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ABSTRACT
Distributed systems have become the backbone of modern clouds.
Users often expect high scalability and performance isolation from
distributed systems. Unfortunately, a type of poor software design,
which we refer to as performance cascading bugs (PCbugs), can
often cause the slowdown of non-scalable code in one job to propa-
gate, causing global performance degradation and even threatening
system availability.

This paper presents a tool, PCatch, that can automatically predict
PCbugs by analyzing system execution under small-scale workloads.
PCatch contains three key components in predicting PCbugs. It
uses program analysis to identify code regions whose execution
time can potentially increase dramatically with the workload size;
it adapts the traditional happens-before model to reason about
software resource contention and performance dependency rela-
tionship; it uses dynamic tracking to identify whether the slowdown
propagation is contained in one job or not. Our evaluation using
representative distributed systems, Cassandra, Hadoop MapReduce,
HBase, and HDFS, shows that PCatch can accurately predict PCbugs
based on small-scale workload execution.
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Figure 1: A PCbug in MapReduce: the client’s job delays
heartbeats through lock contentions and causes the whole
Tasktracker node to fail.
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1 INTRODUCTION
1.1 Motivation
Distributed systems, such as cloud storage, data-parallel computing
frameworks, and synchronization services, have become a dominant
backbone for modern clouds. Users often expect high scalability
and performance isolation of these systems, given their inherent
distributed and redundant nature. Unfortunately, poor software
design could violate both properties at once, causing the slowdown
of one job to propagate and affect other jobs or even the whole
system. We refer to this type of design problem as a performance
cascading bug, as a PCbug for short.

Figure 1 illustrates a real-world PCbug [5] from Hadoop MapRe-
duce. The figure shows a TaskTracker node, where threads belong-
ing to different jobs may execute in parallel, and a JobTracker node.
In the TaskTracker node, thread t1 downloads Hadoop Distributed
File System (HDFS) files for a job. Inevitably, a client may submit
a job that demands a large file, which leads to a time-consuming
file-copy loop in t1, denoted by the red polyline. Unfortunately,
sometimes the slowness of this file copy could propagate through
lock contentions and eventually delay the sending of TaskTracker’s
heart-beats in thread t4. Such a delay of heartbeats is catastrophic.
Failing to receive the heartbeat on time, the JobTracker node would
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consider the TaskTracker node dead, causing all tasks, which be-
long to various jobs, running on that TaskTracker to restart on a
different node. This PCbug has been fixed by changing thread t2 on
TaskTracker, so that when t2 fails to acquire lock l1, it immediately
releases lock l2.

As demonstrated by this example, PCbugs are often triggered
by large workloads and end up with global performance problems,
violating both scalability and performance-isolation expectations.
The workload first causes non-scalable code to slow down, such as
the file-download loop in Figure 1. The slowdown is inevitable and
benign if well isolated. Unfortunately, software-resource contention,
like the lock contention in Figure 1, may cause a local slowdown
to propagate to a different job or a critical system routine, such
as the heartbeat routine, and eventually lead to severe slowdowns
affecting multiple jobs and sometimes multiple physical nodes in
the system.

The following properties of PCbugs make them difficult to tackle:

• Workload sensitive. The amount of slowdown incurred by
a PCbug varies on workloads. Unfortunately, in most cases,
only small workloads are available during in-house testing,
which makes PCbugs difficult to expose and catch before
software release.
• Non-deterministic. Software-resource competition and the
corresponding slowdown propagation are often non-
deterministic. Consequently, even running software under
large workloads does not guarantee to expose PCbugs.
• Global symptoms. The cascading nature of PCbugsmakes the
performance-failure diagnosis difficult — it requires global
analysis to identify the slowness propagation chains and the
slowdown root causes.

Although extensive studies have been conducted on detecting
performance problems in single-machine systems, such as loop in-
efficiency problems [31–33], cache false-sharing problems [26, 29],
and lock contention problems [3, 10, 48], there are no effective so-
lutions for detecting PCbugs in cloud systems. It is highly desirable
to build automated PCbug detection tools that can deterministically
predict PCbugs and pin-point the performance cascading chains by
analyzing small workloads during in-house testing.

1.2 Contribution
In this paper, we present a tool PCatch that automatically detects
PCbugs through a combination of static and dynamic program
analysis. PCatch observes a run of a distributed system under a
small-scale workload. It then automatically predicts PCbugs that
can affect the performance of any specified user job or system
routine. We refer to such a user job or a system routine as a sink in
the paper.

Specifically, PCatch identifies a ⟨L,C, S⟩ triplet for every PCbug:
L is a code region like a loop, referred to as source, whose execution
time could be greatly delayed under future workloads; C is a slow-
down chain that could propagate the slowdown of L under certain
timing; and S is the time-sensitive sink in a different job from L,
whose execution time matters to users but is affected by the long
delay from L propagating through Chain C . The detection is done
by the three key components of PCatch.

Performance cascading model and analysis. We model two types
of relationships that could contribute to performance cascading.
One is the traditional causality, also called must-happens-before,
relationship [24, 25, 27, 30] that forces one operation to execute
after another due to deterministic program semantics. The other is a
non-deterministic relationship, which we call may-happens-before,
that may cause one code region to slow down another code region
due to non-deterministic software-resource contentions. Our model
considers not only lock-based resource contention, but also event
handling contention and RPC handling contention that are unique
to asynchronous computation and inter-node communication in
distributed systems. This model and the corresponding analysis en-
ables us to systematically and accurately predict how the slowdown
at one part of a distributed system could non-deterministically af-
fect another part in future runs. The details are presented in Section
4.

Job identity analysis. We use dynamic analysis to automati-
cally identify which code regions belong to the same user job
or the same system routine. This analysis helps us differentiate
local performance-cascading problems from global performance-
cascading problems, with the latter relevant to PCbugs. The details
are presented in Section 5.

Non-scalable source identification. Our analysis adapts traditional
loop-bound analysis and program slicing to efficiently identify
time-consuming loops whose execution time may increase with
the workload changes. This analysis helps us to identify potential
sources of performance cascading problems without running the
software under large-scale workloads. The details are presented in
Section 6.

We evaluated PCatch on widely used distributed systems, in-
cluding Cassandra, HBase, HDFS and Hadoop MapReduce. We
test small-scale workloads on these systems. We knew that these
workloads, when at a much larger scale, triggered 8 cascading per-
formance failures reported by users. By observing system execution
under small-scale workloads, PCatch reports 33 PCbugs, with 22 of
them being true PCbugs. Among these 22 PCbugs, 15 explain the 8
failures that we were aware of and the remaining 7 lead to failures
we were unaware of. These PCbugs are difficult to catch without
PCatch— even under workloads that are thousands or hundreds
of thousands times larger, only 4 out of these 22 PCbugs manifest
after 10 runs. The whole bug-detection incurs 3.7X–5.8X slowdown,
suitable for in-house use.

2 BACKGROUND
As mentioned in Section 1.2, one component of our performance
cascading model is the traditional causality relationship [24, 25, 27,
30]: an operation o1 happens before another operation o2 if there
exists a logical relationship between them so that o2 cannot execute
unless o1 has finished execution. We also refer to this relationship
as o2 causally depends on o1, denoted as o1 → o2. We refer to o1
as the causor of o2, denoted as Causor (o2). Causal relationship is
transitive: if o1 → o2 and o2 → o3, then o1 → o3.

PCatch directly uses the causal relationship model and some
analysis techniques presented by previous work, DCatch [25]. We
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briefly present them below. More details can be found in the DCatch
paper.

2.1 Causal relationship model
The DCatch model mainly includes the following causality rules
that reflect awide range of communication and concurrency-control
operations in real-world distributed cloud systems. We will refer
to those operations discussed below that directly lead to causal
relationships as causal operations.

