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Abstract

Consistently matching keypoints across images, and the related problem of find-
ing clusters of nearby images, are critical components of various tasks in Com-
puter Vision, including Structure from Motion (SfM). Unfortunately, occlusion
and large repetitive structures tend to mislead most currently used matching algo-
rithms, leading to characteristic pathologies in the final output. In this paper we
propose a new method, Permutations Diffusion Maps (PDM), and a related new
affinity measure, Permutation Diffusion Affinity (PDA), to solve this problem.
PDM is inspired by Vector Diffusion Maps, recently introduced by Singer and
Wu, and uses ideas from the theory of Fourier analysis on the symmetric group.
We show that when dealing with difficult datasets, using PDM as a preprocessing
step to existing SfM pipelines can significantly improve results.

1 Introduction

Structure from motion (SfM) is the task of jointly reconstructing 3D scenes and camera poses from
a set of images. Keypoints or features extracted from each image provide correspondences between
pairs of images, making it possible to estimate the relative camera pose. This gives rise to an
association graph in which two images are connected by an edge if they share a sufficient number of
corresponding keypoints, and the edge itself is labeled by the estimated matching between the two
sets of keypoints. Starting with these putative image to image associations, one typically uses the so-
called bundle adjustment procedure to simultaneously solve for the global camera pose parameters
and 3-D scene locations, incrementally minimizing the sum of squares of the re-projection error.

Despite their popularity, large scale bundle adjustment methods have well known limitations. In
particular, due to the highly nonlinear nature of the objective function, they can get stuck in bad lo-
cal minima. Therefore, starting with a good initial matching (i.e., an informative image association
graph) is critical. Several papers have studied this behavior in detail [1], and conclude that if one
starts the numerical optimization from an incorrect “seed” (i.e., a subgraph of the image associa-
tions), the downstream optimization is unlikely to ever recover.

Similar challenges arise in other fields, ranging from machine learning [2] to computational biology.
For instance, consider the de novo genome assembly problem in computational biology [3]. The
goal here is to reconstruct the original DNA sequence from fragments without a reference genome.
Because the genome may have many repeated structures, the alignment problem becomes very hard.
In general, reconstruction algorithms start with two maximally overlapping sequences, and proceed
by selecting subsequents fragment using a process not unlike bundle adjustment, prone to similar
issues with local minima [4]. In both cases it would be preferable to have a model that reasons glob-
ally over all pairwise information. In this paper, to make our presentation as concrete as possible,
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we restrict ourselves to describing such an algorithm in the context of Structure from Motion, while
understanding that the underlying ideas apply more generally.

Several authors [5, 6, 7] have recently described situations in large scale structure from motion
where setting up a good image association graph is difficult, and consequently a direct applica-
tion of bundle adjustment yields unsatisfactory results. One such situation is when the scene de-
picted in the images involves a large number of duplicate structures (Figure 1). The preprocessing

(a) (b)

Figure 1: HOUSE sequence. (a) Representative images. (b) Folded
reconstruction by traditional SfM pipeline [8, 9].

step in a standard pipeline will
match visual features and set
up the associations accordingly,
but a key underlying assumption
in most (if not all) approaches
is that we observe only a sin-
gle instance of any structure.
This assumption is problematic
when scenes have repeating ar-
chitectural components or recur-
ring patterns, such as windows,
bricks, and so on.

In Figure 1a views that look exactly the same do not necessarily represent the same physical struc-
ture. Some (or all) points in one image are actually occluded in the other image. Typical SfM
methods will not work well when initialized with such image associations, regardless of which type
of solver we use. In our example, the resulting reconstruction will be folded (Figure 1b). In other
cases [5], we get errors ranging from phantom walls to severely superimposed structures yielding
nonsensical reconstructions.

