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Abstract

Multiresolution Matrix Factorization (MMF) is
a recently introduced method for finding multi-
scale structure and defining wavelets on graphs
and matrices. MMF can also be used for ma-
trix compression (sketching). However, the orig-
inal MMF algorithm of (Kondor et al., 2014)
scales with n3 or worse (where n is the num-
ber of rows/columns in the matrix to be factor-
ized) making it infeasible for large scale prob-
lems. In this paper we describe pMMF, a fast par-
allel MMF algorithm, which can scale to n in the
range of millions. Our experimental results show
that when used for matrix compression, pMMF
often achieves much lower error than competing
algorithms (especially on network data), yet for
sparse matrices its running time scales close to
linearly with n.

1 INTRODUCTION

The massive size of modern datasets often requires matri-
ces arising in learning problems to be reduced in size. Dis-
tance matrices or Gram (kernel) matrices, in particular, are
often a computational bottleneck, because they are large
and dense. Assuming that the number of data points is
n, the space complexity of these matrices is n2, while the
time complexity of the linear algebra operations involved
in many learning algorithms, such as eigendecomposition,
matrix inversion, or solving least squares problems, usually
scales with n3. Without efficient matrix compression (or, as
they are sometimes called, sketching) methods, many pop-
ular machine learning algorithms are simply inapplicable to
today’s datasets, where n is often on the order of millions.

The most classical method for compressing a symmetric
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matrix A∈Rn×n is Principle Component Analysis (PCA),
which projects A onto the subspace spanned by its k lead-
ing eigenvectors (Eckart and Young, 1936). PCA is optimal
in the sense that the projection minimizes the reconstruc-
tion error of A measured in terms of any of the three most
common matrix norms: Frobenius, operator, or nuclear.
The main drawback of PCA is its computational complex-
ity — calculating the k leading eigenvectors of A, unless A
is very sparse, costs O(kn2), which is often prohibitive.

To address this issue, in recent years randomized sketch-
ing methods have become very popular. These algorithms
come in three main flavors (see (Woodruff, 2014) for a re-
cent review):

1. Dense projection methods project A to a random sub-
space spanned by a small number of dense random vec-
tors and use Johnson–Lindenstrauss type arguments to
show that this preserves most of the structure (Halko
et al., 2011);

2. Row/column sampling methods (when A is positive
semi-definite, usually called Nyström methods) con-
struct an approximation to A from a small subset of its
rows/columns sampled from a carefully chosen proba-
bility distribution (Smola and Schökopf, 2000; Fowlkes
et al., 2004; Drineas and Mahoney, 2005; Deshpande
et al., 2006; Kumar et al., 2009; Zhang and Kwok,
2010; Wang and Zhang, 2013; Gittens and Mahoney,
2013);

3. Structured sparsity based methods combine the ad-
vantages of (i) and (ii) by sampling a small number of
rows/columns, but after applying a dense but efficiently
computable transformation, such as an FFT (Ailon and
Chazelle, 2010; Martinsson, 2008).

What all of the above randomized algorithms have in com-
mon is the underlying assumption that A has low rank, or
at least that it can be well modeled by a low rank surro-
gate. Recently, however, a number of authors have pro-
posed multiresolution structure as an alternative to the low
rank paradigm, especially in the context of graph/network
data (Ravasz and Barabási, 2003; Coifman and Maggioni,
2006; Savas et al., 2011). Multiresolution Matrix Fac-
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torization (MMF) applies these ideas to matrices directly
(Kondor et al., 2014), and has been proposed as an alter-
native to 1–3 for matrix sketching. However, the actual
algorithm described in (Kondor et al., 2014) for comput-
ing MMF factorizations has time complexity O(n3) (or an
even higher power n for higher order rotations), ruling out
its use on large datasets.

The present paper describes the first practical MMF–based
approach to matrix sketching, bypassing the limitations of
(Kondor et al., 2014) by introducing a new, fast parallel
MMF algorithm called pMMF. Our experiments show that

1. When A is sparse, pMMF can easily scale to n in the
range of millions even on modest hardware.

2. For many matrices of interest, the wall clock running
time of pMMF is close to linear in n.

3. The compression error of the resulting MMF-based
sketching scheme is often much lower than that of the
other sketching methods.

