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ABSTRACT
Cloud services have become the backbone of today’s
computing world. Runtime incidents, which adversely
affect the expected service operations, are extremely
costly in terms of user impacts and engineering efforts
required to resolve them. Hence, such incidents are the
target of much research effort. Unfortunately, there is
limited understanding about cloud service incidents that
actually happen during production runs: what cause
them and how they are resolved.
In this work, we carefully study hundreds of high-

severity incidents that occurred recently during the pro-
duction runs of many Microsoft Azure services. We find
software bugs to be amajor cause behind these incidents,
and make interesting observations about the types of
software bugs that cause cloud incidents and how these
bug-related incidents are resolved, providing motivation
and guidance to future research in tackling cloud bugs
and improving the cloud-service availability.

CCS CONCEPTS
• Software and its engineering → Software defect
analysis; Software testing and debugging; • Com-
puter systems organization → Cloud computing.

KEYWORDS
Cloud system, production incident, reliability, bug char-
acteristics

1 INTRODUCTION
1.1 Motivations
Cloud services such as distributed computing infrastruc-
tures and distributed storage systems have become the
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backbone of today’s computing world. The availabil-
ity of cloud services is crucial, with minutes of service
outages costing millions of dollars [11, 26]. Although
much research has attempted to improve the availabil-
ity of cloud services through automated bug detection
[19, 22, 8], failure diagnosis [33], fault detection [16],
and others, there is still a lack of understanding about
cloud service incidents that actually happen in the wild
— what cause them and how they are resolved.

Empirical studies have always been crucial in moti-
vating and guiding the improvement of software avail-
ability. Many studies were conducted to understand fail-
ure causes and failure resolutions in operating systems
[10, 29, 12], multi-threaded software [25], file systems
[24], and others [13].

In recent years, empirical studies were also conducted
for cloud systems. They mainly use two types of data
sources: (1) news reports about cloud outages [15], which
contain detailed outage-impact information; (2) open-
source bug databases [14, 15, 20, 32, 21], which contain
detailed information about bugs found during both in-
house code review/testing and production uses. The
focus of these studies has been (1) specific types of bugs
(e.g., timing bugs [20], scalability bugs [21], gray com-
ponent failures [17]); (2) high-level cause categorization
(e.g., hardware faults vs. software bugs [14, 15]); and (3)
error and failure symptoms (e.g., the scope, propagation,
and duration of cloud errors and failures [32, 15, 17]).

Although useful, previous studies have not and cannot,
due to the limitations of their data sources, provide in-
depth understanding about production-run cloud service
incidents, answering fundamental questions like:
(1) What caused production-run service incidents —

what types of software bugs escaped in-house testing?
(2) Howwere production incidents resolved — is there

any chance to automate them in the future?
Answers to these questions would be crucial to im-

proving the availability of cloud services.

1.2 Contributions
In this work, we systematically studied all1 the high-
severity production-run incidents during a recent span
of 6 months in Microsoft Azure services, which cover a
wide range of services including computation, storage,

1Except for a few without clear root-cause description (Section 2).
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What are the causes of incidents?
↓ Few hardware problems
↓ Few memory bugs
↓ Few generic semantic bugs
↑ Many fault-detection/handling bugs
↑ Many data-format bugs
↑ More persistent-data races

How are incidents resolved?
↑ More than half through mitigation w/o patches

Table 1: How are cloud incidents different from
failures in single-machine systems? (↑ and ↓ indi-
cate cloud incidents follow certain pattern more or less
than single-machine systems.)

data management, data analytics, IoT, media services,
etc., and identified software bugs as the most common
cause of cloud incidents (close to 40%). We then did an
in-depth study of all the 112 high-severity production
incidents that are caused by software bugs.

Our study sheds lights on what types of software bugs
lead to production cloud incidents, how these incidents
are resolved, and how they differ from failures in single-
machine systems (Table 1).
What caused incidents?Among all incidents caused

by bugs, the most common causes are (1) incorrect or
missing detection and handling of component failures
(31 %) and (2) inconsistent data-format assumptions held
by different software components or versions (21 %).
Timing bugs are also common (13 %), with many of them
related to conflicting accesses to not only in-memory
data but also persistent resources. Finally, incorrectly
set constant values are non-negligible (7 %).

