Minimal Pairs

Algorithmic Randomness

Open Problems

Asymptotic notions of computability: minimal pairs and randomness

Tiago Royer Advisor: Denis Hirschfeldt

The University of Chicago Department of Computer Science

May 13, 2022 https://cs.uchicago.edu/~royer/presentation.pdf

Minimal Pairs

Algorithmic Randomness

Open Problems

Intuition

"Definition"

A Turing machine M solves a problem P if for every instance x of P, M halts on x with the correct answer.

"Definition"

A Turing machine M asymptotically solves a problem P if for almost every instance x of P, M halts on x with the correct answer.

Minimal Pairs

Algorithmic Randomness

Open Problems

Density Definition

Definition A subset A of \mathbb{N} is dense if

$$\lim_{n \to \infty} \frac{A \cap [0, n)}{n} = 1$$

and **sparse** if the limit is 0.

Definition A subset B of $\{0,1\}^*$ is dense if

$$\lim_{n \to \infty} \frac{|\{\sigma \in B : |\sigma| = n\}|}{2^n} = 1$$

and sparse if the limit is 0.

Minimal Pairs

Algorithmic Randomness

Open Problems

Coarse and Generic computability

Definition

A set A is coarsely computable if there exists a Turing machine M such that $M(x)\downarrow$ for all x and the set

$$\{x \mid M(x) = A(x)\}$$

is dense.

Definition A set A is generically computable if there exists a Turing machine M such that $M(x)\downarrow$ implies M(x) = A(x) and the set

 $\{x\mid M(x){\downarrow}\}$

is dense.

Minimal Pairs

Algorithmic Randomness

Open Problems

Examples

Example

Every computable set is both coarsely and generically computable.

Example

The set

$$A = \{2^n \mid n \in \mathsf{Halting}\}\$$

is not computable, but it is both coarsely and generically computable.

Minimal Pairs

Algorithmic Randomness

Open Problems

Examples

$R_e = \{2^e(2l+1) \mid l \in \mathbb{N}\}$ $\mathbb{N} = \mathbb{N} = \mathbb{N}$ $R_0 = \mathbb{N} = \mathbb{N}$ $R_1 = \mathbb{N} = \mathbb{N}$

Example

The set

$$B = \bigcup_{n \in \mathsf{Halting}} R_n$$

is coarsely computable, but not generically computable.

Minimal Pairs

Algorithmic Randomness

Open Problems

Minimal Pairs in the Turing Degrees

Definition

A minimal pair for the Turing degrees is a pair of sets A, B such that neither A nor B are computable, but if C is computable relative to both A and B, then C is computable.

Theorem (1950's)

There exists a minimal pair for the Turing degrees.

Minimal Pairs

Algorithmic Randomness

Open Problems

Minimal Pairs for Relative Coarse Computability

Definition

A minimal pair for relative coarse computability is a pair of sets A, B such that neither A nor B are coarsely computable, but if C is coarsely computable relative to both A and B,

then C is coarsely computable.

Theorem (Hirschfeldt, Jockusch, Kuyper, Schupp, 2016) *There exists a minimal pair for relative coarse computability.*

Minimal Pairs for Relative Asymptotic Computability

- Theorem (Astor, Hirschfeldt, Jockusch, 2019) There exists a minimal pair for relative dense computability.
- Theorem (Hirschfeldt, Jockusch, Kuyper, Schupp, 2016) There exists a minimal pair for relative coarse computability.

Theorem (Igusa, 2013)

There are no minimal pairs for relative generic computability.

Theorem (Igusa, 2013)

There are **no** minimal pairs for relative effectively dense computability.

Minimal Pairs

Algorithmic Randomness

Open Problems

Coarse Reducibility

Definition (rephrased)

A set A is coarsely computable relative to B if there exists a Turing functional Φ such that the set Φ^B is a coarse description of A.

• Note the assymetry! The input is the set *B* itself, but the output is a coarse approximation to *A*

Definition

A set A is **coarsely reducible** to B if there exists a Turing functional Φ such that for all coarse descriptions C of B, the set Φ^C is a coarse description of A.

Minimal Pairs for Asymptotic Reducibilities

Theorem (Astor, Hirschfeldt, Jockusch, 2019)

There exists a minimal pair for dense reducibilities. In fact, there are measure-1 many such pairs.

Theorem (Hirschfeldt, Jockusch, Kuyper, Schupp, 2016) There exists a minimal pair for coarse reducibilities. In fact, there are measure-1 many such pairs.

Theorem (Hirschfeldt, 2020)

There exists a minimal pair for generic reducibility.

Minimal Pairs for Asymptotic Reducibilities

Theorem (Astor, Hirschfeldt, Jockusch, 2019)

There exists a minimal pair for dense reducibilities. In fact, there are measure-1 many such pairs.

Theorem (Hirschfeldt, Jockusch, Kuyper, Schupp, 2016) There exists a minimal pair for coarse reducibilities. In fact, there are measure-1 many such pairs.

Theorem (Hirschfeldt, 2020)

There exists a minimal pair for generic reducibility.

Open Problem

Are there minimal pairs for effective dense reducibility?