2.1.1 Inter-node rules. Inter-node causality relationships reflect
various types of inter-node communication.

Synchronous RPC rules. A thread in node n1 could call an RPC
function r implemented by node n2. This thread will block until n2
sends back the RPC execution result, and thus the invocation of r
on n1 happens before the beginning of the RPC execution on n2;
the end of the RPC execution on n2 happens before the return from
r on n1.

Asynchronous Socket rules. A thread in node n1 sends a message
m to node n2 through network sockets. Unlike that in RPC, the
sender does not block, so we only have the relationship that the
sending happens before the receiving.

Custom synchronization rules. The DCatch model also contains a
rule that reflects the notification mechanism provided by synchro-
nization services like ZooKeeper [18], and a rule that represents
distributed while-loop synchronization.

2.1.2 Intra-node rules. Two types of concurrent computation
often co-exist in a distributed system node, synchronous multi-
threading and asynchronous event processing, and contribute to
different types of causality relationships.

Synchronous multi-threaded rules. These are the most traditional
types of causality relationship: the creation of a thread (or process)
t in the parent p happens before the execution of t starts; the end of
t ’s execution happens before a successful join of t inside p; a signal
operation happens before a corresponding wait operation.

Asynchronous event-driven rules. Events could be enqueued by
any thread, and then processed by pre-defined handlers in event-
handling thread(s). This process contributes to several types of
causal relationships: (1) the enqueue of an event e happens before
the handler-function of e starts; (2) when two events e1 and e2 are
sent to the same single-worker FIFO queue, the start of e1 happens
before the start of e2 if the enqueue of e1 happens before the enqueue
of e2; (3) the end of an event’s handler function happens before a
successful join of this event in any thread (e.g., Future::get())1.

Finally, an operation o1 happens before an operation o2 from the
same thread t that occurs later than o1 in t . When t is an event-
handler thread, the above relationship only applies when o1 and o2
are from the same event handler.

1This rule did not appear in the original DCatch paper and is added in the PCatch
implementation.
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Figure 2: PCatch overview

2.2 Causal relationship analysis
Given the causality rules above, once we know all the causal opera-
tions, the causal relationship between any pair of program opera-
tions can be computed.

DCatch analyzes causal relationships by building and analyzing
a happens-before (HB) graph, a technique also used by much
previous work [13, 24, 35, 36]. Specifically, the DCatch run-time
tracer records all the causal operations and other operations use-
ful for DCatch concurrency-bug detection. It then constructs the
DAG happens-before graph, with every vertex v representing an
operation o(v) in the trace and every edge reflecting exactly one
causality rule described in Section 2.1. In this HB graph, a node v1
can reach a nodev2 if and only if o(v1) happens before o(v2). When
there are neither paths connecting v1 to v2 nor paths connecting
v2 to v1, their corresponding operations are concurrent with each
other, denoted as o(v1)//o(v2).

PCatch traces causal operations and uses them to construct HB
graphs exactly as DCatch does. PCatch uses this graph to decide
whether two operations are concurrent and what are the causors
of a given operation.

3 PCATCH OVERVIEW
This section provides an overview of how PCatch predicts a PCbug
⟨L,C, S⟩ following the analysis flow illustrated in Figure 2.

The inputs to PCatch bug detection include the distributed sys-
tem D to be checked, a small-scale workload that allows PCatch
to observe a run of D, and code regions in D whose execution
time matters to users (i.e., sinks). Developers can use PCatch APIs
_sink_start and _sink_end to specify any code region as a sink.

The first step of PCatch is dynamic cascading analysis. At this
step, PCatch analyzes run-time traces to identify a set of potential
PCbug sources whose execution time could propagate to affect
the duration of the sink through software-resource contention and
(optionally) causality relationships. Here, we only consider loops
as potential PCbug source candidates, as loops are most likely to
become performance bottlenecks, as shown by previous empirical
studies [21]. We analyze potential causality and software-resource
contentions based on our cascading model, which will be presented
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in Section 4. At the end of this step, we get a set of PCbug candidates
{⟨L,C, S⟩}.

The second step of PCatch conducts dynamic job-origin analysis
for every PCbug candidate. By analyzing the run-time trace, PCatch
automatically judges whether the source L and the sink S belong to
the same user/system job. Only those that belong to different jobs
remain as PCbug candidates. The others are pruned, as they are at
most local performance problems. This step is explained in Section
5.

The last step of PCatch conducts dynamic-static hybrid loop scal-
ability analysis to check whether the source in a PCbug candidate
has the potential to be time consuming under a future workload.
We look for loops that satisfy two conditions: (1) each loop itera-
tion takes time; and (2) the total number of loop iterations does
not have a constant bound and can potentially increase with the
workload. For the first condition, PCatch simply looks for loops
whose loop body contains I/O operations. For the second condition,
PCatch designs an algorithm that leverages loop-bound analysis
and data-flow analysis, with the details explained in Section 6. After
this step, all the remaining candidates are reported by PCatch as
PCbugs.

4 CASCADING ANALYSIS
Goals. We consider two code regions to have a performance de-

pendency on each other, if the slowdown of one region can lead to
the slowdown of the other. Such a dependency can be established
through two causes. (1) Causality relationship can force an op-
eration to deterministically execute after another operation (e.g.,
message receiving after sending) or one region to deterministically
contribute to the duration of the other (e.g., RPC execution time
contributes to the RPC caller’s time). (2) Resource contention2

can cause a resource acquisition operation to non-deterministically
wait for another party’s resource release. Consequently, a delayed
release will cause an extended waiting.

The PCatch cascading analysis aims to identify ⟨L,C, S⟩, where
delays in code region L can propagate to slow down sink S through
a chain C which contains resource contention and (optionally)
causality relationships.

Challenges. There are three key challenges here.
• Non-determinism. Resource contention is non-deterministic,
as resource-acquisition order may vary from one run to
another. PCatch needs to predict potential dependencies.
• Diversity. Distributed systems have a variety of communica-
tion and synchronization mechanisms (synchronous or asyn-
chronous, intra- or inter-node) that can cause performance
dependencies, such as locks, RPCs, events, and messages
shown in Figure 1 and 3. Missing any of them would hurt
coverage and accuracy of PCbug detection.
• Composition. Performance dependency between L and S
may include contentions of multiple resources, such as the
three locks in Figure 1, as well as multiple causality chains, as
shown in Figure 3. PCatch needs to carefully handle not only
individual causality/contention operations, but also their
compositions.

2Hardware resource contention can also cause lack of performance isolation [52], but
is out of the scope of PCbugs.
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Figure 3: A real PCbug in Cassandra, where a slow clean-up
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To systematically and accurately reason about and predict exe-
cution delays caused by such complicated and entangled resource
contentions and semantics dependencies, we will first build a
performance-dependency model, and then design a dependency
analysis algorithm based on that model.

4.1 PCatch Performance Cascading Model
We will first discuss causality relationships and resource- con-
tention relationships separately below in Section 4.1.1 and Sec-
tion 4.1.2, followed by a discussion in Section 4.1.3 about how to
compose them together to reason about performance cascading
relationships in distributed systems.

4.1.1 Causality (must-HB) relationships. Under causal relation-
ship o1 → o2, the delay of o1 would delay the start of o2. For
example, the delay of message sending would always delay the
start of the message handling on the message-receiving node. All
the causal relationships modeled in PCatch have been discussed in
Section 2.

4.1.2 Resource contention (may-HB) relationships. Under re-
source contention, one resource-acquisition operation could non-
deterministically wait for another resource-release operation. For
example, an attempt to acquire lock l has to wait for whoever
happens to acquire l earlier to release l . This non-deterministic re-
lationship is a crucial ingredient of performance cascading in the
context of PCbugs — the slowdown of any operation o while hold-
ing a resource l would lead to an extended wait at a corresponding
resource acquisition a, denoted as o ⇝ a.