Probably related to the rise of bugs related to compo-
nent failures, we observed the percentage of incidents
caused by hardware failures to be significantly smaller
(less than 5%) than those in non-cloud systems [13].

Howwere incidents resolved?Different from bugs
in open-source software bug databases, production in-
cidents were more often to get resolved through a mit-
igation mechanism without a code patch. Those miti-
gation mechanisms, which we further categorize into
code mitigation like rolling back to an older version,
running-environment mitigation like killing a process,
and data mitigation like deleting a temporary directory,
have not been well studied before. Without requiring
new code, they provide a good opportunity for incident
auto-healing and hence better service availability.

The resolving strategies are different among incidents
caused by different types of bugs. For example, running-
environment mitigation is the most common resolving

strategy for incidents caused by fault-related bugs and
timing bugs, but is never used for incidents caused by
data-format bugs and constant-value bugs. How to pick
the suitable resolving strategy for a production cloud
incident is an open problem for future research.

Implications While there has been decades of re-
search on bug detection, in cloud systems, some well
studied bugs are much less common (e.g., memory bugs)
or are taking new forms (e.g., timing bugs), yet some not-
so-well studied bugs (e.g., data-format bugs and fault-
related bugs) are taking predominant fractions. Many
production-run incidents are resolved through mitiga-
tion techniques, instead of patches. Automation tech-
niques that support mitigation would be helpful.

2 METHODOLOGY
2.1 Incidents in our study
Microsoft Azure production incidents can be reported
by (Microsoft internal or external) users or by system
watchdogs that keep monitoring if certain systemmetric
goes beyond a pre-configured threshold. Every incident
is recorded in the incident database, associated with in-
formation such as user description or watchdog report,
developers’ discussion, severity-level tag, root cause de-
scription, work items issued to developer teams (if any),
the incident-impact duration, etc.
The remainder of the paper focuses on a set of 112

incidents. They are all the incidents that satisfy the fol-
lowing four conditions during a 6-month period (March
5th, 2018 – September 5th, 2018):
(1) the incident is not a false alarm and its severity

level indicates that new features cannot commit into
production environment until this incident is resolved;
(2) the incident led to changes in the cloud service,

such as bug-fixing patches, test enhancement, etc;
(3) the incident report contains enough information

for us to judge the root cause of the incident;
(4) the root cause of the incident are software bugs.
Note that not all the 112 incidents we studied affected

Microsoft ’s external customers. Many incidents affected
Microsoft ’s internal users and many others were de-
tected by internal users and automated watchdogs and
mitigated before external customers reported them.

2.2 Threats to validity
The results of our study have to be interpreted with
our methodology in mind. The types of bugs we ob-
served in production are biased by the fact that Mi-
crosoft uses effective tools (e.g., [4, 5, 6, 7]) to mostly
eliminate many types of bugs before they can mani-
fest in production, and hence our study includes zero
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or few of such bugs. For example, we observed only
a small number of configuration bugs caused by mis-
specification of configuration entries in configuration
files, even though such bugs were reported to be com-
mon in other settings[28, 31]). Our observation may
not represent incidents in Microsoft that we did not
study, and may not represent incidents in other cloud
services. We analyzed only incidents whose reports con-
tain enough information for us to judge root causes,
which may lead us to miss incidents with complicated
root causes and little information about the causes.

3 WHAT ARE THE BUGS?
Every incident report contains a “discussion” section
and a “root cause” section, by reading these sections,
and sometimes the work item description, we figure out
the root cause of each incident, and categorize them
into data-format bug incidents (21 %), fault-related bug
incidents (31 %), timing bug incidents (13 %), constant-
value bug incidents (7 %), and others (28 %).

3.1 Data-format incidents
Different components of cloud services interact with
each other through various types of “data”, including
inter-process/node messages, persistent files, and so on.
At the same time, cloud software goes through frequent
updates. As a result, different software components in
the cloud could hold conflicting assumptions about the
format of certain data, leading to service incidents. We
refer to these as data-format bugs. They have not been
a type of common bugs in traditional software systems
[10, 29, 13, 28], but are among the most common ones
in our study (21 % of all software bug incidents).
We can categorize these bugs based on the type of

data whose format becomes incompatible with newer
versions of the software.

