Asymptotic notions of computability: minimal pairs and randomness

Tiago Royer
Advisor: Denis Hirschfeldt

The University of Chicago
Department of Computer Science

$$
\text { May 13, } 2022
$$

https://cs.uchicago.edu/~royer/presentation.pdf

Intuition

"Definition"
A Turing machine M solves a problem P
if for every instance x of P,
M halts on x with the correct answer.
"Definition"
A Turing machine M asymptotically solves a problem P
if for almost every instance x of P,
M halts on x with the correct answer.

Density Definition

Definition
A subset A of \mathbb{N} is dense if

$$
\lim _{n \rightarrow \infty} \frac{A \cap[0, n)}{n}=1
$$

and sparse if the limit is 0 .
Definition
A subset B of $\{0,1\}^{*}$ is dense if

$$
\lim _{n \rightarrow \infty} \frac{|\{\sigma \in B:|\sigma|=n\}|}{2^{n}}=1
$$

and sparse if the limit is 0 .

Coarse and Generic computability

Definition
A set A is coarsely computable
if there exists a Turing machine M such that $M(x) \downarrow$ for all x and the set

$$
\{x \mid M(x)=A(x)\}
$$

is dense.
Definition
A set A is generically computable
if there exists a Turing machine M such that $M(x) \downarrow$ implies $M(x)=A(x)$ and the set

$$
\{x \mid M(x) \downarrow\}
$$

is dense.

Examples

Example

Every computable set is both coarsely and generically computable.
Example
The set

$$
A=\left\{2^{n} \mid n \in \text { Halting }\right\}
$$

is not computable, but it is both coarsely and generically computable.

Examples

Example
The set

$$
B=\bigcup_{n \in \text { Halting }} R_{n}
$$

is coarsely computable, but not generically computable.

Four Horsemen of Asymptotic Computability

Minimal Pairs in the Turing Degrees

Definition

A minimal pair for the Turing degrees
is a pair of sets A, B such that
neither A nor B are computable, but if C is computable relative to both A and B, then C is computable.

Theorem (1950's)
There exists a minimal pair for the Turing degrees.

Minimal Pairs for Relative Coarse Computability

Definition
A minimal pair for relative coarse computability is a pair of sets A, B such that
neither A nor B are coarsely computable, but if C is coarsely computable relative to both A and B, then C is coarsely computable.

Theorem (Hirschfeldt, Jockusch, Kuyper, Schupp, 2016)
There exists a minimal pair for relative coarse computability.

Minimal Pairs for Relative Asymptotic Computability

Theorem (Astor, Hirschfeldt, Jockusch, 2019)
There exists a minimal pair for relative dense computability.
Theorem (Hirschfeldt, Jockusch, Kuyper, Schupp, 2016)
There exists a minimal pair for relative coarse computability.
Theorem (Igusa, 2013)
There are no minimal pairs for relative generic computability.
Theorem (Igusa, 2013)
There are no minimal pairs for relative effectively dense computability.

Coarse Reducibility

Definition (rephrased)

A set A is coarsely computable relative to B
if there exists a Turing functional Φ such that the set Φ^{B} is a coarse description of A.

- Note the assymetry! The input is the set B itself, but the output is a coarse approximation to A

Definition

A set A is coarsely reducible to B
if there exists a Turing functional Φ such that for all coarse descriptions C of B, the set Φ^{C} is a coarse description of A.

Minimal Pairs for Asymptotic Reducibilities

Theorem (Astor, Hirschfeldt, Jockusch, 2019)
There exists a minimal pair for dense reducibilities.
In fact, there are measure-1 many such pairs.
Theorem (Hirschfeldt, Jockusch, Kuyper, Schupp, 2016)
There exists a minimal pair for coarse reducibilities. In fact, there are measure-1 many such pairs.

Theorem (Hirschfeldt, 2020)
There exists a minimal pair for generic reducibility.

Minimal Pairs for Asymptotic Reducibilities

Theorem (Astor, Hirschfeldt, Jockusch, 2019)
There exists a minimal pair for dense reducibilities.
In fact, there are measure-1 many such pairs.
Theorem (Hirschfeldt, Jockusch, Kuyper, Schupp, 2016)
There exists a minimal pair for coarse reducibilities.
In fact, there are measure-1 many such pairs.
Theorem (Hirschfeldt, 2020)
There exists a minimal pair for generic reducibility.
Open Problem
Are there minimal pairs for effective dense reducibility?

Very Few Minimal Pairs for Generic Reducibility

Theorem (R)
There are only measure-0 many minimal pairs for generic reducibility.

Proof sketch.
Igusa constructs a pair of Turing functionals Φ, Ψ and two countable lists $\left\{X_{e}\right\}_{e \in \mathbb{N}},\left\{Y_{e}\right\}_{e \in \mathbb{N}}$ such that, if $A \neq X_{e}$ and $B \neq Y_{e}$ for all e, then $\Phi^{A} \cup \Psi^{B}$ is not generically computable, but is generically computable relative to both A and B.