The code for pMMF has been made publicly available in
the form of a C++ software library distributed under the
GNU Public License v.3.0. (Kondor et al., 2015).

2 MATRIX COMPRESSION WITH MMF

In the following, [n] will denote the set {1, 2, . . . , n}.
Given a matrix A ∈Rn×n and two (ordered) sets S1, S2 ⊆
[n], AS1,S2

will denote the |S1|×|S2| dimensional subma-
trix of A cut out by the rows indexed by S1 and the columns
indexed by S2. S will denote the complement of S, in [n],
i.e., [n]\S. B1∪· B2∪· . . .∪· Bm = [n] denotes that the or-
dered sets B1, . . . , Bm form a partition of [n]. A:,i or [A]:,i
denotes the i’th column of A.

2.1 The MMF Sketching Model

The Multiresolution Matrix Factorization (MMF) of a sym-
metric matrix A∈Rn×n is a multi-level factorization of the
form

A ≈ Q⊤
1 . . . Q⊤

L−1Q
⊤
LH QLQL−1 . . . Q1, (1)

where Q1, . . . , QL is a sequence of carefully chosen or-
thogonal matrices (rotations) obeying the following con-
straints:

MMF1. Each Qℓ is chosen from some subclass Q of
highly sparse orthogonal matrices. In the simplest
case, Q is the class of Givens rotations, i.e., or-
thogonal matrices that only differ from the iden-
tity matrix in four matrix elements

[Qℓ]i,i = cos θ, [Qℓ]i,j = − sin θ,

[Qℓ]j,i = sin θ, [Qℓ]j,j = cos θ,

for some pair of indices (i, j) and rotation angle
θ. Slightly more generally, Q can be the class of

so-called k–point rotations, which rotate not just
two, but k coordinates, (i1, . . . , ik). Note that the
Givens rotation case corresponds to k=2.

MMF2. The effective size of the rotations decreases ac-
cording to a set schedule n = δ0 ≥ δ1 ≥ . . . ≥
δL, i.e., there is a nested sequence of sets [n] =
S0 ⊇ S1 ⊇ . . . ⊇ SL with |Sℓ| = δℓ such that
[Qℓ]Sℓ−1,Sℓ−1

is the n−δℓ−1 dimensional identity.
Sℓ is called the active set at level ℓ. In the simplest
case, exactly one row/column is removed from the
active set after each rotation.

MMF3. H is SL–core-diagonal, which means that all
its entries are zero, except for (a) the submatrix
[H]SL,SL

called the core, and (b) the rest of the
diagonal.

Moving the rotations in (1) over to the left hand side, the
structure implied by the above conditions can be repre-
sented graphically as in Figure 1.

In general, MMF is only an approximate factorization, be-
cause there is no guarantee that using a set number of rota-
tions, A can be brought into perfectly core-diagonal form.
Instead, MMF factorization algorithms try to find a combi-
nation of Q1, . . . , QL and H that minimize some notion of
factorization error, in the simplest case, the squared Frobe-
nius norm of the difference between the l.h.s and r.h.s of
(1), called the residual.

The original motivation for introducing multiresolution
matrix factorizations was to mimic the structure of fast or-
thogonal wavelet transforms. For example, when A is the
Laplacian matrix of a graph G and U = QL . . . Q2Q1, the
rows of U can be interpreted as wavelets on the vertices of
G. However, the sequence of transformations

A = A0 7→ A1 7→ A2 7→ . . . 7→ AL 7→ H, (2)

where Aℓ = Qℓ . . . , Q1AQ⊤
1 . . . Q⊤

ℓ , can also be seen as
compressing A to size δ1×δ1, then δ2×δ2, etc., all the way
down to δL×δL. To contrast the resulting MMF-based ma-
trix sketching scheme with the randomized sketching meth-
ods described in the Introduction, note the following:

1. Since U is dense, computing A 7→ H = UAU⊤ in
one shot would have a cost of O(n3), which is usu-
ally prohibitive. However, thanks to the extreme spar-
sity of the Qℓ rotations, doing the same by applying
Q1, Q2, . . . , QL in sequence reduces the complexity to
O(n2), or potentially even O(n) if A is sparse and has
multiresolution structure (as some of our experiments
confirm).

