.29
Wesifeiler–Lehman edge kernel33 82.94 ± 2.33 60.18 ± 2.19 84.65 ± 0.25 85.32 ± 0.34
Shortest path kernel29 85.50 ± 2.50 59.53 ± 1.71 73.61 ± 0.36 73.23 ± 0.26
Graphlets kernel31 82.44 ± 1.29 55.88 ± 0.31 62.40 ± 0.27 62.35 ± 0.28
Random walk kernel28 80.33 ± 1.35 59.85 ± 0.95 TIMED OUT TIMED OUT
Multiscale Laplacian graph kernel62 87.94 ± 1.61 63.26 ± 1.48 81.75 ± 0.24 81.31 ± 0.22
PSCN(k = 10)37 88.95 ± 4.37 62.29 ± 5.68 76.34 ± 1.68 N/A
Neural graph fingerprints21 89.00 ± 7.00 57.85 ± 3.36 62.21 ± 4.72 56.11 ± 4.31
Second order CCN (our method) 91.64 ± 7.24 70.62 ± 7.04 76.27 ± 4.13 75.54 ± 3.36

TABLE I. Classification results on the kernel datasets (accuracy ± standard deviation).

the vector of relative frequencies of each label for the set
of vertices at distance equal to j from vertex i. The net-
work was chosen to be three levels deep, with the number
of output channels at each level fixed to 10.

To run our experiments, we used our own custom-built
neural network library called GraphFlow64. Writing our
own deep learning software became necessary because at
the time we started work on the experiments, none of the
standard frameworks such as TensorFlow65, PyTorch66

or MXNet67 had efficient support for the type of tensor
operations required by CCN. GraphFlow is a fast, general
purpose deep learning library that offers automatic differ-
entiation, dynamic computation graphs, multithreading,
and GPU support for tensor contractions. In addition to
CCN, it also implements other graph neural networks, in-
cluding Neural Graph Fingerprints21, PSCN37 and Gated
Graph Neural Networks40. We also provide a reference
implementation of CCN1D and CCN2D in PyTorch68.

In each experiment we used 80% of the dataset for
training, 10% for validation, and 10% for testing. For
the kernel datasets we performed the experiments on 10
separate training/validation/test stratified splits and av-
eraged the resulting classification accuracies. Our train-
ing technique used mini-batch stochastic gradient descent
with the Adam optimization method69 and a batch size
of 64. The initial learning rate was set to 0.001, and
decayed linearly after each step towards a minimum of
10−6.

A. Graph kernel datasets

Our first set of experiments involved three standard
“graph kernels” datasets: (1) MUTAG, which is a dataset
of 188 mutagenic aromatic and heteroaromatic com-
pounds,70 (2) PTC, which consists of 344 chemical com-
pounds that have been tested for positive or negative
toxicity in lab rats,71 (3) NCI1 and NCI109, which have
4110 and 4127 compounds respectively, each screened
for activity against small cell lung cancer and ovar-
ian cancer lines72. In each of these datasets, each
molecule has a discrete label (i.e., toxic/non-toxic, aro-
matic/heteroaromatic) and the goal is to predict this
label. We compare CCN 2D against the graph ker-

nel results reported in Ref. 62 (C-SVM algorithm with
the Weisfeiler–Lehman kernel33, Weisfeiler–Lehman edge
kernel33, Shortest Paths Graph Kernel29, Graphlets
Kernel31 and the Multiscale Laplacian Graph Kernel62),
Neural Graph Fingerprints21 (with up to 3 levels and a
hidden size of 10) and the “patchy-SAN” convolutional
algorithm (PSCN)37. The results are presented in Ta-
ble I.

B. Harvard Clean Energy Project

The Harvard Clean Energy Project (HCEP)4 dataset
consists of 2.3 million organic compounds that are can-
didates for use in solar cells. The inputs are molecu-
lar graphs (derived from their SMILES strings), and the
regression target is power conversion efficiency (PCE).
The experiments were ran on a random sample of 50,000
molecules.