Very Few Minimal Pairs for Generic Reducibility

Theorem (R)
There are only measure-0 many minimal pairs for generic reducibility.

Proof sketch.
We construct a pair of Turing functionals Φ, Ψ and two countable lists $\left\{X_{e}\right\}_{e \in \mathbb{N}},\left\{Y_{e}\right\}_{e \in \mathbb{N}}$ such that, if $A \triangle X_{e}$ and $B \triangle Y_{e}$ are not sparse for any e, then $\Phi^{A} \cup \Psi^{B}$ is not generically computable, but is generically reducible to both A and B.

1-Randomness

Definition

A Martin-Löf test is a uniform sequence $U_{0} \supseteq U_{1} \supseteq \cdots$ of Σ_{1}^{0} classes such that $\mu\left(U_{i}\right)<2^{-i}$. A set A passes the test if $A \notin \bigcap_{i} U_{i}$.
A set is 1-random if it passes all Martin-Löf tests.

n-Randomness

Definition

A Σ_{n}^{0} Martin-Löf test is a uniform sequence $U_{0} \supseteq U_{1} \supseteq \cdots$ of Σ_{n}^{0} classes such that $\mu\left(U_{i}\right)<2^{-i}$. A set A passes the test if $A \notin \bigcap_{i} U_{i}$.
A set is n-random if it passes all Σ_{n}^{0} Martin-Löf tests.

n-Randomness

n-Randomness and Weak Randomness

Randomness and Minimal Pairs

Theorem (Astor, Hirschfeldt, Jockusch, 2019)
If A and B are relatively weakly 4-random, then they form a minimal pair for dense reducibility.

Theorem (Hirschfeldt, Jockusch, Kuyper, Schupp, 2016)
If A and B are relatively weakly 3 -random, then they form a minimal pair for coarse reducibility.

Theorem (R)
If A and B are weakly 2-random, then they do not form a minimal pair for generic reducibility.

Theorem (R)
If A and B are weakly 2-random, then they do not form a minimal pair for effectively dense reducibility.

Randomness and Minimal Pairs

Theorem (R)
If A and B are weakly 2 -random, then they do not form a minimal pair for generic reducibility.

Proof sketch.
Recall: there are $\Phi, \Psi,\left\{X_{e}\right\}_{e \in \mathbb{N}},\left\{Y_{e}\right\}_{e \in \mathbb{N}}$ that if $A \triangle X_{e}$ and $B \triangle Y_{e}$ are not sparse for all e, then $\Phi^{A} \cup \Psi^{B}$ witnesses that A, B are not a minimal pair. Argue that X_{e}, Y_{e} are \emptyset^{\prime}-computable, thus A, B are weakly 1-random relative to all X_{e}, Y_{e}, and use lemma below.

Lemma
If A is weakly 1 -random relative to X, then $A \triangle X$ is not sparse.

Randomness and Minimal Pairs

	Relative Computability			
	Dense	Coarse	Generic	Eff. dense
Min. pairs?	Yes	Yes	No	No
How many?	Measure-1	Measure-1	-	-
Randomness?	Weak 4	Weak 3	-	-
		Reducibility		
	Dense	Coarse	Generic	Eff. dense
Min. pairs?	Yes	Yes	Yes	?
How many?	Measure-1	Measure-1	Measure-0	\leq Measure-0
Randomness?	Weak 4	Weak 3	Weak 2	Weak 2

Related Open Problems

Open Problem

Can we show that if A and B are 1-random, then they do not form a minimal pair for generic reducibility?

Open Problem
For each of the asymptotic reducibilities, is every function equivalent to the indicator function of a set?

Open Problem
Which reducibilities imply each other?

Asymptotic notions of computability: minimal pairs and randomness

Tiago Royer
Advisor: Denis Hirschfeldt

The University of Chicago
Department of Computer Science

$$
\text { May 13, } 2022
$$

https://cs.uchicago.edu/~royer/presentation.pdf

Partial Results on Sets vs. Functions

Theorem (R)
If $\log f(n) \leq n^{O(1)}$ then f is equivalent to a set under all four reducibilities.

Definition
A simple encoding is a function $f: \mathbb{N} \rightarrow 2^{\mathbb{N}}$
such that if $x \neq y$ then $E(x) \cap E(y)=\emptyset$.
For $f: \mathbb{N} \rightarrow \mathbb{N}$, define E_{f} by

$$
E_{f}=\bigcup_{n \in \operatorname{dom} f} E(\langle n, f(n)\rangle) .
$$

Theorem (R)
If E is a simple encoding, then there exists an f such that f and E_{f} are not equivalent under any of the four reducibilities.