2. In contrast to other sketching methods, MMF sketch-
ing preserves not just the δL× δL dimensional core of
H , but also the n− δL entries on the rest of its diag-
onal. However, the effective compression ratio is still
δL : n, since from the point of view of typical down-
stream computations, dealing with the diagonal entries
is trivial. Two cases in point are computing A−1 and
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Figure 1: A graphical representation of the structure of Multiresolution Matrix Factorization. Here, P is a permutation
matrix which ensures that Sℓ = {1, . . . , δℓ} for each ℓ. Note that P is introduced only for the sake of visualization. An
actual MMF would not contain such an explicit permutation.

computing det(A), both of which appear in, e.g., Gaus-
sian Process inference: for the former one merely needs
to invert the entries on the diagonal, while for the latter
one multiplies them together.

3. Nyström sketching and MMF sketching make funda-
mentally different assumptions about the nature of the
matrix A. The former exploits low rank structure,
which one might expect when, for example, A is the
Gram matrix of the linear kernel between data points
lying near a low dimensional subspace, or when A is
some kind of preference matrix governed by a small
number of underlying factors. In contrast (exactly be-
cause it preserves the diagonal entries of H), MMF
does not need A to be low rank, but rather exploits
multiresolution structure, akin to a loose hierarchical
“clusters of clusters” type organization, which has in-
deed been observed in large datasets. For other recent
work on the connection between multiresolution anal-
ysis and hierarchical structures in graphs and matrices,
see (Coifman and Maggioni, 2004; Lee et al., 2008;
Shuman et al., 2013), and the structured matrix liter-
ature, e.g., (Chandrasekaran et al., 2005; Martinsson,
2008). For an application of the structured matrix idea
to the learning setting, see (Wang et al., 2015).

2.2 The complexity of existing MMF algorithms

The main obstacle to using MMF for matrix sketching has
been the cost of computing the factorization in the first
place. The algorithms presented in (Kondor et al., 2014)
construct the sequence of transformations (2) in a greedy
way, at each level choosing Qℓ so as to allow eliminating a
certain number of rows/columns from the active set while
incurring the least possible contribution to the final error.
Assuming the simplest case of each Qℓ being a Givens ro-
tation, this involves (a) finding the pair of indices (i, j) in-
volved in Qℓ, and (b) finding the rotation angle θ. In gen-
eral, the latter is easy. However, finding the optimal (i, j)
(or, in the case of k–point rotations, (i1, . . . , ik)) is a com-
binatorial problem that scales poorly with n. Specifically,

1. The optimization is based on inner products between
columns, so it requires computing the Gram matrix
Gℓ = A⊤

ℓ−1Aℓ−1 at a complexity of O(n3). Note
that this needs to be done only once: once we have
G1 = A⊤A, each subsequent Gℓ can be computed via
the recursion Gℓ+1= QℓGℓQ

⊤
ℓ .

2. In the simplest MMF algorithm of (Kondor et al.,
2014), GREEDYJACOBI, Qℓ is chosen to be the k–point
rotation which allows removing a single row/column
from the active set with the least contribution to the
final error. The complexity of finding the indices in-
volved in Qℓ is O(nk). Given that there are O(n) rota-
tions in total, in the k=2 case the cost of finding all of
them is O(n3).

3. The drawback of GREEDYJACOBI is that it tends to
lead to cascades, where a single row/column is repeat-
edly rotated against a series of others. This motivated
proposing an alternative MMF algorithm, GREEDY-
PARALLEL, in which each Qℓ is the direct sum of
⌊|Sℓ−1| /k⌋ separate non-overlapping k–point rota-
tions. GREEDYPARALLEL avoids cascades, but find-
ing Qℓ involves solving a non-trivial matching problem
between the active rows/columns of Aℓ−1. In the k=2
case, the matching can be done in O(n3) time by the so-
called Blossom Algorithm (Edmonds, 1965). For k > 2
it becomes forbiddingly expensive, even for small n.