On this dataset we compared CCN to the follow-
ing algorithms: Lasso, ridge regression, random forests,
Gradient Boosted Trees (GBT), the Optimal Assign-
ment Wesifeiler–Lehman Graph Kernel33, Neural Graph
Fingerprints21, and PSCN37. For the first four of these
baseline methods, we created simple feature vectors from
each molecule: the number of bonds of each type (i.e.
number of H–H bonds, number of C–O bonds, etc.) and
the number of atoms of each type. Molecular graph fin-
gerprints uses atom labels of each vertex as base features.
For ridge regression and Lasso, we cross-validated over
λ. For random forests and GBT, we used 400 trees, and
cross validated over maximum depth, minimum samples
for a leaf, minimum samples to split a node, and learning
rate (for GBT). For Neural Graph Fingerprints, we used
up to 3 layers and a hidden layer size of 10. In PSCN,
we used a patch size of 10 with two convolutional layers
and a dense layer on top as described in their paper.

C. QM9 Dataset

QM9 has recently emerged as a molecular dataset
of significant interest. QM9 contains ∼134k organic
molecules with up to nine atoms (C, H, O, N and F)

http://dx.doi.org/10.1063/1.5024797

9

Test MAE Test RMSE

Lasso 0.867 1.437
Ridge regression 0.854 1.376
Random forest 1.004 1.799
Gradient boosted trees 0.704 1.005
Weisfeiler–Lehman kernel33 0.805 1.096
Neural graph fingerprints21 0.851 1.177
PSCN (k= 10)37 0.718 0.973
Second order CCN (our method) 0.340 0.449

TABLE II. HCEP regression results. Error of predicting
power conversion efficiency in units of percent.

out of the GDB-17 universe of molecules. Each molecule
is described by a SMILES string, which is converted to
the molecular graph. The molecular properties are then
calculated using DFT at the level of either B3LYP or 6-
31G(2df,p), returning the spatial configurations of each
atom, along with thirteen molecular properties:

(a) U0: atomization energy at 0 Kelvin (eV),
(b) U : atomization at room temperature (eV),
(c) H: enthalpy of atomization at room temperature

(eV),
(d) G: free energy of atomization (eV),
(e) ω1: highest fundamental vibrational frequency

(cm−1),
(f) ZPVE: zero point vibrational energy (eV),
(g) HOMO: highest occupied molecular orbital, energy

of the highest occupied electronic state (eV),
(h) LUMO: lowest unoccupied molecular orbital, energy

of the lowest unoccupied electronic state (eV),
(i) GAP: difference between HOMO and LUMO (eV),
(j) R2: electronic spatial extent (Bohr2),
(k) µ: norm of the dipole moment (Debye),
(l) α: norm of the static polarizability (Bohr3),
(m) Cv: heat capacity at room temp. (cal/mol/K).

We performed two experiments on the QM9 dataset,
with the goal of providing a benchmark of CCN as a
graph learning framework, and demonstrating that our
framework can predict molecular properties to the same
level as DFT. In both cases, we trained our system on
each of the thirteen target properties of QM9 indepen-
dently, and report the MAE for each.

1. QM9(a)

We use the QM9 dataset to benchmark the CCN ar-
chitecture against the Weisfeiler–Lehman graph kernel,
Neural Graph Fingerprints, and PSCN. For this test we
consider only heavy atoms and exclude hydrogen. The
CCN architecture is as described above, and settings for
NGF and PSCN are as described for HCEP.

WLGK NGF PSCN CCN 2D

α (Bohr3) 3.75 3.51 1.63 1.30
Cv (cal/(mol K)) 2.39 1.91 1.09 0.93
G (eV) 4.84 4.36 3.13 2.75
GAP (eV) 0.92 0.86 0.77 0.69
H (eV) 5.45 4.92 3.56 3.14
HOMO (eV) 0.38 0.34 0.30 0.23
LUMO (eV) 0.89 0.82 0.75 0.67
µ (Debye) 1.03 0.94 0.81 0.72
ω1 (cm−1) 192.16 168.14 152.13 120.10
R2 (Bohr2) 154.25 137.43 61.70 53.28
U (eV) 5.41 4.89 3.54 3.02
U0 (eV) 5.36 4.85 3.50 2.99
ZPVE (eV) 0.51 0.45 0.38 0.35

TABLE III. QM9(a) regression results (mean absolute er-
ror). Here we have only used the graph as the learning input
without any physical features.