Related Work. The issue described above is variously known in the literature as the SfM dis-
ambiguation problem or the data/image association problem in structure from motion. Some of
the strategies that have been proposed to mitigate it impose additional conditions, such as in
[10, 11, 12, 13, 14, 15], but this also breaks down in the presence of large coherent sets of in-
correctly matched pairs. One creative solution in recent work is to use metadata alongside images.
“Geotags” or GIS data when available have been shown to be very effective in deriving a better
initialization for bundle adjustment or as a post-processing step to stitch together different compo-
nents of a reconstruction. In [6], the authors suggest using image timestamps to impose a natural
association among images, which is valuable when the images are acquired by a single camera in a
temporal sequence but difficult to deploy otherwise. Separate from the metadata approach, in con-
trolled scenes with relatively less occlusion, missing correspondences yield important local cues to
infer potentially incorrect image pairs [6, 7]. Very recently, [5] formalized the intuition that incor-
rect feature correspondences result in anomalous structures in the so-called visibility graph of the
features. By looking at a measure of local track quality (from local clustering), one can reason about
which associations are likely to be erroneous. This works well when the number of points is very
large, but the authors of [5] acknowledge that for datasets like those shown in Fig. 1, it may not help
much.

In contrast to the above approaches, a number of recent algorithms for the association (or disam-
biguation) problem argue for global geometric reasoning. In [16], the authors used the number
of point correspondences as a measure of certainty, which was then globally optimized to find a
maximum-weight set of consistent pairwise associations. The authors in [17] seek consistency of
epipopolar geometry constraints for triplets, whereas [18] expands it over larger consistent cliques.
The procedure in [16] takes into account loops of associations concurrently with a minimal spanning
tree over image to image matches. In summary, the bulk of prior work suggests that locally based
statistics over chained transformations will run into problems if the inconsistencies are more global
in nature. However, even if the objectives used are global, approximate inference is not known to be
robust to coherent noise, which is exactly what we face in the presence of duplicate structures [19].

This paper. If we take the idea of reasoning globally about association consistency using triples
or higher order loops to an extreme, it implies deriving the likelihood of a specific image to image
association conditioned on all other associations. This joint likelihood does not factor and explicit
enumeration quickly becomes intractable. Our approach will make the group structure of image to
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image relationships explicit. Similarly to prior approaches, we will also operate on the association
graph derived from image pairs but with a key distinguishing feature. The association relationships
will now be denoted in terms of a ‘certificate’, that is, the transformation which justifies the rela-
tionship. The transformation may denote the pose parameters derived from the correspondences or
the matching (between features) itself. Other options are possible — as long as this transformation
is a group action from one set to the other. If so, we can carry over the intuition of consistency over
larger cliques of images desired in existing works and rewrite those ideas as invariance properties of
functions defined on the group. In particular, when the transformation is a matching, each edge in the
graph is a permutation, i.e., a member of the symmetric group Sn, and a generalization of the Lapla-
cian related to the representation theory of Sn encodes the associations. In this regard, the present
paper owes the most to the literature of synchronization problems, specifically [20][21][22][23][24].

The key contribution of this paper is to show that the global inference desired in many existing
works falls out nicely as a diffusion process using such a Laplacian. We show promising results
demonstrating that for various difficult datasets with large repetitive patterns, results from a simple
decomposition procedure are, in fact, competitive with those obtained using sophisticated optimiza-
tion schemes with/without metadata. Finally, we note that the proposed algorithm can either be used
standalone to derive meaningful inputs to a bundle adjustment procedure or as a preprocessing step
to other approaches (especially ones that incorporate timestamps and/or GPS data).

2 Synchronization by Vector Diffusion

Consider a collection of m images {I1, I2, . . . , Im} of the same object or scene taken from different
viewpoints and possibly under different conditions, and assume that in each image Ii, a keypoint
detector has detected n landmarks (keypoints) {xi

1, x
i
2, . . . , x

i
n}. Given two images Ii and Ij , the

landmark matching problem consists of finding pairs of landmarks xi
p ∼ xj

q (with xi
p coming from

image Ii and xj
q coming from Ij) which correspond to the same underlying physical feature.