3 PARALLEL MMF (pMMF)

pMMF, our new MMF algorithm for large scale matrix
compression, gets around the limitations of earlier MMF
algorithms by employing a two level factorization strategy.
The high level picture is that A is factored in the form

A ≈ Q
⊤
1 Q

⊤
2 . . . Q

⊤
PH QP . . . Q2Q1, (3)

where each Qp, called the p’th stage of the factorization,
is a compound rotation, which is block diagonal in the fol-
lowing generalized sense.

Definition 1 Let M ∈ Rn×n, and B1 ∪· B2 ∪· . . .∪· Bm be
a partition of [n]. We define the (u, v) block of M (with
respect to the partition (B1, . . . , Bm)) as the submatrixJMKu,v := MBu,Bv . We say that M is (B1, . . . , Bm)–
block diagonal if JMKu,v = 0 unless u=v.

At the lower level, each stage Qp itself factors in the form

Qp = Qℓp . . . Qℓp−1+2Qℓp−1+1

into a product of (typically, a large number of) elemen-
tary rotations obeying the same constraints MMF1 and
MMF2 that we described in Section 2.1. Thus, expand-
ing each stage, the overall form of (3) is identical to
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(1), except for the additional constraint that the elemen-
tary rotations Q1, . . . , QL are forced into contiguous runs
Qℓp−1+1, . . . , Qℓp conforming to the same block structure.

The block diagonal structure of each Qp naturally lends
itself to parallelization. When applying an existing factor-
ization to a vector v (e.g., to compute K−1v in ridge re-
gression or Gaussian process inference), if v is blocked the
same way, JvKu need only be multiplied by JQpKu,u, mak-
ing it possible to distribute the computation over m differ-
ent processors.

However, what is more critical for our purposes is that it
makes it possible to distribute computing the factorization
in the first place. In fact, blocking accelarates the compu-
tation in three distinct ways:

1. The rotations constituting each diagonal block JQpKu,u
can be computed completely independently on separate
processors.

2. Instead of computing a single n dimensional Gram ma-
trix at a cost of O(n3), each stage requires m sepa-
rate O(n/m) dimensional Gram matrices, which may
be computed in parallel (assuming m–fold parallelism)
in time O(n3/m2).

3. The complexity of the per-rotation index search prob-
lem in the GREEDYJACOBI subroutine is reduced from
O(nk) to O((n/m)k).

3.1 Blocking and reblocking

The key issue in pMMF is determining how to block each
stage so that the block diagonal constraints introduced by
(3) will have as little impact on the quality of the factoriza-
tion as possible (measured in terms of the residual or some
other notion of error). On the one hand, it is integral to
the idea of multiresolution analysis that at each stage the
transform must be local. In the case of MMF this mani-
fests in the fact that a given row/column of A will tend to
only interact with other rows/columns that have high nor-
malized inner product with it. This suggests blocking A by
clustering its rows/columns by normalized inner product.
For speed, pMMF employs a randomized iterative cluster-
ing strategy with additional constraints on the cluster sizes
to ensure that the resulting block structure is close to bal-
anced.

On the other hand, enforcing a single block structure on
all the stages would introduce artificial boundaries between
the different parts of A and prevent the algorithm from dis-
covering the true multiresolution structure of the matrix.
Therefore, pMMF reclusters the rows/columns of Aℓ be-
fore each stage, and reblocks the matrix accordingly. It
is critical that the reblocking process be done efficiently,
maintaining parallelism, without ever having to push the
entire matrix through a single processor (or a single ma-
chine, assuming a cluster architecture). m–fold parallelism
is maintained by first applying the reblocking map row-

Algorithm 1 pMMF (top level of the pMMF algorithm)
Input: a symmetric matrix A∈Rn×n

Set A0 ← A
for (p=1 to P ) {
cluster the active columns of Ap−1 to (Bp

1 , . . . , B
p
m)

reblock Ap−1 according to (Bp
1 , . . . , B

p
m)

for (u=1 to m) JQpKu,u ← FindRotInCluster(p, u)
for (u=1 to m) {

for (v=1 to m) {
set JApKu,v← JQpKu,uJAp−1Ku,vJQpKv,v⊤

}}}
H ← the core of AL plus its diagonal
Output: (H,Q1, . . . , Qp)