PCatch models two key types of software-resource contention:
locks and thread pools. They play crucial roles in coordinating
execution, which inevitably brings contention, in synchronous
thread parallel execution, asynchronous event-driven concurrent
execution, synchronous RPC processing, and asynchronous socket-
message handling.

Locks For two critical sections that are concurrent with each
other and protected by the same lock, the delay inside one could
postpone the start of the other, vice versa. That is, for two pairs
of lock-unlock operations, {lock1(l), unlock1(l)} and {lock2(l),
unlock2(l)}, if lock1(l) // lock2(l), we can infer that o2 ⇝
lock1(l) and o1 ⇝ lock2(l), where o1 and o2 are any operations
inside the {lock1(l), unlock1(l)} and {lock2(l), unlock2(l)}
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critical sections, respectively, as demonstrated in Figure 1. Note
that, such a delay could directly affect another node in a distributed
system when the critical section is inside a message/RPC handler.

In practice, there are different variations of this rule, depending
on different lock primitives. For example, given a reader-writer lock,
the may-HB relationship has to involve a writer-lock critical section,
and does not exist between two reader-lock critical sections.

Thread-Pool Distributed systems often maintain a fixed number
of threads that are responsible for executing handlers of events
inserted into a specific queue or RPCs delivered to a specific node.
In these cases, the handler threads become a target of resource
contention. If one event (RPC) happens to be inserted into the
handling queue (or dispatched to the thread pool) later than another
event (RPC), the start of its handler function could be unexpectedly
delayed by the execution of the other event/RPC handler, as shown
by thread t2 in the Daemon-2 node in Figure 3. Consequently, we
have the following may-HB rule related to thread pools. For two
event/RPC handler functions h1 and h2 that are processed by the
same thread pool, if the start of function h1 is concurrent with the
start of function h2, denoted as starth1 // starth2 , we can infer
that o1 ⇝ starth2 and o2 ⇝ starth1 , where o1 and o2 are any
operations inside handler functions h1 and h2, respectively.

The above may-HB relationship is transitive — if A⇝ B ⇝ C ,
we know that A ⇝ C as long as A//C .3 That is, a slowdown of
executing Awould indirectly cause a slowdown of executingC . For
example, in Figure 1, a slowdown of the file-copy loop in thread t1
of the TaskTracker node could cause extra wait time in thread t4’s
lock acquisition through three pairs of lock contention: file-copy
loop⇝ lock(l1) in t2 ⇝ lock(l2) in t3 ⇝ lock(l3) in t4.

Clearly, resource contention caused by thread pools is the most
intense when the thread pool contains only one thread, and is much
less intense when multiple threads are available. Our modeling
does not consider the number of threads in the pool, because many
thread pools in real-world systems leave the number of threads
configurable — the number of threads could become one even if it
is currently not. Furthermore, even when there are multiple threads
in the pool, the slow processing of one handler function could still
delay the start of later handler functions due to decreased handling
throughput.

4.1.3 Composing must-HB and may-HB relationships. Now, we
can reason about the performance dependency between any two
code regions R1 and R2 considering both must-HB and may-HB
relationships.

May-HB relationships directly translate to performance depen-
dencies. That is, if we find an operation o1 inside R1 and an opera-
tion o2 in R2 so that o1 ⇝ o2, we know that slowdowns in R1 could
lead to slowdowns in R2.

The must-HB relationship does not always mean performance
dependencies. For example, the thread-creation operation in a par-
ent thread happens before every operation inside the child thread.
However, delays in the parent thread cannot lead to extra execu-
tion or waiting time inside the child thread through this must-HB
relationship.

The must-HB relationship leads to performance dependencies in
the following situation. Suppose the last operation of R1 is oend1
3A//B and B//C does not guarantee A//C .

Input: A sink region S
Output: A set of loops L = {L |L ⇝ S }
Set<Loop> L← Null;
Queue<Pair> R← {S };
while R = R.pop() do

for L in R do
if L // Send then
L.add (L)

end
R.push(mustHB(R));
R.push(mayHB(R));

end
return L;

Algorithm 1: Cascading analysis algorithm

and the first operation of R2 is ostar t2. If we can find an operation
o2 in R2 so that oend1 → o2 and oend1 ̸→ ostar t2, then we know
that slowdowns in R1 would delay the execution of oend1, which
would delay o2 but not ostar t2 and hence extend the execution
time of R2. For example, in Figure 3, since the message Write in
t1 of Daemon-2 is concurrent with SinkStart on Daemon-1 and
happens-before the message Read on Daemon-1, slowdowns in t1
on Daemon-2 before the Write could cause slowdowns in the sink
on Daemon-1.

We can now compose may-HB and must-HB relationships to-
gether, as performance dependencies among code regions are
clearly transitive: if slowdowns in region R1 could lead to slow-
downs in region R2 and slowdowns in R2 could lead to slowdowns
in R3, naturally R1 could slow down R3. For example, in Figure 3,
we can infer that the slowness of the cleanup loop in Daemon-2
could unexpectedly propagate to delay the ending of the file-stream
job in Daemon-1 through the following propagation chains: (1)
the cleanup loop inside Event1 could slow down the execution of
Event2, as cleanup-loop⇝ start of Event2, (2) Event2 could slow
down thread t1’s execution before Write, as the end of Event2→
the event-join on t1 and ̸→ the start of t1, (3) t1’s execution be-
fore Write could slow down the sink, as Write → Read and ̸→
SinkStart on Daemon-1.

4.2 PCatch cascading analysis
PCatch analyzes run-time traces to identify every loop L in the trace
upon which sink S has contention-related performance dependen-
cies, denoted as L ⇝ S . Following the performance-dependency
model discussed above, for every L, PCatch needs to identify a
sequence of code regions R1,R2, ...,Rk , where R1 has performance
dependencies on L, Ri+1 depends on Ri , and finally S on Rk , with
at least one of such dependencies based on resource contention.

In this section, we assume that the trace contains all the infor-
mation needed by PCatch’s analysis. We will discuss the tracer
implementation in Section 7.2. We also assume any loop could exe-
cute for a long time under some workload, and we will discuss how
to prune out those loops whose execution time is guaranteed not
to increase with any workload in Section 6.

Algorithm. The outline of our algorithm is shown in Algorithm
1. At a high level, we maintain a working region set R. The sink
S has a performance dependence on every member region R in
this working set. We process one region R in R at a time, until R
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becomes empty. For every R, we check if it contains a loop L that
is concurrent with the end of the sink (Send ). If so, we conclude
that L ⇝ S . We then add to the working set regions that R has a
performance dependence upon based on must-HB analysis (i.e., the
mustHB(R) function in Algorithm 1) and may-HB analysis (i.e., the
mayHB(R) function in Algorithm 1).

The mustHB function works as follows. Given an input region
R, PCatch iterates through every node in the HB graph that cor-
responds to an operation in R. For every node v , PCatch checks
if there is an edge on the HB graph that reaches v from a node
v’ that belongs to a different thread or handler. Once such a v’
is identified, its corresponding region R’ is added to the output of
mustHB(R)— R’ ends atv’ and starts at p so that p andv’ belongs to
the same thread/handler and p ̸→ Rstar t . Tracing backward along
the must-HB graph could produce many code regions. In general,
the farther away the less likely is performance impact, because any
part of the chain may not be on the critical path. Consequently, we
set a threshold to limit the number of cross-handler/thread/node
must-HB edges in the traversal. We currently use a threshold of 2.

The mayHB function works as follows. Given an input region
R, the analysis goes through every operation in R. Whenever a
lock acquisition or an event/RPC handler start o is encountered, we
will identify from the trace all the lock critical sections or handler
functions that compete on the same lock or the same handler thread
with o and are concurrent with o, and put them all into the output
set.

For example, in Figure 3, our analysis starts from the sink in the
file-stream job thread. The mustHB analysis will discover the code
region in thread t1 on Daemon-2 that ends with the socket write,
and then discover the Event2 handler in thread t2. While applying
mayHB analysis to the latter, we discover the Event1 handler also
in thread t2. Finally, analyzing the Event1 handler will reveal the
cleanup loop that has a cascading relationship with the sink.