Assuming that both images contain exactly the same n landmarks, the matching between Ii and
Ij may be described by the unique permutation τji : {1, 2, . . . , n} → {1, 2, . . . , n} under which
xi
p ∼ xj

τji(p). Typically, local image features, such as SIFT descriptors, can provide an initial guess
for each τji, but by itself each of these individual image-to-image matchings is highly error prone,
especially in the presence of occlusion and repetitive structures. A major clue to correcting these
errors is the constraint that matchings must be consistent, i.e., if τji tells us that xi

p corresponds to
xj
q , and τkj tells us that xj

q corresponds to xk
r , then the permutation τki between Ii and Ik should

assign xi
p to xk

r . Mathematically, this is a reflection of the fact that, defining the product of two
permutations σ1 and σ2 in the usual way as

σ3 = σ2σ1 ⇐⇒ σ3(i) = σ2(σ1(i)) i = 1, 2, . . . , n,

the n! different permutations of {1, 2, . . . , n} form a group. This group is called the symmetric
group of order n and is denoted Sn. In group theoretical notation the consistency conditions reduce
to requiring that given any three images Ii, Ij and Ik, the relative matchings between them must
satisfy τkjτji = τki. An equivalent condition is that it must be possible to associate to each Ii a “base
permutation” σi so that τji = σjσ

−1
i for any (i, j) pair. Thus, the problem of finding a consistent set

of τji’s is reduced to finding the m base permutations σ1, . . . , σm.

Problems of this general form, where given some (finite or continuous) group G, one must estimate
a matrix (gji)

m
j,i=1 of group elements obeying gkjgji = gki are called synchronization problems.

Starting with the seminal work of Singer et al. [20][21] on synchronization over the rotation group
for aligning images in cryo-EM, followed by synchronization over the Euclidean group [25], and
most recently synchronization over Sn for matching landmarks [23][24], such problems have re-
cently generated a lot of interest. Some of the newest and most promising approaches involve
semi-definite programming [15][24][26].

In the context of synchronizing three dimensional rotations for cryo-EM, Singer and Wu [22] pro-
posed a particularly elegant formalism, called Vector Diffusion Maps, which conceives of synchro-
nization as diffusing the base rotation Qi from each image to its neighbors. However, unlike in
ordinary diffusion, as Qi diffuses to Ij , the observed Oji relative rotation of Ij to Ii changes Qi

to OjiQi. If all the (Oji)i,j observations were perfectly synchronized, then no matter what path
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i → i1 → i2 → . . . → j we took from i to j, the resulting rotation Oj,ip . . . Oi2,i1Oi1,iQi would
be the same. However, if some (in many practical cases, the majority) of the Oji’s are incorrect,
then different paths from one vertex to another contribute different rotations, which one then needs
to average in some appropriate sense.

A natural choice for the loss that describes the extent to which the Q1, . . . , Qm imputed base rota-
tions (playing the role of the σi’s in the permutation case) satisfy the Oji observations is

E(Q1, . . . , Qm) =
1

2

m∑
i,j=1

wij∥Qj −OjiQi∥2Frob =
1

2

m∑
i,j=1

wij∥QjQ
⊤
i −Oji∥2Frob, (1)

where the wij edge weight descibes our confidence in rotation Oji. A crucial observation is that this
loss can be rewritten in the form E(Q1, . . . , Qm) = V ⊤LV , where

V =

Q1

...
Qm

 , L =

 di I −w1,2O1,2 . . . −w1,mO1,m

...
. . .