CCN DFT error

α (Bohr3) 0.22 0.4
Cv (cal/(mol K)) 0.07 0.34
G (eV) 0.06 0.1
GAP (eV) 0.12 1.2
H (eV) 0.06 0.1
HOMO (eV) 0.09 2.0
LUMO (eV) 0.09 2.6
µ (Debye) 0.48 0.1
ω1 (cm−1) 2.81 28
R2 (Bohr2) 4.00 -
U (eV) 0.06 0.1
U0 (eV) 0.05 0.1
ZPVE (eV) 0.0039 0.0097

TABLE IV. The mean absolute error of CCN compared to
DFT error when using the complete set of physical features
used in Ref. 25 in addition to the graph of each molecule.

2. QM9(b)

To compare to DFT error, we performed a test of
the QM9 dataset with each molecule including hydro-
gen atoms. We used both physical atomic informa-
tion (vertex features) and bond information (edge fea-
tures) including: atom type, atomic number, acceptor,
donor, aromatic, hybridization, number of hydrogens,
Euclidean distance and Coulomb distance between pairs
of atoms. All the information is encoded in a vectorized
format. Our physical features were taken directly from
the dataset used in Ref. 25 without any special feature
engineering.

To include the edge features into our model along with
the vertex features, we used the concept of line graphs
from graph theory. We constructed the line graph for
each molecular graph in such a way that an edge of the
molecular graph corresponds to a vertex in its line graph,
and if two edges in the molecular graph share a common
vertex then there is an edge between the two correspond-

http://dx.doi.org/10.1063/1.5024797

10

e1

e2

e3 e4

e5

e6

(1)

(2)

(3)

(4)

(5)

(3)

(4)(1)

(2) (5)

FIG. 6. Molecular graph of C2H4 (left) and its corresponding
line graph (right). The vertices of the line graph correspond
to edges of the molecular graph; two vertices of the line graph
are connected by an edge if their corresponding edges on the
molecular graph share a vertex.

ing vertices in the line graph. (See Fig. 6). The edge
features become vertex features in the line graph. The
inputs of our model contain both the molecular graph
and its line graph. The feature vectors F` between the
two graphs are merged at each level `.

We present results for both the CCN 1D and CCN 2D
architectures. For CCN 1D, our network is seven layers
with 64 input channels; at the first and second layer the
number of channels is halved, and beyond that each layer
has 16 channels. For the CCN 2D architecture, we used
three layers, with 32 channels at the input and 16 and
the remaining layers. We report the mean average error
for each learning target in its corresponding physical unit
and compare it against the DFT error given in Ref. 25.

D. Discussion

Overall, our CCN outperforms the other algorithms on
a significant fraction of the experiments we implemented.
On the subsampled HCEP dataset, CCN outperforms all
other methods by a very large margin. For the graph ker-
nels datasets, the SVM with the Weisfeiler–Lehman ker-
nels achieve the highest accuracy on NCI1 and NCI109,
while CCN wins on MUTAG and PTC. Perhaps this poor
performance is to be expected, since the datasets are
small and neural networks usually require tens of thou-
sands of training examples to be effective. Indeed, neural
graph fingerprints and PSCN also perform poorly com-
pared to the Weisfeiler–Lehman kernels. In the QM9(a)
experiment, CCN obtains better results than the three
other graph learning algorithms on all 13 learning tar-
gets.

In the QM9(b) experiment, the error of CCN is smaller
than that of DFT itself on 11 of 12 learning targets
(Ref. 25 does not have DFT error for R2). However,
other recent works14,25 have obtained even stronger re-
sults. Looking at our results, we find that values de-
pending strongly on position information, such as the
dipole moment and average electronic spatial extent, are
predicted poorly when we include physical features. In
contrast, properties that are not expected to strongly de-
pend on spatial extent are predicted significantly better.
This suggests that our spatial input features were not
fully exploited, and that feature engineering position in-
formation could significantly enhance the power of our

CCN.
Our custom deep learning library64 enabled all the

above results to be obtained reasonably efficiently. The
prediction time for CCN 1D and CCN 2D on QM9(b)
comes out to 6.0 ms/molecule and 7.2 ms/molecule, re-
spectively, making it possible to search through a million
candidate molecules in under two hours.