Very Few Minimal Pairs for Generic Reducibility

Theorem (R)

There are only measure-0 many minimal pairs for generic reducibility.

Proof sketch.

Igusa constructs a pair of Turing functionals Φ, Ψ and two countable lists $\{X_e\}_{e \in \mathbb{N}}, \{Y_e\}_{e \in \mathbb{N}}$ such that, if $A \neq X_e$ and $B \neq Y_e$ for all e, then $\Phi^A \cup \Psi^B$ is not generically computable, but is generically computable relative to both A and B.

Very Few Minimal Pairs for Generic Reducibility

Theorem (R)

There are only measure-0 many minimal pairs for generic reducibility.

Proof sketch.

We construct a pair of Turing functionals Φ, Ψ and two countable lists $\{X_e\}_{e \in \mathbb{N}}, \{Y_e\}_{e \in \mathbb{N}}$ such that, if $A \triangle X_e$ and $B \triangle Y_e$ are not sparse for any e, then $\Phi^A \cup \Psi^B$ is not generically computable, but is **generically reducible** to both A and B.

Minimal Pairs

Algorithmic Randomness

Open Problems

1-Randomness

Definition

A Martin-Löf test is a uniform sequence $U_0 \supseteq U_1 \supseteq \cdots$

- of Σ_1^0 classes such that $\mu(U_i) < 2^{-i}$.
- A set A passes the test if $A \notin \bigcap_i U_i$.
- A set is 1-random if it passes all Martin-Löf tests.

Minimal Pairs

Algorithmic Randomness

Open Problems

n-Randomness

Definition

A Σ_n^0 Martin-Löf test is a uniform sequence $U_0 \supseteq U_1 \supseteq \cdots$ of Σ_n^0 classes such that $\mu(U_i) < 2^{-i}$.

- A set A passes the test if $A \notin \bigcap_i U_i$.
- A set is *n*-random if it passes all Σ_n^0 Martin-Löf tests.

Minimal Pairs

Algorithmic Randomness

Open Problems

n-Randomness and Weak Randomness

.

Minimal Pairs

Open Problems

Randomness and Minimal Pairs

Theorem (Astor, Hirschfeldt, Jockusch, 2019) If A and B are relatively weakly 4-random, then they form a minimal pair for dense reducibility.

Theorem (Hirschfeldt, Jockusch, Kuyper, Schupp, 2016) If A and B are relatively weakly 3-random, then they form a minimal pair for coarse reducibility.

Theorem (R)

If A and B are weakly 2-random, then they **do not** form a minimal pair for generic reducibility.

Theorem (R)

If A and B are weakly 2-random, then they **do not** form a minimal pair for effectively dense reducibility.

Minimal Pairs

Algorithmic Randomness

Open Problems

Randomness and Minimal Pairs

Theorem (R)

If A and B are weakly 2-random, then they **do not** form a minimal pair for generic reducibility.

Proof sketch.

Recall: there are $\Phi, \Psi, \{X_e\}_{e \in \mathbb{N}}, \{Y_e\}_{e \in \mathbb{N}}$ that if $A riangle X_e$ and $B riangle Y_e$ are not sparse for all e, then $\Phi^A \cup \Psi^B$ witnesses that A, B are not a minimal pair. Argue that X_e, Y_e are \emptyset' -computable, thus A, B are weakly 1-random relative to all X_e, Y_e , and use lemma below.

Lemma

If A is weakly 1-random relative to X, then $A \bigtriangleup X$ is not sparse.

Minimal Pairs

Algorithmic Randomness

Open Problems

Randomness and Minimal Pairs

Relative Computability				
	Dense	Coarse	Generic	Eff. dense
Min. pairs?	Yes	Yes	No	No
How many?	Measure-1	Measure-1	-	-
Randomness?	Weak 4	Weak 3	-	-
Reducibility				
	Dense	Coarse	Generic	Eff. dense
Min. pairs?	Yes	Yes	Yes	?

Minimal Pair

Algorithmic Randomness

Open Problems ○●

Related Open Problems

Open Problem

Can we show that if A and B are 1-random, then they do not form a minimal pair for generic reducibility?

Open Problem

For each of the asymptotic reducibilities, is every function equivalent to the indicator function of a set?

Open Problem

Which reducibilities imply each other?

Minimal Pairs

Algorithmic Randomness

Open Problems

Asymptotic notions of computability: minimal pairs and randomness

Tiago Royer Advisor: Denis Hirschfeldt

The University of Chicago Department of Computer Science

May 13, 2022 https://cs.uchicago.edu/~royer/presentation.pdf

Partial Results on Sets vs. Functions

Theorem (R) If $\log f(n) \le n^{O(1)}$ then f is equivalent to a set under all four reducibilities.

Definition

A simple encoding is a function $f : \mathbb{N} \to 2^{\mathbb{N}}$ such that if $x \neq y$ then $E(x) \cap E(y) = \emptyset$. For $f : \mathbb{N} \to \mathbb{N}$, define E_f by

$$E_f = \bigcup_{n \in \operatorname{dom} f} E(\langle n, f(n) \rangle).$$

Theorem (R)

If E is a simple encoding, then there exists an f such that f and E_f are not equivalent under any of the four reducibilities.