...
−wm,1Om,1 −wm,2Om,2 . . . dm I

 , (2)

and di =
∑

j ̸=i wij . Note that since wij = wji, and Oij = O−1
ji = O⊤

ji, the matrix L is symmetric.
Furthermore, the above is exactly analogous to the way in which in spectral graph theory, (see,
e.g.,[27]) the functional E(f) = 1

2

∑
i,j wij(f(i)−f(j))2 describing the “smoothness” (with respect

to the graph topology) of a function f defined on the vertices of a graph can be written as f⊤Lf in
terms of the usual graph Laplacian

Lij =

{
−wij i ̸= j∑

k ̸=i wik i= j.

As it is well known, constraining f to have unit norm and excluding the subspace of constant func-
tions, the function minimizing E(f) is the eigenvector of L with (second) smallest eigenvalue. Anal-
ogously, in synchronizing rotations, the steady state of the diffusion system, which minimizes (1),
can be computed by forming the 3m×3 dimensional matrix V from the 3 lowest non-zero eigenvalue
eigenvectors of L, and appropriately rounding each 3×3 block Vi of V to the nearest orthogonal ma-
trix Qi. The resulting array (QjQ

⊤
i )i,j of imputed relative rotations is guaranteed to be consistent,

and minimizes the loss (1).

3 Permutation Diffusion

Its elegance notwithstanding, the vector diffusion formalism of the previous section seems ill suited
to our present purposes of improving the SfM pipeline for two reasons: (1) synchronizing over
Sn, which is a finite group, seems much harder than synchronizing over the continuous group of
rotations; (2) rather than getting an actual synchronized array of matchings, what is critical to SfM
is to estimate the association graph that captures the extent to which any two images are related to
one-another. The main contribution of the present paper is to show that both of these problems have
natural solutions in the formalism of group representations.

Our first key observation (already alluded to in [21]) is that the critical step of rewriting the loss
(1) in terms of the Laplacian (2) does not depend on any special properties of the rotation group
other than the facts that (a) rotation matrices are unitary (in fact, orthogonal) (b) if we follow one
rotation by another, their matrices simply multiply. In general, for any group G, a complex valued
function ρ : G→Cdρ×dρ which satisfies ρ(g2 g1) = ρ(g2)ρ(g1) is called a representation of G. The
representation is unitary if ρ(g−1) = (ρ(g))−1 = ρ†, where M† denotes the Hermitian conjugate
(conjugate transpose) of M . Thus, we have the following proposition.
Proposition 1. Let G be any compact group with identity e and ρ : G → Cdρ×dρ be a unitary
representation of G. Then given an array of possibly noisy and unsynchronized group elements,
(gji)i,j , and corresponding positive confidence weights (wji)i,j , the synchronization loss (assuming
gii = e for all i)

E(h1, . . . , hm) =
1

2

m∑
i,j=1

wji

wwρ(hjh
−1
i )− ρ(gji)

ww2

Frob h1, . . . , hm ∈G
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can be written in the form E(h1, . . . , hm) = V †LV , where

V =

ρ(h1)
...

ρ(hm)

 , L =

 di I −w1,2 ρ(g1,2) . . . −w1,m ρ(g1,m)
...

. . .
...

−wm,1 ρ(gm,1) −wm,2 ρ(gm,2) . . . dm I

 . (3)

To synchronize matchings between images using this proposition, one plugs in the approriate unitary
representation of the symmetric group. The simplest choice is the so-called defining representation,
whose elements are the familiar permutation matrices

ρdef(σ) = P (σ) [P (σ)]q,p =

{
1 σ(p) = q

0 otherwise,

since the corresponding loss function is

E(σ1, . . . , σm) =
1

2

m∑
i,j=1

wji ∥P (σjσ
−1
i )− P (τji)∥2Frob. (4)

The squared Frobenius norm in this expression simply counts the number of mismatches between
the observed but noisy permutation τji, and the inferred permutation σjσ

−1
i . For this choice of ρ,

letting Pi :=P (σ(i)) and P obs
ji :=P (τji), E(σ1, . . . , σm) = V ⊤LV , with

V =

P1

...
Pm

 , L =

 di I −w1,2P
obs
1,2 . . . −w1,mP obs

1,m
...