5 JOB-ORIGIN ANALYSIS
PCatch analyzes and prunes out PCbug candidates whose source
and sink belong to the same job, as these do not reflect global
performance-cascading problems.

To figure out which job an instruction belongs to, PCatch iden-
tifies the corresponding node of this instruction in the HB graph
and searches backward along causality edges on the graph. For
example, in Figure 1, the file-copy loop is inside an RPC function
in TaskTracker thread t1; its caller is inside another RPC function
in JobTracker’s thread t1; its caller is from the client, which ends
the back tracing. At the end of the back tracing, instructions that
belong to different jobs will end up with different nodes in the HB
graph.

PCatch distinguishes the origins between user jobs and system
routines. For an instruction that belongs to a user job, such as the
loop in Figure 1, the origin tracing usually would end up at an
RPC function or a message handler that was invoked by client,
such as the submitJob RPC call in Figure 1. On the other hand, for
an instruction that belongs to a system routine, the origin tracing
usually ends up at the main thread of a process that was started
during system start-up (i.e., not by interaction with clients). For
example, in Figure 1, when we search for the origin of the heartbeat

1 vector[2] = 1;
2 for (i=0; i < vector.size(); i++) {
3 ...
4 }

Figure 4: Data-dependence may not affect loop bound (Line
1 affects the content but not the size of vector, which defines
the loop count).

function in thread t4 of the TaskTracker node, we find that it is
not inside any event/RPC/message handler and is inside the main
thread of the TaskTracker process.

If the origin is a main thread, PCatch uses the process ID paired
with the thread ID as the job ID. If the origin is an RPC function
or a message handler, PCatch uses the handler’s process ID paired
with the RPC/message ID as the job ID. Then, we can easily tell
whether two (groups of) instructions belong to the same job.

6 LOOP SCALABILITY ANALYSIS
Goals. As discussed in Section 3, we aim to identify loops satisfy-

ing the following two conditions as potential slow-down sources of
PCbugs: (1) each iteration of the loop is time-consuming, conduct-
ing I/O operations, such as file system accesses, network operations,
explicit sleeps, etc; (2) the number of loop iterations does not have
a constant upper bound and can potentially increase together with
the workload. We refer to such loops as non-scalable.

Identifying loops that satisfy the first condition is straightfor-
ward and we present the implementation details in Section 7.1.
Identifying loops that satisfy the second condition is more challeng-
ing and is the focus of this section.

Challenges. Identifying non-scalable loops is related to but dif-
ferent from loop complexity analysis [15, 16] and program slicing
[42], and thus demands new analysis algorithms.

Traditional loop-complexity analysis tries to figure out the com-
plexity of a loop L in a program variable V , which is both unneces-
sary and insufficient for PCbug detection. It is unnecessary because
we only need to know whether the loop count could scale up with
the workload, but not the exact scaling relationship — whether it
is O(V 2) or O(V 3) does not matter. It is also insufficient because it
does not tell whether the value ofV can increase with the workload
or not.

Traditional analysis for program slicing tries to figure out what
affects the content of a variable V at a program location P . Clearly,
it alone is insufficient to identify non-scalable loops, because we
first need to identify which variable V can approximate the loop
count (e.g., vector in Figure 4). Furthermore, even if V has data
dependence upon an operation O , O may not be able to affect the
upper bound of V , as illustrated by Figure 4. Meanwhile, even if V
has no data dependence upon an operationO ,O may actually affect
the upper bound of V , as we will explain later in Section 6.2 and
Figure 5 (in Figure 5, the size of toAdd approximates the loop count
at line 21; toAdd has no data dependence on report.NumBlocks()
on line 17, but its size is decided by the latter).

Our Solutions. Since accurately computing the loop count and
identifying all non-scalable loops is impractical [15, 16], we give
up on soundness and completeness, and instead aim to identify
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1 File[] blockFiles = dir.listFiles(); // Java I/O API
2 for (i=0; i < blockFiles.length; i++) {
3 ...
4 blockSet.add(new Block(..)); //augmentation
5 }
6 ...
7 BlockListAsLongs(blockSet.toArray(alist));
8 ...
9 BlockListAsLongs(long[] list) {
10 blockList = list ? list : new long [0];
11 }
12 ...
13 NumBlocks() {
14 return blockList.length/LONGS_PER_BLOCK;
15 }
16 ...
17 for (i=0; i < report.NumBlocks(); i++) {
18 toAdd.add(block); //augmentation
19 }
20 ...
21 for (Block block: toAdd) {
22 ...
23 } //toAdd has type Collection<Block>

Figure 5: A simplified loop example from HDFS

1 while (rjob.localing) {
2 rjob.wait();
3 }

Figure 6: Synchronization loop in MapReduce (rjob.
localing is a loop invariant if not consider other threads)

1 while (bytesRead >= 0) {
2 ...
3 bytesRead = in.read(buf);
4 }

Figure 7: MapReduce Loop with workload-sensitive index

some common types of non-scalable loops with good efficiency and
accuracy.

To choose those common types, we focus on the two important
aspects of every loop exit condition — the loop index (e.g., i in
Figure 4) and the loop index bound (e.g., vector.size() in Figure
4), which clearly have a large impact on when a loop exits and
hence on the loop count. Thinking about what types of loop index
variables and loop index-bound variables might lead to non-scalable
loops produces the following three patterns:

(1) Loops with a loop-invariant index. The loop cannot exit
until another thread updates a shared variable with a loop-
terminating value. The durations of these synchronization
loops are non-deterministic and could be affected by work-
loads (e.g., Figure 6).

(2) Loops with a workload-sensitive index. Return values of
I/O operations define the loop index variable and hence
determine the loop count (e.g., Figure 7).

(3) Loops with a workload-sensitive bound. Return values of
I/O operations contribute to the loop bound and hence affect

the loop count (e.g., in Figure 5, the return value of an I/O
operation at line 1 affects the loop bound at line 21).

Our analysis goes through three steps. The first step (Section
6.1) conducts static analysis inside a loop body to identify non-
scalable loops of type 1 and type 2. It also identifies a variable V
that can approximate the bound of the loop count. The second step
conducts global static analysis to identify I/O operations O that
may contribute to the value ofV (Section 6.2). The last step runs the
system again to see whether operations O can indeed be executed
and hence finishes identifying non-scalable loops of type 3. The
last step is straightforward and hence is skipped below.

6.1 Loop-local analysis
Given a loop L, we first identify all the exit conditions of L. That is,
PCatch uses WALA the Java byte code analysis infrastructure [19]
to identify all the loop exit instructions and the branch conditions
that predicate these exit instructions’ execution. In WALA, every
condition predicate follows the format of AopB, where A and B are
numerical or boolean typed, and op is a comparison operator. In the
following, we first present a baseline algorithm, and then extend it
to handle more complicated loops.

Baseline algorithm. Suppose we identify a loop-exit condition
Vlower < Vupper or Vlower ≤ Vupper . We will then analyze how
Vlower and Vupper are updated inside the loop.

If both are loop invariants, we consider this loop as a synchro-
nization loop and hence type-1 non-scalable loop. For example, in
the loop shown in Figure 6, the exit condition is rjob.localing ==
FALSE. Since rjob.localing is a loop invariant variable and FALSE
is a constant, this loop has to rely on other threads to terminate it.

If neither of them is a loop invariant, we give up on analyzing
the loop and simply consider it as scalable — this design decision
may introduce false negatives, but will greatly help the efficiency
and accuracy of PCatch.

If only one of them is a loop invariant, we check how the other
one Vvar iant is updated in the loop.