VI. CONCLUSIONS

In this paper we presented a general framework called
covariant compositional networks (CCNs) for learning
the properties of molecules from their graphs. Central
to this framework are two key ideas: (1) a compositional
structure that generalizes message passing neural net-
works (MPNNs) and (2) the concept of covariant aggre-
gation functions based on tensor algebra.

We argue that CCNs can extract multiscale structure
from molecular graphs and keep track of the local topol-
ogy in a manner the MPNNs are not able to. We also
introduced the GraphFlow software library that provides
an efficient implementation of CCNs. Using GraphFlow,
we were able to show that CCNs often outperform ex-
isting state-of-the-art algorithms in learning molecular
properties.

ACKNOWLEDGEMENTS

The authors would like to thank the Institute for
Pure and Applied Mathematics and the participants of
its “Understanding Many Particle Systems with Ma-
chine Learning” program for inspiring this research. Our
work was supported by DARPA Young Faculty Award
D16AP00112, and used computing resources provided by
the University of Chicago Research Computing Center.

1P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964).
2Y. LeCun, Y. Bengio, and G. Hinton, Nature 521, 436444
(2015).

3R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. von Lilienfeld,
Sci. Data 1 (2014).

4J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk,
C. Amador-Bedolla, R. S. Sanchez-Carrera, A. Gold-Parker,
L. Vogt, A. M. Brockway, and A. Aspuru-Guzik, J. Phys. Chem.
Lett. 2, 22412251 (2011).

5S. Kirklin, J. E. Saal, B. Meredig, A. Thompson, J. W. Doak,
M. Aykol, S. Rühl, and C. Wolverton, NPJ Comput. Mat. 1,
15010 (2015).

6K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O. A. von
Lilienfeld, K.-R. Müller, and A. Tkatchenko, J. Chem. Phys. 6,
2326 (2015).

7B. Huang and O. A. von Lilienfeld, J. Chem. Phys. 145 (2016).
8F. A. Faber, L. Hutchison, , B. Huang, J. Gilmer, S. S. Schoen-
holz, G. E. Dahl, O. Vinyals, S. Kearnes, P. F. Riley, and O. A.
von Lilienfeld, J. Chem. Theory Comput. 13, 52555264 (2017).

9O. A. von Lilienfeld, R. Ramakrishnan, M. Rupp, and A. Knoll,
Int. J. Quantum Chem. 115 (2015).

10M. Rupp, A. Tkatchenko, K. R. Müller, and O. A. von Lilienfeld,
Phys. Rev. Lett. 108 (2012).

http://dx.doi.org/10.1038/npjcompumats.2015.10
http://dx.doi.org/10.1038/npjcompumats.2015.10
http://dx.doi.org/10.1063/1.5024797

11

11K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Schef-
fler, O. A. von Lilienfeld, A. Tkatchenko, and K.-R. Müller, J.
Chem. Theory Comput. 9, 3404 (2013).

12G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia,
K. Hansen, A. Tkatchenko, K.-R. Müller, and O. A. von Lilien-
feld, New J. Phys. 15 (2013).

13A. P. Bartók, R. Kondor, and G. Csányi, Phys. Rev. B 87 (2013).
14A. P. Bartók, S. De, C. Poelking, N. Bernstein, J. R. Kermode,

G. Csányi, and M. Ceriotti, Science Advances 3 (2017).
15G. Ferré, J.-B. Maillet, and G. Stoltz, J. Chem. Phys. 143,

104114 (2015).
16J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007).
17J. Behler, J. Chem. Phys. 134, 074106 (2011).
18A. V. Shapeev, Multiscale Model. Simul. 14, 1153 (2016).
19M. Hirn, S. Mallat, and N. Poilvert, Multiscale Modeling Sim-

ulation 15, 827 (2017).
20J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, Proc. ICLR,
3 (2014).

21D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell,
T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, Adv. NIPS, 28,
2224 (2015).

22S. Kearns, K. McCloskey, M. Brendl, V. Pande, and P. Riley, J.
Comput. Aided Mol. Des. 30, 595 (2016).

23M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-
dergheynst, IEEE Signal Process. Mag. 34, 18 (2017).