. . .
...

−wm,1P
obs
m,1 −wm,2P

obs
m,2 . . . dm I

 . (5)

Consequently, just as in the rotation case, synchronization over Sn can be solved by forming V from
the first dρdef = n lowest eigenvectors of L, and extracting each Pi from its i’th n × n block, Vi.
Here we must take a little care because unless the τji’s are already synchronized, it is not a priori
guaranteed that the resulting block will be a valid permutation matrix. Therefore, analogously to the
procedure described in [23], we first multiply Vi by V ⊤

1 , and then use a linear assignment procedure
to find the permutation σ̂i, whose permutation matrix is closest to ViV

⊤
1 . The resulting algorithm we

call Synchronization by Permutation Diffusion.

4 Uncertain Matches and Permutation Diffusion Affinity

The limitation of our framework, as described so far, is the assumption that each keypoint in each
image will have a single counterpart in every other image that the local matching procedure with
some error can identify. In realistic scenarios this is far from satisfied, due to occlusion, repetitive
structures, and noisy detections. Most algorithms, including [24] and [23], deal with the problem
simply by turning the Pij block in (5) into a weighted sum of all possible permutations. For example,
if landmarks number 1. . . 20 are present in both images, but landmarks 21 . . . 40 are not, then the
Pij block in (5) will have a corresponding 20×20 block of all ones, rescaled by a factor of 1/20.

This approach effectively amounts to replacing τji by an appropriate distribution tji(τ) over match-
ings. Correspondingly, when we form V from the first dρ eigenvectors of L, each resulting Vi block
will stand for a distribution pi(σ), rather than a single base permutation σi. Moreover, if some set
of k landmarks U = (u1, . . . , uk) are occluded in Ii, then tij (for any j) will be agnostic to their
assignment, and consequently pi will be invariant to what is mapped to u1, . . . , uk. Let σ∼Uσ

′ de-
note the relation that two permutations σ and σ′ differ only in what numbers they map to u1, . . . , uk,
but fully agree on what they assign to any landmark not in U (i.e., σ(i) = σ(j) ∀ i ∉U ). Clearly,
∼U is an equivalence relation on Sn, and it is not difficult to see that letting µU be some reference
permutation that maps 1 7→ u1, . . . , k 7→ uk, and Sk be the subgroup of permutations that permute
1, 2, . . . , k amongst themselves but leave k+1, . . . , n fixed, the equivalence classes of ∼U are the
sets

µUSkν := {µUγ ν | γ ∈ Sk} ν ∈ Sn. (6)
These sets are called (two-sided) Sk–cosets. Note that while |Sn|= n!, there are only n!/k! distinct
equivalence classes, so not all possible values of ν yield a distinct coset.

What is important is that uncertainty in the synchronization process with respect to a given set of
landmarks {u1, . . . , uk} (typically due to occlusion) has a clear algebraic signature, namely the
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inferred pi being constant on each of the cosets in (6). Conversely, if we find that pi is constant
on these cosets, that is a strong indication that u1, . . . , uk are occluded, which is an important clue
to estimating Ii’s viewpoint, sometimes even more informative than the synchronized matchings
themselves.

The invariance structure of pi is most easily detected from its so-called autocorrelation function

ai(σ) =
∑
ω∈Sn

pi(σω) pi(ω). (7)

Clearly, (7) attains its maximum at the identity permutation, where ai(e) =
∑

ω∈Sn pi(ω)
2. How-

ever, when pi has invariances, the same maximum will be attained over a wider plateau of permuta-
tions. Note, in particular, that ω and σω always fall in the same µUSkν coset when σ ∈ µUSkµ−1

U .
Therefore, if pi happens to be a function that is constant on µUSk ν cosets, then any σ ∈ µUSkµ−1

U

will maximize ai(σ).