Algorithm 2 FindRotInCluster(p, u) — assuming k=2
and that η is the compression ratio

Input: a matrix A= [Ap]:,Bu ∈ Rn×c made up of the c
columns of Ap−1 forming cluster u in Ap

compute the Gram matrix G=A⊤A
set I = [c] (the active set)
for (s=1 to ⌊ηc⌋){
select i∈ I uniformly at random
find j = argmaxI\{i} | ⟨A:,i,A:,j⟩ | /∥A:,j∥
find the Givens rotation qs of columns (i, j)
set A ← qsAq⊤s
set G← qsGq⊤s
if ∥Ai,: ∥off-diag< ∥Aj,: ∥off-diag set I ← I \ {i}
else set I ← I \ {j}
}
Output: JQpKu,u = q⌊ηc⌋ . . . q2q1

wise in parallel for each column of blocks in the original
matrix, then applying it column-wise in parallel for each
row of blocks in the resulting matrix. One of the main rea-
sons that we decided to implement bespoke dense/sparse
blocked matrix classes in the pMMF software library was
that we were not aware of any existing matrix library with
this functionality. The top level pseudocode of pMMF is
presented in Algorithm 1.

3.2 Randomized Greedy Search for Rotations

Even with blocking, assuming that the characteristic clus-
ter size is c, the O(ck) complexity of finding the indices
involved in each rotation by the GREEDYJACOBI strategy
is a bottleneck. To address this problem, pMMF uses ran-
domization. First a single row/column i1 is chosen from
the active set (within a given cluster) uniformly at random,
and then k−1 further rows/columns i2, . . . , ik are selected
from the same cluster according to some separable objec-
tive function ϕ(i2, . . . , ik) related to minimizing the con-
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serial MMF pMMF operations pMMF time Nproc

dense sparse dense sparse dense sparse
Computing Gram matrices n3 γn3 Pcn2 γPcn2 Pc3 γPc3 m2

Finding Rotations n3 n3 cn cn c2 c m

Updating Gram matrices n3 γ2n3 c2n γ2c2n c3 γ2c3 m

Applying rotations kn2 γkn2 kn2 γkn2 kc2 γkc2 m2

Clustering pmn2 γpmn2 pcn γpcn m2

Reblocking pn2 γpn2 pcn γpcn m

Factorization total n3 n3 Pcn2 γPcn2 Pc3 γPc3 m2

Table 1: The rough order of complexity of different subtasks in pMMF vs. the original serial MMF algorithm of (Kondor
et al., 2014). Here n is the dimensionality of the original matrix, A, k is the order of the rotations, and γ is the fraction of
non-zero entries in A, when A is sparse. We neglect that during the course of the computation γ tends to increase, because
concomitantly Aℓ shrinks, and computation time is usually dominated by the first few stages. We also assume that entries
of sparse matrices can be accessed in constant time. In pMMF, P is the number of stages, m is the number of clusters in
each stage, and c is the typical cluster size (thus, c= θ(n/m)). The “pMMF time” columns give the time complexity of the
algorithm assuming an architecture that affords Nproc–fold parallelism. It is assumed that k ≤ P ≤ c ≤ n, but n = o(c2).
Note that in the simplest case of Givens rotations, k=2.

tribution to the final error. For simplicity, in pMMF we use

ϕ(i2, . . . , ik) =

k∑
r=2

⟨[Aℓ−1]:,i1 , [Aℓ−1]:,ir ⟩
∥ [Aℓ−1]:,ir ∥

,

i.e., [Aℓ−1]:,i1 is rotated with the k− 1 other columns that
it has the highest normalized inner product with in abso-
lute value. Similarly to (Kondor et al., 2014), the actual
rotation angle (or, in the case of k’th order rotations, the
k×k rotation captured by Qℓ) is determined by diagonal-
izing [Gℓ](i1...ik),(i1...ik) at a cost of O(k3).