24K. T. Schütt, K. T., F. Arbabzadah, S. Chmiela, K. R. Müller,
and A. Tkatchenko, Nat. Commun. 8, 13890 (2017).

25J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E.
Dahl, Proc. ICML, 70 (2017).

26K. Schütt, P.-J. Kindermans, H. E. Sauceda Felix, S. Chmiela,
A. Tkatchenko, and K.-R. Müller, Proc. NIPS, (2017).

27R. Kondor, T. S. Hy, H. Pan, S. Trivedi, and B. M. Anderson,
Proc. ICLR workshops, (2018).

28T. Gärtner, NIPS 2002 workshop on unreal data, (2002).
29K. M. Borgwardt and H. P. Kriegel, Proc. IEEE ICDM, 5, 74

(2005).
30A. Feragen, N. Kasenburg, J. Peterson, M. de Bruijne, and K. M.

Borgwardt, Adv. NIPS, 26 (2013).
31N. Shervashidze, S. V. N. Vishwanathan, T. Petri, K. M., and

K. M. Borgwardt, Proc. AISTATS, 12, 488 (2009).
32S. V. N. Vishwanathan, N. N. Schraudolf, R. Kondor, and K. M.

Bogwardt, J. Mach. Learn. Res. 11, 1201 (2010).
33N. Shervashidze, P. Schweitzer, E. J. van Leeuwan, K. Mehlhorn,

and K. M. Borgwardt, J. Mach. Learn. Res. 12, 2539 (2011).
34M. Neumann, R. Garnett, C. Baukhage, and K. Kersting, Ma-
chine Learning, 102 (2016).

35R. Kondor and K. M. Borgwardt, Proc. ICML, 25, 496 (2008).
36F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Mon-

fardini, IEEE Trans. on Neural Netw. 20, 61 (2009).
37M. Niepert, M. Ahmed, and K. Kutzkov, Proc. ICML, 33, 2014

(2016).
38Y. LeCun, Y. Bengio, and P. Haffner, Proc. IEEE , 2278 (1998).
39A. Krizhevsky, I. Sutskever, and G. E. Hinton, Adv. NIPS, 25,

1097 (2012).
40Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, Proc. ICLR,
4 (2016).

41P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, and
K. Kavukcuoglu, Adv. NIPS, 29, 4502 (2016).

42T. N. Kipf and M. Welling, Proc. ICLR, 5 (2017).
43M. Fischler and R. Elschlager, IEEE Trans. Comput. C-22, 67

(1973).
44Y. Ohta, T. Kanade, and T. Sakai, Proc. IJCPR, 4, 752 (1978).
45Z. W. Tu, X. R. Chen, A. L. Yuille, and S. C. Zhu, Int. J.

Comput. Vis. 63, 113 (2005).
46P. F. Felzenszwalb and D. P. Huttenlocher, Int. J. Comput. Vis.
61, 55 (2005).

47S. Zhu and D. Mumford, Found. Trends Comput. Graphics Vis.
2, 259 (2006).

48P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan, IEEE Trans. Pattern Anal. Mach. Intell. 32, 541 (2010).

49B. Weisfeiler and A. A. Lehman, Nauchno-Technicheskaya Infor-
matsia 9 (1968).

50R. C. Read and D. G. Corneil, J. Graph Theory 1, 339 (1977).
51J. Y. Cai, M. Furer, and N. Immerman, Combinatorica 12, 389

(1992).
52T. Cohen and M. Welling, Proc. ICML, 33, 2990 (2016).
53D. E. Worrall, S. Garbin, D. Turmukhambetov, and G. J. Bros-

tow, Proc. IEEE CVPR, (2017).
54W. T. Freeman and E. H. Adelson, IEEE Trans. Pattern Anal.

Mach. Intell. 13, 891 (1991).
55E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J.

Heeger, IEEE Trans. Inf. Theory. 38, 587 (1992).
56P. Perona, IEEE Trans. Pattern Anal. Mach. Intell. 17, 488

(1995).
57P. C. Teo and Y. Hel-Or, Pattern Recognit. Lett. 16, 7 (1998).
58R. Manduchi, P. Perona, and D. Shy, IEEE Trans. on Signal

Process. 46, 1168 (1998).
59T. Cohen and M. Welling, Proc. ICLR, 5 (2017).
60J.-P. Serre, Linear Representations of Finite Groups, Graduate

Texts in Mathamatics, Vol. 42 (Springer-Verlag, 1977).
61B. E. Sagan, The Symmetric Group, Grad. Texts in Math.