Of course, in synchronization problems pi is not directly accessible to us, rather we only have access
to the weighted sum p̂i(ρ) :=

∑
σ∈Sn pi(σ)ρ(σ) = ViV

⊤
1 . Recent years have seen the emergence of

a number of applications of a generalized notion of Fourier transformation on the symmetric group,
which, given a function f : Sn → R, is defined

f̂(λ) =
∑
σ∈Sn

f(σ) ρλ(σ), λ ⊢ n,

where the ρλ are special, so-called irreducible, representations of Sn, indexed by the λ integer
partitions. Due to space restrictions, we leave the details of this construction to the literature, see,
e.g., [28, 29, 30]. Suffice to say that while p̂i(ρ) is not exactly a Fourier component of pi, it can be
expressed as a direct sum of Fourier components

p̂i(ρ) = C†
[⊕
λ∈Λ

p̂i(λ)
]
C

for some unitary matrix C that is effectively just a basis transform. One of the properties of
the Fourier transform is that if h is the cross-correlation of two functions f and g (i.e., h(σ) =∑

µ∈Sn f(σµ)g(µ)), then ĥ(λ) = f̂(λ) ĝ(λ)†. Consequently, assuming that V1 has been normalized
to ensure that V⊤

1 V1 = I , and using the fact that in our setting all matrices are real,

âi(ρ) := C†
[⊕
λ∈Λ

âi(λ)
]
C = C†

[⊕
λ∈Λ

p̂i(λ) p̂i(λ)
†
]
C = (ViV

⊤
1 )(ViV

⊤
1 )⊤ = ViV

⊤
i

is an easily computable matrix that captures essentially all the coset invariance structure encoded in
the inferred distribution pi.

To compute an affinity score between two images Ii and Ij reflecting how many occluded land-
marks they share, it remains to compare their coset invariance structures, for example, by computing
(
∑

σ∈Snai(σ)aj(σ))
1/2. Omitting certain multiplicative constants arising in the inverse Fourier

transform, again using the correlation theorem, one finds that this reduces to

Π(i, j) = tr(ViV
⊤
i Vj V

⊤
j ) ,

1/2
(8)

which we call Permutation Diffusion Affinity (PDA). Remarkably, PDA is closely related to the
notion of diffusion similarity derived in [22] for rotations, using entirely different, differential geo-
metric tools. Our experiments show that PDA is surprisingly informative about the actual distance
between image viewpoints in physical space, and, as easy it is to compute, can greatly improve the
performance of the SfM pipeline.

5 Experiments

Our experiments focus on challenging image association problems from the literature, where ge-
ometric ambiguities due to large duplicate structures are present in up to 50% of the matches, so
even sophisticated SfM pipelines run into difficulties [6]. Rather than replacing the standard SfM
pipeline with Permutations Diffusion Maps (PDM) altogether, our general approach is to use PDM
as a preprocessing step to compute (8) for every image pair, and then feed these PDA scores into the
SfM pipeline to improve its performance. More information on the experiments, including videos
of 3D reconstructions, and an additional experiment on scene summarization rather than SfM [31],
can be found on the project website: http://pages.cs.wisc.edu/˜pachauri/pdm/.
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In the SfM experiments we used PDM to generate an image match matrix which is then fed to a
state-of-the-art SfM pipeline for 3D reconstruction [8, 9]. The baseline was a Bundle Adjustment
procedure which uses visual features for matching and has a built-in heuristic outlier removal mod-
ule. Several other papers have used a similar comparisons [6]. For each dataset, SIFT was used
to detect and characterize landmarks [32, 33]. We compute putative pairwise matchings (τij)mi,j=1

by solving
(
m
2

)
linear independent assignments [34] based on their SIFT features. The permutation

matrix representation is used for putative matchings (τij)
m
i,j=1 as in (5). Here, n is relative large,

on the order of 1000. Ideally, n is the total number of distinct keypoints in the 3D scene, but is
not directly observable, so we set n to be the maximum number of keypoints detected in any single
image in the dataset. Eigenvector based procedure computes weighted affinity matrix. We used a
binary match matrix as the input to an SfM library [8, 9]. Note that we only provide this library the
image association hypotheses, leaving all other modules unchanged. With (potentially) good image
association information, the SfM modules can sample landmarks more densely and perform bundle
adjustment, leaving everything else unchanged. The baseline 3D reconstruction is performed using
the same SfM pipeline without intervention.