(1) Local or global files (about 40% of data-format inci-
dents): different parties assume different formats about
certain files or database tables. For example, a service,
let’s call it Service-X, allows users to store their cus-
tomized configuration in the cloud. After a feature up-
grade, Service-X changes the format of such customized
configuration files — a reference to the source configu-
ration has to exist in the customized configuration file.
This reference is added to any configuration created
by the new-version of Service-X. However, no such ref-
erence exists in customized configuration created by
earlier versions of Service-X. Therefore, loading old cus-
tomized configuration files lead to null-reference excep-
tions and then service incidents.

(2) Message interfaces (about 60% of data-format in-
cidents): a service changes the interface of its external-
facing message APIs; consequently, the other process or
node that uses this message API got unexpected results.
For example, a service, let’s call it Service-Y, provides a
REST API that returns a list of active instances. In the
past, Service-Y used to return an error-code 200 together
with an empty list when there were no active instances.
In a newer version, Service-Y changed the API to return
the error code 404 when there are no active instances,
causing incidents in consuming services that could not
handle this new return code.

We can also break down these bugs based on different
roles of the conflicting parties. They could be caused by
inconsistencies between data producers and data con-
sumers (83 % of the cases), as well as between two data
consumers (17 % of the cases). In the former case, data
produced by one part of the system cannot be properly
consumed by another part of the system; in the latter
case, different system components draw inconsistent
conclusions about whether some user data is valid or
not.
In most cases, these bugs are triggered by software

updates that fail to fully consider the data-format as-
sumptions held by all stakeholders.

Discussion: Among all the bugs we studied, only
one of them occurs inside one process, and the other
ones all involve multiple processes and/or nodes. This
is probably not a coincidence: persistent data related
bugs are more likely to exist in multi-process systems;
message related bugs are probably unique to networked
systems. The large scale, frequent updates, and long
running natures of cloud services likely have facilitated
the occurrence of these bugs.
Techniques are needed to automatically extract as-

sumptions about data formats, so that we can automat-
ically detect data-format bugs or automatically raise
warnings about inconsistent code versions among dif-
ferent software components.

3.2 Fault-related incidents
Component failures (i.e., faults) are inevitable in cloud
environment, and 31 % of software bug incidents are
about not detecting or handling faults correctly.

In our study, a component can refer to a user request,
a user/system job, a node in the system, a file, and so on.
There are three main types of component failures (i.e.,
faults) that lead to fault-related incidents in our study:
(1) Error component: a specific task or job fails and

reports an error that cannot be handled by the cloud
service platform (43 % among all fault-related incidents);
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(2) Unresponsive component: a hanging job or a dis-
abled node is not handled by the service platform (i.e.,
no error code ever returned) and eventually leads to a
timeout perceived by users or watchdogs (29 % among
all fault-related incidents);

(3) Silent corruption: persistent data or cached persis-
tent data became corrupted or inconsistent without any
error code and led to incorrect results returned to users
(17 % among all fault-related incidents).

We observed three main reasons for a fault in compo-
nent F not being detected by a component G (in most
cases,G then waits infinitely for an operation o, not real-
izing that o will never occur due the fault in F ). 1)G did
not contain any fault detection code for potential fault
in F ; 2)G typically checks certain signal or log to detect
faults in F , not realizing that the signal/log itself could
disappear due to the fault in F . 3)G typically checks cer-
tain signal or log to detect faults in F , not realizing that
the signal/log could disappear along the transmission
path from F toG . This problem sometimes happens due
to file and process re-location after a component failure.

We observed three main types of fault handling prob-
lems: (1) handler ignores the error report (35 %); (2)
handler over-reacts and causes incidents (35 %); (3) han-
dler contains bugs like infinite loops, timing bugs, etc
(30 %). The first two types of problems have also been
reported in open-source systems [32].
Discussion: Fault detection and handling is usually

not an issue for single-machine systems, but is a major
problem in cloud services. This finding is consistent with
previous studies about open-source cloud systems [14].
The predominance of fault-related problems confirms
our expectation that these bugs only show up in scale
and are not likely to be exposed during in-house testing.
Moreover, recent research has looked at various as-

pects of fault/exception handling problems in distributed
systems, including detecting empty error handlers and
certain type of over reaction handlers [32], dealing with
gray component failures [17, 16], detecting fault-related
timing bugs [23], fault injection testing [3], and oth-
ers. Our study indicates that even with intensive fault-
injection testing inside Microsoft (Section 5), fault re-
lated bugs are still common, and hence call for more
research to help detect and handle faults.