This aggressive randomized-greedy strategy reduces the
complexity of finding each rotation to O(c), and in our ex-
perience does almost as well as exhaustive search. The
criterion for elimination is minimal off-diagonal norm,
∥A:,i∥off-diag = (∥A:,i∥2 − A2

i,i)
1/2, because 2∥A:,i∥2off-diag

is the contribution of eliminating row/column i to the resid-
ual. As a by-product, randomization also eliminates the
cascade problem of the GREEDYJACOBI algorithm, men-
tioned in Section 2.2.

3.3 Sparsity and Matrix Free MMF Arithmetic

pMMF can compress dense or sparse matrices. Naturally,
the Qℓ elementary rotations are always stored in sparse
form, in fact, for maximal efficiency, in the pMMF library
they are implemented as separate, specialized objects.

However, when n exceeds several thousand, even just stor-
ing the original matrix in memory becomes impossible un-
less it is sparse. Therefore, maintaining sparsity during the
factorization process is critical. As the factorization pro-
gresses, due to the rotations, the fill-in (fraction of non-
zeros) in Ap will increase. Fortunately, at the same time,
the active part of Aℓ shrinks, and assuming multiresolu-
tion structure, these two factors balance each other out. In

practice, we observe that for most large sparse datasets, the
overall complexity of pMMF scales close to linearly with
the number of non-zeros in A, both in space and in time.

Let us denote the complete factorization appearing on the
r.h.s. of (1) by Ã. Even if the original matrix A was sparse,
in general, Ã will not be, therefore computing it explicitly
is unfeasible. However, downstream applications, e.g., iter-
ative methods, almost never need Ã itself, but only need the
result of applying Ã (or e.g., Ã−1) as an operator to vec-
tors. Therefore, we use a so-called matrix free approach: v
is stored in the same blocked form as A, the rotations are
applied individually, and as the different stages are applied
to v, the vector goes through an analogous reblocking pro-
cess to that described for A. The complexity of matrix-free
MMF/vector multiplication is O(kPn).

For certain downstream computations, compressing matri-
ces with pMMF can yield huge savings. For example,

Ã−1 ≈ Q⊤
1 . . . Q⊤

L−1Q
⊤
LH

−1 QLQL−1 . . . Q1,

but since the core of H is only δL ≪ n dimensional, H−1

can be computed in O(n + δ3L) time, which is negligible
compared to the O(n3) cost of inverting A directly. To
compute the matrix exponential, pMMF is used the same
way.

The theoretical complexity of the main components of
pMMF are summarized in Table 1. Of course, requiring
m2–fold parallelism as m → ∞ is an abstraction. Note,
however, that for sparse matrices, even the total operation
count scales with γn2, which is just the number of non-
zeros in A. The plots in Figure 2 confirm that on many real
world datasets, particularly, matrices coming from sparse
network graphs, the wall clock time of pMMF scales close
to linearly with the dimension. Also note that while in these
experiments n is on the order of 105, the factorization time
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Figure 2: Execution time of pMMF as a function of the
number of nonzero entries in the input matrix, A. For each
of the graph Laplacians of size n, listed in Table 2, we take
submatrices of varying sizes and compress each of them
with pMMF to a SL–core-diagonal matrix with core size
of around 100. Each datapoint is averaged over five runs.

(on a 16-core cluster) is on the order of seconds.

4 IMPLEMENTATION

We implemented pMMF in C++11 with the goal of build-
ing a general purpose library that scales to large matrices.
Critical to the implementation are the data structures used
to store blocked vectors and matrices, which must support
(a) Sparsity, (b) Block level parallelism, (c) Fast multipli-
cation by Givens rotations and k–point rotations from both
the left and the right, (d) Fast computation of inner products
between columns (and of Gram matrices), (e) Fast reblock-
ing, (f) Fast matrix/vector multiplication. Since we could
not find any existing matrix library fulfilling all these re-
quirements, we implemented the blocked matrix data struc-
ture from scratch directly on top of the stl::vector,
stl::list and stl::hash map containers.