The “HOUSE” sequence has three instances of similar looking houses (Figure 1). The diffusion
process accumulates evidence and eventually provides strongly connected images in the data asso-
ciation matrix (Figure 2a). Warm colors correspond to high affinity between pairs of images. The
binary match matrix was obtained by applying a threshold on the weighted matrix (Figure 2b). We
used this matrix to define the image matching for feature tracks. This means that features are only
matched between images that are connected in our matching matrix. The SfM pipeline was given
these image matches as a hypotheses to explain how the images are “connected”. The resulting
reconstruction correctly gives three houses (Figure 2c). In contrast, the same SfM pipeline when
allowed to track features automatically with an outlier removal heuristic resulted in a folded recon-
struction (Figure 1b). One may ask if more specialized heuristics will do better, such as time stamps,
as suggested in [6]. However, experimental results in [5] and elsewhere strongly suggests that these
datasets still remain challenging.

(a) (b) (c)
Figure 2: House sequence: (a) Weighted image association matrix. (b) Binary image match matrix. (c) PDM
dense reconstruction.
The “CUP” dataset has multiple images of a 180 degree symmetric cup from all sides (Figure 3a).
PDM reveals a strongly connected component along the diagonal for this dataset, shown in warm
colors in Figure 3b. Our global reasoning over the space of permutations substantially mitigates
coherent errors. The binary match matrix was obtained by thresholding the weighted matrix (Fig-
ure 3c). As is evident from the reconstructions, the baseline method only reconstruct a “half cup”.
Due to the structural ambiguity, it also concludes that the cup has two handles (Figure 4b). In con-
trast, the PDM reconstruction gives a perfect reconstruction of the full cup with a single handle
(Figure 4a).

(a) (b) (c)
Figure 3: (a) Representative images from CUP dataset. (b) Weighted data association matrix. (c) Binary data
association matrix.

The “OAT” dataset contains two instances of a red oat box, one on the left of a box of “Wheat
Thins”, and another on the right (Figure 5a). The PDM weighted match matrix and binary match
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(a) (b)

Figure 4: CUP dataset. (a) PDM dense reconstruction. (b) Baseline dense reconstruction.

matrix successfully discover strongly connected components, (Figures 5b, 5c). The baseline method
confused the two oat boxes as one, and reconstructs only a single box, (Figure 6b). Moreover, the
structural ambiguity splits the Wheat Thins into two pieces. On the other hand, PDM gives a nice
reconstruction of the two oat boxes with the entire wheat things in the middle, Figure 6(a). Several
more experiments (with videos), can be found on the project website.

(a) (b) (c)
Figure 5: (a) Representative images from OAT dataset. (b) Weighted data association matrix. (c) Binary data
association matrix.

(a) (b)
Figure 6: OAT dataset. (a) PDM dense reconstruction. (b) Baseline dense reconstruction.

6 Conclusions

Inspired by the Vector Diffusion formalism of [22], we have proposed a new algorithm called Per-
mutation Diffusion Maps for solving permutation synchronization problems, and an associated new
affinity measure called Permutation Diffusion Affinity (PDA). Experiments show that the latter, in
particular, can significantly improve the quality of Structure from Motion reconstructions of dif-
ficult scenes. Interestingly, PDA has an interpretation in terms of the inner product between two
autocorrelation functions expressed in Fourier space, which, we believe, is a new approach to de-
tecting hidden symmetries, with many potential applications even outside the realm of permutation
problems.
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