(Springer, 2001).
62R. Kondor and H. Pan, Adv. NIPS, 29, 2982 (2016).
63N. M. Kriege, P. Giscard, and R. Wilson, Adv. NIPS, 20, 1623

(2016).
64T. S. Hy, “GraphFlow: a C++ deep learning framework,” https:

//github.com/HyTruongSon/GraphFlow (2017–).
65M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,

G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat,
I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learn-
ing on heterogeneous systems,” (2015), software available from
tensorflow.org.

66A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, Adv. NIPS, 30
(2017).

67T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang, NIPS workshop, (2016).

68S. Trivedi, T. S. Hy, and H. Pan, “CCN in PyTorch,” https:

//github.com/horacepan/CCN (2017–).
69D. P. Kingma and J. Ba, in Proc. ICLR (San Diego, 2015).
70A. K. Debnat, R. L. L. de Compadre, G. Debnath, A. J. Shus-

terman, and C. Hansch, J. Med. Chem. 34, 786 (1991).
71H. Toivonen, A. Srinivasan, R. D. King, S. Kramer, and

C. Helma, Bioinformatics 19, 1183 (2003).
72N. Wale, I. A. Watson, and G. Karypis, Knowl. Info. Sys. 14,

347 (2008).

http://dx.doi.org/10.1103/PhysRevLett.98.146401
http://dx.doi.org/10.1063/1.3553717
http://dx.doi.org/ 10.1109/MSP.2017.2693418
https://openreview.net/forum?id=S1TgE7WR-
https://github.com/HyTruongSon/GraphFlow
https://github.com/HyTruongSon/GraphFlow
https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/horacepan/CCN
https://github.com/horacepan/CCN
http://dx.doi.org/10.1063/1.5024797

http://dx.doi.org/10.1063/1.5024797

http://dx.doi.org/10.1063/1.5024797

http://dx.doi.org/10.1063/1.5024797

http://dx.doi.org/10.1063/1.5024797

f1

n1

f2

n2

f3

n3

f4

n4

f5

n5

f6

n6

f7

n7

f8
n8

f9
n9

f10

n10

fr nr

http://dx.doi.org/10.1063/1.5024797

http://dx.doi.org/10.1063/1.5024797

http://dx.doi.org/10.1063/1.5024797

1

32

4 5 65′

1

32

4 5 6

http://dx.doi.org/10.1063/1.5024797

e1

e2

e3 e4

e5

e6

`=0

http://dx.doi.org/10.1063/1.5024797

e1

e2

e3 e4

e5

e6

`=1

http://dx.doi.org/10.1063/1.5024797

e1

e2

e3 e4

e5

e6

`=2

http://dx.doi.org/10.1063/1.5024797

v

F3

F1

F2F0

T =

[Q1]i,j =
∑

k Ti,j,k

[Q2]i,j =
∑

k Ti,k,j

[Q1]i,j =
∑

k Ti,i,j

F (c) = σ
(∑

j

wc,jQj + bc1
)

http://dx.doi.org/10.1063/1.5024797

e1

e2

e3 e4

e5

e6

(1)

(2)

(3)

(4)

(5)

(3)

(4)(1)

(2) (5)

http://dx.doi.org/10.1063/1.5024797

	Predicting Molecular Properties with Covariant Compositional Networks
	Abstract
	Introduction
	Learning from molecular graphs
	Compositional networks

	Covariant compositional networks
	Covariant Aggregation Functions
	Promotion
	Stacking
	Reduction
	Mixing with learnable weights
	Nonlinearity

	Experiments
	Graph kernel datasets
	Harvard Clean Energy Project
	QM9 Dataset
	QM9(a)
	QM9(b)

	Discussion

	Conclusions
	Acknowledgements

	Article File
	1 left-top
	1 left-bottom-left
	1 left-bottom-right
	1 center
	1 right
	2top
	2bottom
	3
	4left
	4center
	4right
	5
	6