If Vvar iant is updated with a constant increment or decrement
in every iteration of the loop, such as idx in Figure 8, we consider
this loop as a possibly type-3 non-scalable loop and consider the
value of Vupper at the start of the loop, such as volumnes.length
in Figure 8, as an approximation for the loop-count’s upper bound.
The global analysis in Section 6.2 will then analyze how the value
of Vupper is computed before the loop to decide whether loop L is
scalable.

If Vvar iant is not updated with a constant stride, we then check
whether it is updated with content returned by an I/O function in
the loop, such as in.read(buf) shown in Figure 7. If so, we identify
a type-2 non-scalable loop. Otherwise, we stop further analysis and
exclude the loop from PCbug-source consideration.

Handle collections. Many loops iterate through data collec-
tions like the one shown in Figure 9. In WALA, exit con-
ditions of this type of loops contain either hasNext() (i.e.,
Iterator::hasNext()==FALSE) or size() (e.g., i≤list.size()).
We then adapt the baseline algorithm to analyze these container-
related loops.
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1 for (int idx = 0; idx < volumes.length; idx++) {
2 volumes[idx].getBlockInfo(blockSet);
3 }

Figure 8: A loop with constant stride in HDFS

1 for (Block block: toAdd) {
2 addStoredBlock(block, ...);
3 ...
4 }

Figure 9: Collection-related loop in HDFS

Input: A loop L and its loop-count approximation V
Output: A set of I/O operations O = {O |O contibutes to V }
Set<Variable> C← {V };
Set<I/O Operation> O← Null;
while c = C.pop() do

if expc == constant then
continue

if expc == I/O function then
O.add (expc )
continue

for x in ContributorOf(expc ) do
C.add (x )

end
end
return O;

Algorithm 2: Global loop count analysis algorithm

We consider Java Collection APIs like next(), remove (obj),
and add(obj) as a constant-stride decrement or increment to the
iterator, and consider APIs like addAll(...) and removeAll(...)
as non-constant update. If the loop contains no such update opera-
tion, it is considered as a synchronization loop (i.e., non-scalable); if
it contains only constant-stride increment or only constant-stride
decrement in every loop iteration, the loop is considered as po-
tentially non-scalable and the size of the corresponding collection,
C .size() will be identified for further analysis later.

Handle equality conditions. When the loop-exit condition isV1 ,
V2 orV1 == V2, our analysis above that identifies type-1 and type-2
loops still applies. If the loop exits when V1 == V2, type-3 loop
analysis is conducted similarly as above. That is, if one ofV1 andV2
is a loop invariant and one has a constant stride inside the loop, we
will move on to analyze if the initial value of either V1 or V2 at the
beginning of the loop is affected by I/O operations. If the loop exits
when V1 , V2, we give up type-3 loop analysis, as its loop bound is
too difficult to efficiently approximate.

Handle multiple exit-conditions. A loop may contain more than
one exit and hence may have more than one exit condition. In
principle, we consider a loop to be scalable, unless the analysis on
every exit condition shows that the loop is non-scalable.

6.2 Global loop count analysis
After loop-local analysis, every type-3 non-scalable loop candidate
L and its loop-count approximation V are passed on for global
analysis, which checks whether there exists an I/O operation O
that can contribute to the value of V .

This checking could be done dynamically — instrumenting every
I/O operation and every memory access, and checking the depen-
dency on-line or through a trace. Unfortunately, the overhead of
such dynamic slicing analysis is huge [1, 53]. This checking could
also be done statically — analyzing the program control and data
flow graphs to see whether any I/O operation O could contribute
to the value of V along any path p that might reach L. However,
such a path p may not be feasible at run time. Consequently, we use
a hybrid analysis. We first conduct static analysis, which will be
explained in detail below, and then run the software to see whether
any such path p is feasible under the testing workloads.

Algorithm 2 shows an outline of our analysis. At the high level,
our analysis maintains a contributorworking-setC— every member
element of C is a variable c whose value at program location lc
contributes to the value of V . C is initialized as a set that contains
V . In every iteration of the working loop shown in Algorithm 2, we
pop out an element c , such as V at the first iteration. We analyze
backward along the data-flow graph to find every update to c , c
= expc , that might be used by the read of c . Then three different
situations could happen: (1) if expc is a constant, our analysis moves
on to analyze the next element in the working set C; (2) if expc is
an I/O function, such as listFiles() in Figure 5, we add expc into
the output set; (3) otherwise, we analyze expc to potentially add
more contributors into C before we move on to analyze the next
contributor in C. When C becomes empty, we check the output set
O. If it is empty, we conclude that L is scalable; if it is not empty,
we move on to dynamic analysis to see whether these contributing
I/O operations in O can indeed execute at run time.

Next, we discuss how we analyze expression expc to find poten-
tial I/O operations that contribute to its value.

Intra-procedural baseline analysis. Given an expression c = exp,
we simply put all operands in exp into the working set C (e.g.,
blockList.length and LONGS_PER_BLOCK for line 14 of Figure 5).

We need to pay special attention to augmentation operations
like c += exp or Collection::add(..), such as line 18 in Figure
5. In addition to adding variables involved in exp into the working
set, we also analyze whether this statement is enclosed in a loop L′.
If it is, we add the loop-count variable of L′ into the working set —
if x++ is conducted for N times, with N being workload-sensitive,
we consider the value of x also workload-sensitive.

Intra-procedural collection analysis. We adapt the above algo-
rithm slightly to accommodate for loops and operations related to
collections and arrays.

Given a loop L whose loop count is approximated by the size
of a collection or an array C , we search backward along the
data-flow graph for update operations that can affect the collec-
tion size, such as Collection::add(ele), Collection::addAll
(set), or the array length, such as new String[len], instead of
operations that update the content but not the size of C , such as
Collection::fill(..), Collection:: reverse(), etc.

For every size update, we add the corresponding variables or
collection sizes into S, such as len for new String[len] (i.e., 0
for new long [0] on line 10 of Figure 5), and the size of set for
Collection:: addAll(set). We also distinguish augmentation
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operations such as Collection ::add(ele) from regular assign-
ment such as new String[len], and analyze the enclosing loop
for augmentation operations as discussed earlier.

Inter-procedural loop-count analysis. If a contributorv is assigned
by a function return, v = foo(..) (e.g., NumBlocks() on line 17 of
Figure 5), we will put the return value of foo into the contributor
working set C and then analyze inside foo to see how its return
value is computed (e.g., line 14 of Figure 5). Of course, if foo is an
I/O function itself, we directly add foo into the output set O.

When a contributor variable v is the parameter of function foo
or is used as an argument in invoking a callee function foo∗, we
conduct inter-procedural analysis. In the former case, we identify
every caller function foo∗, and add the corresponding function-call
argument into the contributor working set. In the latter case, since
foo∗ can modify the content of v when v is passed as a reference,
we trace reference variables through WALA’s default alias analysis
for further data dependence analysis.

7 IMPLEMENTATION
We have implemented the PCatch static analysis using the WALA
Java byte code analysis infrastructure [19], and the PCatch dynamic
tracing using Javassist, a dynamic Java bytecode transformation
framework [20]. PCatch does not require large-scale distributed-
system deployment to detect PCbugs — different nodes of a dis-
tributed system can be deployed on either different physical ma-
chines or different virtual machines in a small number of physical
machines. Next, we explain some implementation details such as
how PCatch identifies I/O operations and how PCatch implements
run-time tracing.

7.1 I/O operations and PCbug source
candidates

In the current prototype of PCatch, we consider the following API
calls as I/O operations: file-related APIs, including both Java li-
brary APIs like java.io.InputStream::read and Hadoop com-
mon library APIs fs.rename, network-related Java APIs like
java.net.InetAddress::getByName, and RPC calls. As men-
tioned in Section 6, PCatch uses static analysis to identify loops that
conduct time-consuming operations in loop bodies. We consider all
the I/O operations mentioned above as expensive, and also consider
sleep related functions as expensive. Our analysis checks whether
any such expensive API is called in the loop body, including the
callee functions of a loop.