3.3 Timing incidents
Overall, there are 13 % timing incidents in our study set.
Among all timing incidents in our study, 72 % incidents
are non-deadlock issue and 14 % incidents are deadlock
issue. In the remaining 14 % incidents, we only know

they are caused by a race condition without any detailed
information.

There are twomain differences between non-deadlock
timing bugs in our study from those in traditional con-
current systems [25].

First, half of these bugs are about race conditions be-
tween multiple nodes rather than multiple threads in
traditional bugs. Even when a race is among multiple
threads, at least one of the threads is an event/message
handling thread that is serving the request from a dif-
ferent node like the message-timing bugs discussed in
previous empirical studies [20].
Second, half of these bugs are racing on persistent

data like cached firewall rules, configuration entries, zn-
odes in Zookeeper, database data, and others, instead of
shared memory variables that traditional timing bugs
race on. For example, in one case, two system processes
read and write the same entry in the machine’s config-
uration file. Races between these two processes’ reads
and writes led to repeated machine restarts.

Discussion: Timing bugs continue to be a threat to
system availability in the cloud. Traditional timing-bug
detection techniques need to be adapted to tackle races
on persistent data and races between different nodes.

3.4 Constant-value setting incidents
These incidents are caused by an incorrect setting, in-
cluding typos, of constant variables in the software. They
contribute to 7 % of all software bug incidents.
These constant variables include hard-coded config-

urations, special-purpose strings like URLs, and enum-
typed values. For example, cloud software often contains
state machines for every node, every job, and so on. The
variable that represents the current state of a state ma-
chine often has enum type. In some cases, an incorrect
constant value of the state variable causes the execution
to enter incorrect code path.

Discussion: Comparing with generic and arbitrary
typos and semantic bugs, these constant-setting bugs
might be easier to automatically discover and fix: some
of these bugs are essentially misconfiguration problems;
some of these bugs are very easy to fix as there are
very few choices for the constant values (considering
an enum-typed value).

3.5 Other software bugs
There are about one quarter of the bugs that do not
belong to the above four categories. They include 7 re-
source leak bugs and then 24 miscellaneous semantic
bugs. These 7 resource leak incidents include two out-of-
memory incidents, four Virtual Machine resource leaks,
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Figure 1: Incident resolve strategy

and one lock leak. Different from that in traditional soft-
ware systems, memory bugs, other than memory leaks,
did not appear at all in our study.

4 HOWWERE THEY RESOLVED?
Facing tight time pressure, more often than not, software-
bug incidents were resolved through a variety ofmitiga-
tion techniques (56%) without patching the buggy code
(44%), providing quick solutions to users and maximiz-
ing service availability. Note that, it is possible that an
incident first got resolved by a mitigation technique and
later led to a software patch that was not tracked by the
incident report.
Q1. What are the common strategies for mitigating

software-bug incidents?
We categorize all mitigation techniques into three cat-

egories: code mitigation, data mitigation, and running-
environment mitigation. As shown in Figure 1, these
three strategies are all widely used, with environment
mitigation the most common in our study.

Code mitigation mainly involves rolling back the soft-
ware to an older version, or disabling certain code snip-
pets such as an unnecessary/outdated sanity check that
failed users’ requests and caused severe incidents.

Data mitigation involves manually restoring, cleaning
up, or deleting data in a file, a cloud table, etc.

Running-environment mitigation cleans up dynamic
environment through killing/restarting processes, mi-
grating workloads, adding fail-over resources, etc.
Q2. Are different types of bugs resolved differently?
Figure 2 shows how incidents with different root

causes are resolved. As we can see, different types of
bugs are indeed resolved differently. Constant-value
bugs, and data-related bug incidents are mainly resolved
by software patches. On the other hand, environment
mitigation is widely used to resolve fault-related bugs,
and timing bugs, probably due to the transient nature of
many of these incidents and the complexity of handling
faults and timing correctly in software.
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Figure 2: Resolve strategy in each root cause
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Figure 3: Resolving time for incidents caused by
different types of bugs (Y-axis shows the normalized
resolving time with the median resolving time of all
software-bug incidents as 1; each box represents 25–75
percentile of each type)

Q3.Do different types of incidents take different amount
of time to get resolved?

