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Introduction Minimal Pairs Algorithmic Randomness Open Problems

Intuition

“Definition”
A Turing machine M solves a problem P
if for every instance x of P ,
M halts on x with the correct answer.

“Definition”
A Turing machine M asymptotically solves a problem P
if for almost every instance x of P ,
M halts on x with the correct answer.
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Density Definition

Definition
A subset A of N is dense if

lim
n→∞

A ∩ [0, n)

n
= 1

and sparse if the limit is 0.

Definition
A subset B of {0, 1}∗ is dense if

lim
n→∞

|{σ ∈ B : |σ| = n}|
2n

= 1

and sparse if the limit is 0.
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Coarse and Generic computability
Definition
A set A is coarsely computable
if there exists a Turing machine M such that
M(x)↓ for all x and the set

{x |M(x) = A(x)}

is dense.

Definition
A set A is generically computable
if there exists a Turing machine M such that
M(x)↓ implies M(x) = A(x) and the set

{x |M(x)↓}

is dense.
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Examples

Example
Every computable set is both coarsely and generically computable.

Example
The set

A = {2n | n ∈ Halting}

is not computable, but it is both coarsely and generically
computable.
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Examples

Re = {2e(2l + 1) | l ∈ N}

N
R0

R1

R2

Example
The set

B =
⋃

n∈Halting
Rn

is coarsely computable, but not generically computable.
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Four Horsemen of Asymptotic Computability

Densely Computable
May err
May loop forever

Coarsely Computable
May err
Must halt

Generically Computable
Must not err
May loop forever

Effectively Densely Computable
Must not err
Must halt
May return � (“don’t know”)
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Minimal Pairs in the Turing Degrees

Definition
A minimal pair for the Turing degrees
is a pair of sets A,B such that
neither A nor B are computable,
but if C is computable relative to both A and B,
then C is computable.

Theorem (1950’s)
There exists a minimal pair for the Turing degrees.
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Minimal Pairs for Relative Coarse Computability

Definition
A minimal pair for relative coarse computability
is a pair of sets A,B such that
neither A nor B are coarsely computable,
but if C is coarsely computable relative to both A and B,
then C is coarsely computable.

Theorem (Hirschfeldt, Jockusch, Kuyper, Schupp, 2016)
There exists a minimal pair for relative coarse computability.
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Minimal Pairs for Relative Asymptotic Computability

Theorem (Astor, Hirschfeldt, Jockusch, 2019)
There exists a minimal pair for relative dense computability.

Theorem (Hirschfeldt, Jockusch, Kuyper, Schupp, 2016)
There exists a minimal pair for relative coarse computability.

Theorem (Igusa, 2013)
There are no minimal pairs for relative generic computability.

Theorem (Igusa, 2013)
There are no minimal pairs for relative effectively dense
computability.
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Coarse Reducibility

Definition (rephrased)
A set A is coarsely computable relative to B
if there exists a Turing functional Φ such that
the set ΦB is a coarse description of A.

• Note the assymetry! The input is the set B itself,
but the output is a coarse approximation to A

Definition
A set A is coarsely reducible to B
if there exists a Turing functional Φ such that
for all coarse descriptions C of B,
the set ΦC is a coarse description of A.
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Minimal Pairs for Asymptotic Reducibilities

Theorem (Astor, Hirschfeldt, Jockusch, 2019)
There exists a minimal pair for dense reducibilities.
In fact, there are measure-1 many such pairs.

Theorem (Hirschfeldt, Jockusch, Kuyper, Schupp, 2016)
There exists a minimal pair for coarse reducibilities.
In fact, there are measure-1 many such pairs.

Theorem (Hirschfeldt, 2020)
There exists a minimal pair for generic reducibility.

Open Problem
Are there minimal pairs for effective dense reducibility?

12 / 24



Introduction Minimal Pairs Algorithmic Randomness Open Problems

Minimal Pairs for Asymptotic Reducibilities

Theorem (Astor, Hirschfeldt, Jockusch, 2019)
There exists a minimal pair for dense reducibilities.
In fact, there are measure-1 many such pairs.

Theorem (Hirschfeldt, Jockusch, Kuyper, Schupp, 2016)
There exists a minimal pair for coarse reducibilities.
In fact, there are measure-1 many such pairs.

Theorem (Hirschfeldt, 2020)
There exists a minimal pair for generic reducibility.

Open Problem
Are there minimal pairs for effective dense reducibility?

