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Convolutional Neural Networks
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Definition 1. Let A, ..
maps

., X1, be a sequence of index sets, ¢1, ..., ¢y linear

¢ L(Xyp-1) — L(AY),

and oy : Vy — V), appropriate pointwise nonlinearities, such as the ReLU
operator. The corresponding multilayer feed-forward neural network
(MFF-NN) is then a sequence of maps fo — f1 — fa— ... = fr, where

fo(z) = op(De(fr-1)(2)).

In a Convolutional Neural Network (CNN) each ¢, linear map is
just a convolution with a corresponding filter g;:

de(fo1) = (fomr + 90)(x) = D, froi(z —y) 90(y).

yeZ?

It is these filters that the CNN learns from the training data.

EqQuivariance

A traditional CNN is equivariant in the sense that if the input to the
network is translated

for 1§ fo(x) = fo(x—¢),

then the activations in higher layers transform in a corresponding
way

for 1y fo(x) = fo(x-1).

Equivariance is important for multiple reasons:

1. It reduces the number of parameters that the network needs to
learn.

2. It ensures that the same filters are applied to every part of the
image.

3. If we add a final translation invariant layer, then the entire neural
network will be translation invariant.

EqQuivariance to groups

It many settings one wants to construct neural networks that are
invariant to some group G other than translations, e.g., the group
of 3D rotatations, SO(3). In these setting, however, the activations
often live not on G itself, but on a space X' that G acts on (technically,
X is a homogeneous space or quotient space G/H).

The general setup is the following:

1. Each layer of the network corresponds to a homogoneous space
Xy

2.Gactson Xy by x Tgf(:c) (with g € G).

3. The activation of layer ¢ is a function f;e L(A)).

4. The induced action of G on L(X)) is

F s TE(f) () = F(TD) ().

Definition 2. Let GG be a group and X1, X be two sets with corresponding
G-actions
Tgt Xl — Xl, Té: XQ — /YQ.

Let T and T’ be the induced actions of G on LX| and LX>. We say that
a (linear or non-linear) map ¢: L(X)) - L(AXy) is equivariant with the
action of G' (or G—equivariant for short) if

o(Ty(f)) = Ty(¢(f)) VfeL(A)
for any group element geG.
L(A) " L(4)
¢ ¢
L(%) LX)

Definition 3. Let N be a feed-forward neural network with L+1 lay-
ers and G be a group that acts on each index space X, ..., X. Let
TV, TL, ..., TL be the corresponding actions on L(Xy), ..., L(X). We
say that N is a G—equivariant feed-forward network if, when the
inputs are transformed fy — Ty( fo) (for any g € G), the activations of

the other layers correspondingly transform as f, — Tg( fo)-
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Convolufion on groups

Given f,g: G — C, the convolution of f with g is defined

(f+9)@) = [ Flay™) g() duy).

If f: G/H - Cand g: G/K — C, then

(f ()= [ A1) g1%(0) du(v).

The Fourier transform of f:G — C is defined as the collection of

matrices

where pg, p1, p2, ..

Flo) = [ () pilu) du(uw),

are the irredicuble representations of G. The

convolution theorem on compact groups states that

Frg(pi) = Fpi) - T(p;)-

Caosel: f:G—-C and ¢g: G/H-C

frg:GIH—C

(f+9)@) = [ F@™) g([v]gym) duv).

L)

f*g(p)

)

f(p)

(L)

g1¢(p)

Casell: f:G/H-C and ¢g: H\G—-C

fxgG—C

(f *g)(u) =|H|

H\G

-1

f*g(p)

f1é(p)

F(ug aym) 9(y) du(y)

=)

g1¢(p)

Caselll: f:G/H-C and g: H\G/K -C

f*g:GIK - C

(f*g)(x) = |H|

H\G

LID-CLH)

f*a(p)

f1e(p)

FE 1) 9T ey ) dny)-

()

g1%(p)

Main theorem

Theorem 1. A feed-forward neural network is equivariant to the
action of a compact group G if and only if the linear operation in
each layer is of the form

Go(fo—1) = fo-1* ge

for a learnable filter gy.

Applications

1. Spherical CNNs [Cohen et al., 2018] [Kondor et al., 2018]

2.CNNs on manifolds and steerability [Masci et al., 2015]
[Marcos et al, 2017] [Worral et al, 2017]

3. CNNs for graphs [Gilmer et al., 2017] [Son et al., 2018]
4. Covariant networks for physical systems [Kondor, 2018]
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