7.2 PCatch tracing
The PCatch cascading analysis (Section 4) is conducted upon run-
time traces, which are generated for every thread of the target
distributed system. Every trace records the following three types
of operations.

First, synchronization and communication operations related to
must-HB analysis, such as RPC calls, message sending/receiving,
event enqueue/dequeue, thread creation and join, and other causal
operations discussed in Section 2.

Second, resource acquisition and release operations that are
related to may-HB analysis. For lock contention, we record all

BugID Workload Sinks

CA-6744 write table Streaming+ cleanup table

HB-3483 write table Region assignment, RegionServer write

HD-2379 write file Heartbeat, DataNode write,
HD-5153 NameNode write

MR-2705

wordcount Heartbeat, Map taskMR-4088
MR-4576
MR-4813

Table 1: Evaluation benchmarks. (DifferentHDandMRbugs
affect different versions.)

object-level and class-level lock and unlock operations, such as
synchronized method entrances and exits, synchronized block en-
trances and exits, explicit locks and unlocks, etc. For thread-pool
contention, we record the start and end of every RPC/event/mes-
sage handler and which thread it is running on, which in fact is
already recorded for must-HB analysis.

Third, PCbug source and sink candidates. Specifically, we identify
every loop in the program and record the start of every loop. We
also record the execution of every instance of _sink_start and
_sink_end.

Every trace record contains three pieces of information: (1) the
type of the recorded operation, (2) the callstack of the recorded
operation, and (3) an ID that uniquely identify the operation or the
resource under contention.

For causal operations, the IDs will allow PCatch trace analysis to
correctly apply may-HB andmust-HB rules. For every event, thread,
or lock operation, the ID is the object hashcode of the corresponding
event, thread, or lock object. For an inter-node communication
operation, PCatch tags each RPC call and each socket message with
a random number generated at run time.

For source and sink candidates, IDs uniquely identify them in
bug analysis and report. Every ID is a combination of keyword
source/sink, start/end, and a mix of the corresponding class
name, method name, and line numbers.

8 EVALUATION
8.1 Methodology

Benchmarks. We evaluate PCatch using four widely used open-
source distributed systems: the Hadoop MapReduce distributed
computing framework (MR); the HBase distributed key-value stores
(HB); the HDFS distributed file system (HD); the Cassandra dis-
tributed key-value stores (CA). These systems range from about
100 thousand lines of code to more than three million lines of code.

Workloads. Our experiments use common workloads, such as
word-count forMapReduce, writing a file for HDFS, updating a table
for HBase, and updating and then cleaning a table for Cassandra.
We were aware of 8 different reports in corresponding bug-tracking
systems, as shown in Table 1, where severe performance slowdowns
or node failures were observed by users under similar types of
workloads at large scales.
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BugID Detected? #Static ⟨L, S ⟩s #Static ⟨L, C, S ⟩s
Bugs FalsePositives Bugs FalsePositives

CA-6744 ✓ 22 0 22 0
HB-3483 ✓ 21 0 32 0
HD-2379 ✓ 62 5 84 8
HD-5153 ✓ 55 3 55 4
MR-2705 ✓ 21 0 41 0
MR-4088 ✓ 11 1 11 2
MR-4576 ✓ 21 1 21 2
MR-4813 ✓ 22 1 22 1

Total 2215 11 2718 17

Table 2: PCatch bug detection results (Subscript denotes bug
reports related to the known bug listed in Column 1.)

Note that, although triggering PCbugs requires large-scale work-
loads and sometimes special timing among threads/events/mes-
sages. PCatch predicts PCbugs by monitoring execution under a
small-scale workload without any requirements on special tim-
ing. More details about PCatch bug detection workloads are in
Section 8.5.

Time-sensitive sinks. PCatch provides APIs to specify sinks –
code regions whose execution time users/developers care about. A
naive way to specify a sink is to put every client request into a sink.
However, in practice, finer-granularity sinks would work better, as
finer-granularity performance cascading analysis is not only faster
but also more accurate.

In our experiments, we specify important system routines (e.g.,
heartbeats) and main tasks within a client request (e.g., region
assignment and region server write task in HBase) as sinks, as
shown in Table 1. We mostly simply surround a function call with
_sink_start and _sink_end. Take the heartbeat sink illustrated in
Figure 1 as an example. The TaskTracker process sends heartbeats
to the JobTracker process by invoking the transmitHeartBeat
function. Consequently, we simply put a _sink_start right be-
fore the function call and a _sink_end right after the function call.
In practice, developers can put _sink_start and _sink_end any-
where, as long as they make sure that _sink_start executes before
_sink_end.

Experiment settings. We run each node of a distributed system in
a virtual machine, and run all VMs in two physical machines that
use Ubuntu 14.04, JVM v1.7, Intel® Xeon® CPU E5-2620, and 64GB
of RAM. In practice, these systems are mostly deployed on more
than one physical machine. Fortunately, PCatch can predict bugs
using small-scale workloads without relying on time profiling.

We report PCbug counts by both the unique number of static
source-sink pairs, short as ⟨L, S⟩), and the unique number of static
triplets ⟨L,C, S⟩. These two counts’ results are mostly similar. All
our performance numbers are based on an average of 5 runs.

To confirm whether a PCatch bug report is indeed a PCbug, we
increase the corresponding workloads following the loop-source
reported by PCatch. We then measure (1) whether the execution
time of the source indeed increases; and (2) whether the execution
time of the sink has a similar and sufficiently large increase. The
detailed results will be presented in Table 6.

8.2 Bug detection results
Overall, PCatch successfully detects PCbugs for all benchmarks
while monitoring correct execution of these applications, as shown
by the ✓ in Table 2. In addition, PCatch found a few truly harmful
PCbugs we were unaware of. PCatch is also accurate: only about
one third of all the PCatch bug reports are false positives.

True bugs. PCatch successfully predicts the 8 PCbug benchmarks
using small-scale workloads. These 8 benchmarks were originally
noticed by users and developers under much larger workloads and
many runs as we will discuss in Section 8.5.

PCatch also found a few harmful PCbugs, 7 unique source-sink
pairs (9 unique source-chain-sink triplets), that we were unaware of,
as shown in Table 3. We have triggered all of them successfully, and
then carefully checked the change log of each software project, and
found that 6 out of these 7 ⟨L, S⟩ pairs (7 out of 9 ⟨L,C, S⟩ triplets)
have been patched in the latest versions of these systems.4

Our experiments judge whether a harmful PCbug is successfully
triggered in the following way. We run software using a workload,
designed based on the PCatch bug report (see Section 8.5), that is
larger than the one used during PCatch bug detection but still has
reasonable size. We then monitor the duration of the sink Tsink .
For every PCbug mentioned above, we have observed that Tsink
increases from less than 1 second to around 10 seconds or more, or
from a few seconds to a few minutes, once the non-deterministic
performance-propagation chain reported by PCatch is hit, indicat-
ing that delays are indeed unintentionally propagated from one
job to another through resource contention and causal operations.
More bug-triggering details will be presented in Section 8.5.

Table 3 shows all the true bugs reported by PCatch. As we can see,
PCatch can detect PCbugs caused by a wide variety of non-scalable
loops and resource-contention chains.

False-positive bug reports. PCatch reports 11 false positives. 3 of
them are caused by inaccurate static analysis of time-consuming
operations. For example, some I/O wrapper functions in these sys-
tems use Java I/O APIs in an asynchronous way and hence do not
introduce slowdowns at the call site. For 8 of them, their source
loops’ bounds are indeed determined by content returned by file sys-
tems, network, or users’ commands. However, program semantics
determine that those contents have a small upper-bound.

In our triggering experiments, we easily identify these false
positives — when we increase the workload size based on PCatch
bug report, we observe that the duration of the source loop, and
consequently the corresponding sink, increases little, if at all.