13 / 24



Introduction Minimal Pairs Algorithmic Randomness Open Problems

Very Few Minimal Pairs for Generic Reducibility

Theorem (R)
There are only measure-0 many minimal pairs for generic
reducibility.

Proof sketch.
Igusa constructs a pair of Turing functionals Φ,Ψ
and two countable lists {Xe}e∈N, {Ye}e∈N
such that, if A 6= Xe and B 6= Ye for all e,
then ΦA ∪ΨB is not generically computable,
but is generically computable relative to both A and B.
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Very Few Minimal Pairs for Generic Reducibility

Theorem (R)
There are only measure-0 many minimal pairs for generic
reducibility.

Proof sketch.
We construct a pair of Turing functionals Φ,Ψ
and two countable lists {Xe}e∈N, {Ye}e∈N
such that, if A4Xe and B4Ye are not sparse for any e,
then ΦA ∪ΨB is not generically computable,
but is generically reducible to both A and B.
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1-Randomness

Definition
A Martin-Löf test is a uniform sequence U0 ⊇ U1 ⊇ · · ·
of Σ0

1 classes such that µ(Ui) < 2−i.
A set A passes the test if A /∈

⋂
i Ui.

A set is 1-random if it passes all Martin-Löf tests.
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n-Randomness

Definition
A Σ0

n Martin-Löf test is a uniform sequence U0 ⊇ U1 ⊇ · · ·
of Σ0

n classes such that µ(Ui) < 2−i.
A set A passes the test if A /∈

⋂
i Ui.

A set is n-random if it passes all Σ0
n Martin-Löf tests.
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n-Randomness

weak 1-random

1-random

2-random

3-random

...
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n-Randomness and Weak Randomness

weak 1-random

1-random

weak 2-random

2-random

weak 3-random

3-random

...
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Randomness and Minimal Pairs
Theorem (Astor, Hirschfeldt, Jockusch, 2019)
If A and B are relatively weakly 4-random,
then they form a minimal pair for dense reducibility.

Theorem (Hirschfeldt, Jockusch, Kuyper, Schupp, 2016)
If A and B are relatively weakly 3-random,
then they form a minimal pair for coarse reducibility.

Theorem (R)
If A and B are weakly 2-random,
then they do not form a minimal pair for generic reducibility.

Theorem (R)
If A and B are weakly 2-random,
then they do not form a minimal pair for effectively dense
reducibility.

20 / 24



Introduction Minimal Pairs Algorithmic Randomness Open Problems

Randomness and Minimal Pairs

Theorem (R)
If A and B are weakly 2-random,
then they do not form a minimal pair for generic reducibility.

Proof sketch.
Recall: there are Φ,Ψ, {Xe}e∈N, {Ye}e∈N
that if A4Xe and B4Ye are not sparse for all e,
then ΦA ∪ΨB witnesses that A,B are not a minimal pair.
Argue that Xe, Ye are ∅′-computable,
thus A,B are weakly 1-random relative to all Xe, Ye,
and use lemma below.

Lemma
If A is weakly 1-random relative to X,
then A4X is not sparse.
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Randomness and Minimal Pairs

Relative Computability
Dense Coarse Generic Eff. dense

Min. pairs? Yes Yes No No
How many? Measure-1 Measure-1 - -

Randomness? Weak 4 Weak 3 - -

Reducibility
Dense Coarse Generic Eff. dense

Min. pairs? Yes Yes Yes ?
How many? Measure-1 Measure-1 Measure-0 ≤ Measure-0

Randomness? Weak 4 Weak 3 Weak 2 Weak 2
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Related Open Problems

Open Problem
Can we show that if A and B are 1-random,
then they do not form a minimal pair for generic reducibility?

Open Problem
For each of the asymptotic reducibilities,
is every function equivalent to the indicator function of a set?

Open Problem
Which reducibilities imply each other?
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Appendix

Partial Results on Sets vs. Functions
Theorem (R)
If log f(n) ≤ nO(1) then f is equivalent to a set
under all four reducibilities.

Definition
A simple encoding is a function f : N→ 2N

such that if x 6= y then E(x) ∩ E(y) = ∅.
For f : N→ N, define Ef by

Ef =
⋃

n∈dom f

E(〈n, f(n)〉).

Theorem (R)
If E is a simple encoding, then there exists an f such that
f and Ef are not equivalent under any of the four reducibilities.
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