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Proof of Proposition 1. By the nestedness of Sy O S; 2 Expanding, we get
. 2 S, for some sequence of permutation matrices

II4,...,1I, H decomposes recursively as ¢(a) = ((A1 — Ag) sin a cos a)2 + By ,1(sin a)2+
: o 2 _
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Unwrapping this recursion tells us that || H||%; is equal to Biasin(2a) + (sine/)2By 1 + (cos /)2 By

L
Rewriting the second two terms as
D] [0 P I [55PAAS 2 PAA - £

=1 .
((sin@)? + (cos a’)Q)(BM + BQ72)+
However, since the rotations Uypty,...,Ur leave 2
span({ e; | i € [n] \ Sy }) invariant, ((sina)? — (cosa’)2)(By1 — Bas)
2 2 2
”[Af]Je,Se”Frob = ”[Aerl]Je»SzHFrob =...= .
gives
= ”[AL]JZ,SZHIQ:rob == H[H]Jz,SzH]%rob'
B 13 )5 Ry = (L5 Similar = (A -42) (n(2a))? -
y symmetey. | Hls,, s, [y = I[H] 5. [y Similarty. () = (sin(2a))” + By sin(2a)+
A - o= o |
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5 + 5 cos(2a).

Proof of Proposition 2. Since J = {i}, by Proposition 1
Introducing d = (B2 — Bi,1)/2 and the other variables

k-1 - a,b, c,e and 6 gives the new objective function
=2 VAU 1S, i, + 20 [UeAeaU] iy s, |17
p=1 ¥(0) = a(sin0)* + bsin + ccos O + d.

The first term can be written 2 Z';;} [O[A¢-1]110 "]}, Setting the derivative with respect to § zero,

while the second term is
2asinf cosf + bcosf — csinf = 0.

2| [O[Ar-1]L,s,[Uel§, 5,0k I =
2[0[Ar-1)1,5,[Uelg, 5,[Uels,.5,[Ae-1]{ 5,0 Tk ke =
2[0[A¢_1]1.5, [Aefl];’—ngT}k .= 2[OBOT]k . asin(260) + bcosf — csinf = 0.
m  Nowletting e = vb? + ¢ and w = arctan(c/b)

Again using sin(2z) = 2sinx cos z,

asin(26) + e(cosw cos @ — sinwsin ) = 0.
Proof of Proposition 3. Analogous to the proof of Propo-

sition 2, but summed over each I; xI4, ..., I, xI,, block. Using cos(z +y) = coszcosy — sinzsiny,
Proof of Proposition 4. We want to minimize (a/e)sin(20) + cos(6 + w) =0,
2 which is finally equivalent to (23). [ |
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B B Proof of Theorem 1. Let v be a specific wavelet ¢, with
+ [O (BM BLQ)OT] . support S = {s1,...,skx} = supp(v)) C [n]; fs and 15
21 722 2,2 be the restriction of f and v to S regarded as a vectors;
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and ), D and Q be defined as in Definition 5. The Holder
property then gives

K
f3Lfs = Z Qi j(f(s:i) = f(57))* <

i,j=1

K
<Y erQiy(f(si) = f(s))? < erenK?, (26)

i,j=1

where L = I — Q is the normalized Laplacian. At the same
time, if z/an comes from row/column i of Ay, then by (11),
[A¢).i = Ug... Uy A9, and therefore

Qs < crviQus < el As A ss =
= cr||AY|? = er |[Ad.il]* = er |1 Hoi||* < ere 27)

Clearly, Q and L share the same normalized eigenbasis
{v1,...,0,}. Letting A1,...,\g be the corresponding
eigenvalues, f; = (fs,v;) and ¢; = (g, v;) and taking
any v >0
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which implies

(,9) = (Fs s) < 5 [v6dQuvs +22 1107 fs].

The first term on the r.h.s of this inequality is bounded by
(27), while for any cy > 4/(1 — (1 — 2A)2), by (26),

K K
~ 1
fQ7 s =) 1 [P <eay (1= f7
i=1 """ i=1
=cafd Lfs < eremenK*

giving (f,v) < cr(ye + v tegeaK?). Optimizing this

for « yields (f,) < cp /crcae'/2K. By flipping the —
sign in (28) to +, a similar lower bound can be derived for
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Figure 6. The MMF wavelets on a cycle graph on 16 vertices

recover the Haar wavelet system.
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Figure 7. Comparison of the Frobenius norm error of the binary
parallel MMF and Nystrom approximations on the HEP dataset
in the non-rank-restricted case and the rank-restricted case with

r =60.