8.3 Comparison with alternative designs
PCatch contains three key components. To evaluate the effective-
ness of each component, we tried removing part of each component
while keeping the other two components unchanged, and measure
how many extra false positives would be introduced. Specifically,
for cascading analysis, we slightly revised the may-HB rules (dis-
cussed in Section 4.1.2), so that two lock critical sections or two
event/RPC handlers do not need to be concurrent with each other
in order to have a may-HB relationship; for job origin analysis
(Section 5), we tried simply skip this check; for non-scalable loop
4HB-3621, HADOOP-4584, HD-5153, MR-1895, MR-2209, MR-4088
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BugID What does the source loop do? Sink Chains Loop Job Sink Job Loop Type

CA-67441 table-cleanup Streaming 1P Table CleanupU File StreamingS Type3
CA-67442 metadata-scan Streaming 1P Table CleanupU File StreamingS Type3
HB-34831 region-flush RegionServer Write 1L/1L HBase Write-1U HBase Write-2U Type2
HB-34832 region state-check RegionServer Write 1L Timeout MonitorS HBase WriteU Type3
HD-23791 blocks-scan DateNode Write 1L/1L BlockReport ScannerS HDFS WriteU Type3
HD-23792 blocks-scan HeartBeat 1L BlockReport ScannerS HeartBeatS Type3
HD-23793 blockreport-generate DataNode Write 1L/1L BlockReport ScannerS HDFS WriteU Type3
HD-23794 blockreport-generate HeartBeat 1L BlockReport ScannerS HeartBeatS Type3
HD-23795 removedblock-process NameNode Write 1L BlockReportS HDFS WriteU Type3
HD-23796 addedblock-process NameNode Write 1L BlockReportS HDFS WriteU Type3
HD-51531 first-blockreport-process NameNode Write 1L BlockReportS HDFS WriteU Type3
HD-51532 removedblock-process NameNode Write 1L BlockReportS HDFS WriteU Type3
HD-51533 addedblock-process NameNode Write 1L BlockReportS HDFS WriteU Type3
HD-51534 underconstructionblock-process NameNode Write 1L BlockReportS HDFS WriteU Type3
HD-51535 corruptedblock-process NameNode Write 1L BlockReportS HDFS WriteU Type3
MR-27051 file-download Map Task 1P MapReduce-1U MapReduce-2U Type2
MR-27052 file-download HeartBeat 2L/2L/3L MapReduce-1U HeartBeatS Type2
MR-40881 job init-wait Map Task 1P MapReduce-1U MapReduce-2U Type1
MR-45761 file-download HeartBeat 3L MapReduce-1U HeartBeatS Type2
MR-45762 job init-wait Map task 1P MapReduce-1U MapReduce-2U Type1
MR-48131 files-commit HeartBeat 1L MapReduce-1U HeartBeatS Type3
MR-48132 files-move HeartBeat 1L MapReduce-1U HeartBeatS Type3

Table 3: True PCbugs reported by PCatch. New bugs outside the benchmarks are in bold fonts. The “Chains” column lists
the number of resource contentions involved in performance cascading and the type of resources (P: thread pool; L: lock);
different chains for the same pair of source and sink are separated by “/”. Subscript U: user-submitted jobs; Subscript S: system
background or periodic jobs.

BugID Alternate No Origin Alternative Loop
may-HB Analysis Analysis

#LS #LCS #LS #LCS #LS #LCS
CA-6744 4 7 2 4 7 8
HB-3483 1 3 1 2 5 5
HD-2379 10 53 2 2 6 16
HD-5153 6 8 0 0 12 21
MR-2705 7 9 2 5 8 25
MR-4088 9 12 3 6 3 3
MR-4576 9 12 4 9 6 7
MR-4813 7 17 0 0 9 14

Table 4: Extra false positives in ⟨L, S⟩ count and in static
⟨L,C, S⟩ count for alternative designs.

analysis, we tried declaring every loop that contains I/O operations
in the loop body as a potential PCbug candidate source. As we
can see in Table 4, the above three alternative designs all lead to
many extra false positives, even when analyzing exactly the same
traces as those used to produce results in Table 2. Clearly, all three
components of PCatch are important in PCbug detection.

8.4 Performance results
As shown in Table 5, PCatch performance is reasonable for in-house
testing. In total, PCatch bug detection incurs 3.7X–5.8X slowdown
compared with running the software once under the small-scale
bug-detection workload. Note that, without timing manipulation,
many of these bugs do not manifest even after running the soft-
ware under large-scale bug-triggering workloads of many runs. In
comparison, PCatch can greatly improve the chances of catching
these PCbugs in a much more efficient way during in-house testing.

Table 5 also shows the three most time-consuming components
of PCatch: run-time tracing, trace-based cascading analysis, and

BugID Base Total PCatch Tracing Cascading Scalability Trace
bug detection Analysis Analysis Size

CA-6744 120 703 (5.8x) 150 103 319 31MB
HB-3483 28 123 (4.5x) 47 11 30 9.4MB
HD-2379 73 268 (3.7x) 78 20 96 4.5MB
HD-5153 118 433 (3.7x) 132 17 158 11MB
MR-2705 44 223 (5.1x) 58 22 96 18MB
MR-4088 65 250 (3.8x) 85 26 67 11MB
MR-4576 83 373 (4.5x) 134 38 106 31MB
MR-4813 71 383 (5.4x) 93 55 156 24MB

Table 5: Performance of PCatch (total) and main compo-
nents, base is the run time without PCatch. Unit: seconds.

static loop scalability analysis. As we can see, PCatch tracing con-
sistently causes 1.1X – 1.7X slowdowns across all benchmarks. The
cascading analysis is relatively fast. In comparison, static loop scal-
ability analysis is the most time consuming, Note that, more than
half (up to 80%) of the analysis time is actually spent for WALA to
build the whole-program dependency graph (PDG) in every bench-
mark except for CA-6744. This PDG building time actually can be
shared among all analyses on the same software project. Future
work can also speed up the static analysis using parallel process-
ing — analyzing the scalability of different loops in parallel. The
execution time of the dynamic part of loop-scalability analysis and
job-original analysis is part of the PCatch total bug-detection time,
but is much less than the three components presented in Table 5.

8.5 Triggering results
We consider a PCbug to be triggered, if we observe (1) the sink exe-
cutes much slower in a run when resource contention occurs than
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BugID Detection Run Triggering Run

Workload Sink Workload Sink Time
Size Time Size !Buggy Buggy

CA-6744 1-row table 1.44s 10,000-row table 1.80s 8.6s
HB-3483 1K data 0.02s ∼300M data 0.05s 62s
HD-2379 3 blocks 0.22s ∼835,000 blocks 0.22s 19s
HD-5153 3 blocks 0.05s ∼786,000 blocks 0.06s 14s
MR-2705 1KB sidefile 3.83s 1GB sidefile 4.29s 12m21s
MR-4088 1KB sidefile 4.37s 1GB sidefile 4.98s 12m32s
MR-4576 1KB sidefile 0.03s 1GB sidefile 0.03s 12m42s
MR-4813 1 reducer 0.07s 1000 reducers 0.12s 22s

Table 6: Detection run vs. triggering run (!Buggy: measured
when the resource contention did not occur; Buggy: mea-
sured when the resource contention occurred)

when contention does not occur;5 and (2) the amount of slowness
increases with the workload size.

We have successfully triggered all the true PCbugs detected
by PCatch (i.e., every one in Table 3), with the details of the 8
benchmark bugs’ triggering listed in Table 6.

Note that, without the guidance of PCatch bug reports, trigger-
ing these PCbugs is extremely difficult. In fact, without carefully
coordinating the timing, which we will discuss below, only 4 out
of 22 PCbugs manifest themselves after 10 runs under large work-
loads listed in Table 6. In these 4 PCbugs, the source can affect
the heartbeat through contention of just one lock. Since heartbeat
function is executed periodically (usually once every 3 seconds in
MapReduce and HDFS), there is a good chance that the resource
contention would happen to at least one heartbeat instance.