The main parameters of pMMF are the order of the ro-
tations, k, the number of stages, P , the target number of
clusters per stage, m, and the compression ratio, η, which
is the number of rotations to perform in a given cluster,
as a function of the cluster size. In most of our exper-
iments, a single row/column is removed from the active

Figure 3: Execution time of pMMF as a function of the
size of the compressed submatrix [H]SL,SL

on the datasets
listed in Table 2.

set after each rotation. For computational efficiency, we
use a rough randomized clustering method, which selects
m “anchors columns” uniformly at random from the active
set, and clusters the remaining columns to the anchor col-
umn with which is has highest normalized inner product.
The clustering method has additional parameters intended
to ensure that the clustering is approximately even. If the
size of any of the clusters falls below cmin, then its columns
are redistributed amongst the remaining clusters, whereas if
the size of any of the clusters exceeds cmax, then its columns
are recursively reclustered using the same algorithm. The
maximum recursion depth is Dmax. There is also a bypass
flag, which, when set, signifies that rows/columns which
could not be successfully clustered using the above method
at a given stage will simply bypass the stage, with no rota-
tions applied to them. Setting these parameters on a given
system requires some experience, but overall our results ap-
pear stable w.r.t. the parameter values (including P , m and
η), as long as they are in a reasonable range.

5 NUMERICAL RESULTS

Figures 4 and 5 show the results of experiments comparing
the performance of Multiresolution Matrix Compression to
some of the most common matrix sketching algorithms:
Nyström with uniform sampling (Williams and Seeger,
2001; Fowlkes et al., 2004), leverage score sampling (Ma-
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Dataset Dimension (n) Non-zero entries
web-NotreDame: web graph of the University of Notre Dame 325, 729 1, 497, 134
soc-Epinions1: who-trusts-whom network of Epinions.com 131, 828 841, 372
Gnutella31: peer-to-peer network from August 31, 2002 62, 586 147, 892
Enron: Enron email graph 36, 692 367, 662
as-caida: CAIDA AS Relationships Datasets 31, 379 106, 762
CondMat: ArXiv condensed matter collaboration graph 23, 133 186, 936
AstroPh: ArXiv astrophysics collaboration graph 18, 772 396, 160
HEPph: ArXiv high energy physics collaboration graph 12, 008 237, 010
HEPth: ArXiv high energy physics theory collaboration graph 9, 877 51, 971
Gnutella06: peer-to-peer network from August 6, 2002 8, 717 31, 525
GR: ArXiv general relativity & quantum cosmology collaboration graph 5, 242 28, 980
dexter: bag of words dataset 2, 000 4, 00, 000
Abalone: physical measurements of abalones, σ = 0.15 4, 177 17, 447, 329

Table 2: Summary of the datasets used in the pMMF compression experiments (Gittens and Mahoney, 2013; Leskovec
and Krevl, 2014; Davis and Hu, 2011).

Table 3: pMMF compression on large datasets. The Frobe-
nius norm error EFrob = ∥A− Ã ∥Frob/∥A∥Frob, spectral
norm error Esp = ∥A− Ã ∥2/∥A∥2, time (in secs), and the
dimension of the core, [H]SL,SL , that A is compressed to.

Dataset Core size Time(s) EFrob Esp
web-NotreDame 1731 726.5 0.6 0.7
Enron 4431 530.2 0.6 0.3
Gnutella31 4207 112.2 0.8 0.6
as-caida 3404 91.9 0.7 0.6
soc-Epinions1 2089 1304.4 0.5 0.5

honey and Drineas, 2009; Mahoney, 2011; Gittens and
Mahoney, 2013), dense Gaussian projections (Halko et al.,
2011), and structured randomness with Fourier transforms
(Tropp, 2011). In Figures 4 and 5 these methods are de-
noted respectively unif, leverage, gaussian and
srft. These sketches approximate A∈Rn×n in the form
Ã=CW †C⊤, where C is a judiciously chosen Rn×m ma-
trix with m≪n, and W † is the pseudo-inverse of a certain
matrix that is of size only m × m. This approximation is
effectively a compression of A down to m rows/columns
incurring error ∥A− Ã ∥.