Figure 3 compares the normalized resolving time among
incidents caused by different types of software bugs,
with the median resolving time among all software-bug
incidents as “1”. As we can see, although the resolving
time varies a lot from incident to incident, there is no sig-
nificant difference among incidents caused by different
types of software bugs.

Discussion: Much recent work looked at how to au-
tomatically generate new patches. In comparison, auto-
matically generating mitigation steps has not been well
studied and worth more attention in the future.

5 PAST AND FUTURE
Many tools have been proposed to detect software bugs,
and much focus has been put to avoid bugs during soft-
ware development. We believe these efforts are reflected
in and have influenced the software bug characteristics
that we have seen in earlier sections.
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The low rate of some bugs is probably related to the
tools or languages that are currently used. For exam-
ple, most of Microsoft Azure is written in .Net managed
languages such as C#, and in C/C++, with most C/C++
code inside well-tested legacy components. This is likely
the reason that we have seen few memory leak prob-
lems and other types of memory problems in our study.
Tools like CHESS [27] and PCT [9] are used to expose
share-memory concurrency bugs, which contribute to
the relatively low rate of those bugs in our study. TLA+
[18, 30] is used to model concurrent and distributed sys-
tem protocols that allow developers to eliminate high
level design/semantic bugs.
At the same time, some types of bugs exist despite

the tools and testing already used in house. For example,
many Azure services are built on top of Service Fab-
ric [2], which provides Fault Analysis Service [1] that
supports various types of fault injections, such as node
restart, data migration, random faults, during testing.
Although this has been effective in catching fault related
problems, the large ratio of fault related bugs indicates
that more research is needed.

There are also bugs that have not been tackled by ex-
isting tools and deserve future research attention. These
include data-format bugs, distributed concurrency bugs
on persistent data, and constant-value bugs.

As discussed earlier, much recent research has looked
at how to automatically generate patches, a very chal-
lenging problem. Our study indicates a likely easier but
as important, if not more, direction — how to automati-
cally generate mitigation schemes.

6 RELATEDWORK
Given space constraints, we discuss below a few closely
related studies on cloud/internet service failures.
A recent paper [15] studied headline news and pub-

lic post-mortem reports of 597 unplanned outages in
32 different production-run cloud services within a 7
year span. The different data sources led to different
focuses and findings in our study and that work. Par-
ticularly, accordingly to that study, most (76%) public
reports do not discuss details about how outages were
resolved, and many (60%) do not explain outage root
causes. Consequently, that study focused on outage du-
ration and coarse-granularity cause breakdowns (e.g.,
upgrade problems versus load problems and so on). Re-
garding software bugs, it focuses on providing examples
of interesting bugs and fixes, yet it cannot and did not
answer questions like how common are different types
of bugs and resolving strategies.

Yuan et. al. [32] studied 198 user reported failures in
5 open source cloud systems (Cassandra, HBase, etc.).
That study intentionally did not look at the root-cause
bug types and instead focused on how errors propagate
and eventually manifest as failures. Consequently, their
study and ours are orthogonal.
Gunawi et. al. [14] studied 3000 issues in the issue

system of open source cloud systems, coming from devel-
opers’ code review, in-house testing, and users’ reports
(2011 – 2014). They could not check which issues actu-
ally caused production incidents and how they were re-
solved during production (all issues ended up with code
patches). Their study found relatively more hardware
issues (13%); among software issues, they found less
fault-related bugs, although still common (18%), more
miscellaneous logic bugs, and did not report data for-
mat issues, persistent data timing issues, constant-value
issues, and so on. The different observations are likely
due to different data sources and study methodology.
There was a study about internet service incidents

15 years ago [28]. Since the authors did not have access
to detailed bug reports, their study about incident root
causes also stayed at coarse granularity — operator ver-
sus hardware versus software. They did not have data
about how incidents were resolved during production.

7 CONCLUSION
This paper presented an in-depth study about root causes
and resolving strategies of incidents caused by software
bugs in production-run cloud services. We hope findings
in our study can provide a guidance for future academic
and industrial efforts in this field.
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