To trigger the remaining 18 PCbugs, we have to carefully coor-
dinate the workload timing (i.e., when to submit a client request)
in order to make the resource contention occur. This is true even
for bug MR-27052 and MR-45761 in Table 3, which, although they
have periodic heartbeat functions as sinks, require multiple lock
contentions to cause the buggy performance to cascade.

These results show that PCatch can greatly help discover PCbugs
during in-house testing — it can catch a PCbug (1) under regular tim-
ing without requiring rare timing to trigger resource contentions;
(2) under small-scale workload that runs many times faster than
large workloads.

The current triggering process is not automated yet, although it
benefits greatly from PCatch bug reports. It mainly requires two
pieces of manual work. First, based on the result of the PCatch loop-
scalability analysis, we figure out which aspect of the workload
size can affect the execution time of the loop source (e.g., should
we increase the number of mappers or should we increase the size
of a file), and prepare a larger workload accordingly, such as those
shown in Table 6. Second, we monitor whether the bug-related
performance propagation chain is triggered or not at run time, and
conduct time coordination to help trigger that chain. Among these
two pieces of manual effort, the second one can be automated in
the future by techniques similar to those that automatically trigger
concurrency bugs [25, 28]; the first is more difficult to automate, and

5During triggering runs, we use featherweight instrumentation to check if the reported
resource contention happens.

may require advanced symbolic execution and input-generation
techniques.

Note that, PCatch is capable of detecting PCbugs that can only be
triggered by large clusters through experiments on small clusters
(e.g., the bug’s source loop count is determined by the number of
cluster nodes). However, we did not encounter such bugs in our
experiments and hence none of the triggering workload requires
different cluster sizes.

8.6 Discussion
PCatch is neither sound nor complete. PCatch could have false
positives and false negatives for several reasons.

(1) Performance-dependence model: PCatch cascading analy-
sis is tied with our may-HB and must-HB models. It may miss
performance dependencies caused by semaphores, custom synchro-
nizations, and resource contentions currently not covered by our
must-HB and may-HB models, resulting in false negatives.

(2) Workload and dynamic analysis: PCatch bug detection is
carefully designed to be largely oblivious to the size of the workload
and the timing of the bug-detection run. However, PCatch would
still inevitably suffer false negatives if some bug-related code is
not executed during bug-detection runs (e.g., the loop sources,
I/O operations inside a loop source, causal operations, resource-
contention operations, sinks), which is a long standing testing
coverage problem.

(3) Static analysis: PCatch’s scalability analysis intentionally
focuses on common patterns of non-scalable loops in order to scale
to analyzing large distributed systems, but it could miss truly non-
scalable loops that are outside the three types discussed in Section
6, and hence lead to false negatives. On the other hand, some loops
that scale well may be mistakenly reported as non-scalable loops
and lead to false positives, as discussed in Section 8.2.

9 RELATEDWORK
Performance bug detection. Many tools have been built to detect

performance problems common in single-machine systems, such as
performance-sensitive API misuses [21], inefficient and redundant
loop computation [31–33], object bloat [12, 45], low-utility data
structures [46], cache-line false sharing [26, 29], etc. In general,
these tools have a different focus and hence a completely different
design from PCatch. Particularly, previous loop-inefficiency detec-
tors [31–33] analyze loops to detect inefficient computation inside a
loop, such as redundant computation among loop iterations or loop
instances, and dead writes performed by the majority of the loop
iterations. PCatch also analyzes loops, but focuses on not efficiency
but scalability (i.e., how the execution time of a loop scales with
the workload size).

MacePC [23] detects non-deterministic performance bugs in
distributed systems developed upon MACE [22], a language with
a suite of tools for building and model checking distributed sys-
tems . It essentially conducts model checking for MACE systems
– while traversing the system state space, it reports cases where a
special timing can cause significant slowdown of the system. The
model checking technique and the program analysis techniques
used by PCatch complement each other: model checking provides
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completeness guarantees if finished, but suffers from state explo-
sion problems and may only work for systems built upon a special
framework like MACE.

Causality analysis in distributed systems. As mentioned in Sec-
tion 2, much research has been done to model, trace, and analyze
causal relationships in distributed systems [7, 24, 25, 27], and lever-
age the knowledge of causal relationships to detect functional bugs
[25].

PCatch used the previous DCatch model and techniques [25] in
its causal relationship analysis. However, as discussed in Section
4.1.1, analyzing such causal relationships is only one component of
the cascading analysis in PCatch. To detect cascading performance
bugs in distributed systems, PCatch has to go much beyond causal
relationship analysis: PCatch has to also model resource-contention
(may-HB) relationships and compose them together with tradi-
tional causal relationships (must-HB); furthermore, PCatch needs
to conduct job-origin analysis, which is not needed in DCatch
concurrency-bug detection, and loop-scalability analysis, which is
completely unrelated to traditional causal relationship analysis.

Lock contention and impact analysis. Many tools have been pro-
posed to profile lock contention [10, 34, 50]. Recently proposed
SyncPerf [3] profiles run-time lock-usage information, such as how
frequently a lock is acquired and contended, to diagnose perfor-
mance problems related to frequently acquired or highly contended
locks, including load imbalance, asymmetric lock contention, over
synchronization, improper primitives, and improper granularity.

Past research also looked at how to identify high-impact per-
formance bottlenecks in multi-threaded software. Coz [9] tries
inserting delays at various places in software to measure the per-
formance impact at different program locations. SyncProf [48] and
work by Yu et al. [49] tries to identify performance bottlenecks by
analyzing traces of many runs. They both consider waits incurred
by lock contention that have already been recorded in the trace, and
build graphs to represent such wait relationship. By analyzing the
graph and other information, they figure out which code regions
or critical sections have the biggest impact on a past run.

PCatch is related to previous works that analyze inefficient lock
usages and lock contention. However, PCatch has fundamentally dif-
ferent goals and hence designs from the above works. First, PCatch
aims to predict performance problems that may happen in the future,
not to diagnose problems that have been observed. Consequently,
the cascading analysis in PCatch models potential dependence and
performance cascading, instead of lock contention that has already
happened. Second, PCatch looks at resource contention inside dis-
tributed systems, which goes beyond locks. Third, PCatch focuses
on PCbugs that violate scalability and performance-isolation prop-
erties, which is different from pure resource contention problem.
For example, many locks in PCbugs may be neither highly con-
tended nor frequently acquired, different from those in the bugs
found by SyncPerf [3].

Scalability problems in software systems. Profiling techniques
have been proposed to help developers discover code regions that
do not scale well with inputs [8, 14, 44, 51]. Previous work has
proposed techniques to better evaluate scalability of distributed
systems by co-locating many distributed nodes in a single machine

[17, 41]. These profiling and testing techniques are orthogonal to
the performance-problem prediction conducted by PCatch.

Performance anomaly diagnosis. Many tools have been built to
diagnose system performance anomalies [4, 6, 11, 37–39, 43], includ-
ing many built for diagnosing and reasoning about performance
problems in distributed systems [2, 7, 27, 40, 47, 54]. Some of them
[7, 54] can approximate some performance dependency relation-
ships by analyzing a huge number of traces together. All these tools
focus on performance diagnosis based on large number of run-time
traces, which is orthogonal to the bug-prediction goal of PCatch.

10 CONCLUSIONS
Performance cascading bugs (PCbugs) could severely affect the
performance of distributed systems violating scalability and
performance-isolation properties, and are difficult to catch dur-
ing in-house testing. Our PCatch tool, including cascading analysis,
job-origin analysis and loop scalability analysis, enables users to de-
tect PCbugs under small workloads and regular non-bug-triggering
timing. We believe PCatch is just a starting point in tackling perfor-
mance cascading problems in distributed systems. Future work can
extend PCatch to not only detect but also fix PCbugs leveraging
PCatch bug reports and analysis techniques.
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