The datasets we used are summarized in Table 2 and are
some of the most commonly used in the matrix sketching
literature. On most datasets that we tried, pMMF signif-
icantly outperforms the other sketching methods in both
Frobenius norm error (Figure 4) and spectral norm error
(Figure 5). The advantage of pMMF seems to be partic-
ularly great on network graphs, perhaps not surprisingly,
since it has long been conjectured that networks have mul-
tiresolution structure (Ravasz and Barabási, 2003; Coifman
and Maggioni, 2006; Savas et al., 2011). However, we find
that pMMF often outperforms other methods on kernel ma-
trices in general. On the other hand, on a small fraction of
datasets, typically those which explicitly have low rank or
are very close to being low rank (e.g., the fourth pane of

Figure 4), pMMF performs much worse than expected. In
such cases, a combination of the low rank and multiresolu-
tion approaches might be most advantageous, which is the
subject of ongoing work.

pMMF is also dramatically faster than the other methods.
This is only partially explained by the fact that several of
the competing algorithms were implemented in MATLAB.
For example, leverage score methods require estimating
the singular vectors of A, which, unless A is very low
rank, can be a computational bottleneck. Several of the
Nyström experiments took 30 minutes or more to run on
8 cores, whereas our custom C++ pMMF implementation
compressed the matrix in at most one or two minutes (Fig-
ure 2). The results in Table 3 we couldn’t even compare
to other methods, because it would have taken too long for
them to run.

6 CONCLUSIONS

The most common structural assumption about large matri-
ces arising in learning problems is that they are low rank.
This paper explores the alternative approach of assuming
that they have multiresolution structure. Our results sug-
gest that not only is the multiresolution model often more
faithful to the actual structure of data (e.g., as evidenced
by much lower approximation error in compression exper-
iments), but it also lends itself to devising efficient paral-
lel algorithms, which is critical to dealing with large scale
problems. Our approach bears some similarities to multi-
grid methods (Brandt, 1973) and structured matrix decom-
positions (Hackbusch, 1999; Börm, 2009; Chandrasekaran
et al., 2005), which are extremely popular in applied math-
ematics, primarily in the context of solving systems of par-
tial differential equations. A crucial difference, however, is
that whereas in these algorithms the multiresolution struc-
ture is suggested by the geometry of the domain, in learning
problems the structure itself has to be learnt “on the fly”.
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Figure 4: The Frobenius norm error ∥A− Ã∥Frob of com-
pressing matrices with pMMF vs. other sketching methods,
as a function of the dimension of the compressed core. In
each figure, the error is normalized by ∥A−Ak∥Frob, where
Ak is the best rank k approximation to A. For the Nyström
compression we followed the experiments in (Gittens and
Mahoney, 2013) and used k = 8 for “dexter” , k = 20 for
“Gnutella06” and “Abalone”, and k = 100 for the rest of
the datasets.

Empirically, the running time of Multiresolution Matrix
Compression often scales linearly in the size of the data.
The absolute running time is often orders of magnitude
faster than that of other methods. Further work will explore
folding entire learning and optimization algorithms into the
multiresolution framework, while retaining the same scal-
ing behavior.

Hence, pMMF addresses a different regime than many
other Nyström papers: whereas the latter often focus on
compressing ∼ 103 dimensional matrices to just 10–100

HEPph AstroPh

CondMat Gnutella06

GR HEPth

dexter Abalone

Figure 5: The spectral norm error ∥A− Ã∥2 of compress-
ing matrices with pMMF vs. other sketching methods, as a
function of the dimension of the compressed core. In each
figure, the error is normalized by ∥A − Ak∥2, where Ak

is the best rank k approximation to A. For the Nyström
compression we followed the experiments in (Gittens and
Mahoney, 2013) and used k = 8 for “dexter” , k = 20 for
“Gnutella06” and “Abalone”, and k = 100 for the rest of
the datasets.

dimensions, we are more interested in compressing ∼105–
106 dimensional matrices to ∼ 103 dimensions. which
is more relevant for practical problems, where e.g., ker-
nel matrices need to be compressed to make learning al-
gorithms feasible.
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