3.1

The Abstraction: Processes

In this note, we discuss one of the most fundamental abstrac-
tions that the OS provides to users: the process. The definition
of a process, informally, is quite simple: it is a running program.
The program itself is a lifeless thing: it just sits there on the disk,
a bunch of instructions (and maybe some static data), waiting
to spring into action. It is the operating system that takes this
bunch of bytes and gets it running, thus transforming the pro-
gram into something useful.

The OS provides this abstraction by virtualizing the CPU. By
running one process, then stopping it and running another, and
so forth, the OS can promote the illusion that many virtual CPUs
exist when in fact there is only one physical CPU (or a few).

We'll now discuss some of the important concepts underly-
ing the notion of a process. We’ll start with process context, con-
tinue by discussing the different states a process can be in, and
then discuss key issues in how the OS gains control of the CPU.
We'll then briefly discuss the OS API for creating and managing
processes.

Process Context

To understand what constitutes a process, we have to under-
stand its context (sometimes called state); that is, what parts of

1

THE ABSTRACTION: PROCESSES

3.2

OPERATING
SYSTEMS

the system does the OS need to save in order to be able to later
re-start the process seamlessly? To understand this better, think
of what a program can read or update when it is running; at any
given time, what in the machine is an important component of
the execution of this program?

One obvious component of process context is memnory. All
instructions lie in memory; the data that the running program
reads and updates sits in memory as well. Thus memory and
any related pieces of information the OS should track about
memory are a part of the context of the process.

Also part of the process context are registers; many instruc-
tions explicitly read or update registers and thus clearly they
are important to the execution of the process.

Note that there are some particularly special registers that
also comprise context beyond general-purpose registers. For
example, the program counter (PC) (sometimes called the in-
struction pointer) tells us which instruction of the program is
currently being executed; similarly a stack pointer and associ-
ated base pointer are often used to manage the stack for local
variables, function parameters, return addresses, and the like.

Finally, programs often access persistent storage devices too.
Such 1/O information might include a list of the files the process
currently has open.

Of course, there are many other pieces of information that
the OS tracks about a process. For example, scheduling priority
information, relationship to other processes (e.g., which process
created this one), information about which event a process is
blocked upon (if it is blocked), and many other similar things
may also comprise process context; the exact details depend on
the system in question.

Process States
Now that we have some idea of what a process is (though we

will continue to refine this notion), let us talk about the different
states a process can be in at a given time.

ARPACI-DUSSEAU

THE ABSTRACTION: PROCESSES 3

In a simplified view, a process can be in one of three states:

e Running: In the running state, a process is running on a
processor. This means it is executing instructions.

e Ready: In the ready state, a process is ready to run but for
some reason the OS has chosen not to run it at this given
moment.

e Blocked: In the blocked state, a process has performed
some kind of operation that makes it not ready to run
until some other event takes place. A common example:
when a process initiates an I/O request to a disk, it be-
comes blocked and thus some other process can use the
processor.

If we were to map these states to a diagram showing the pos-
sible transitions, we would arrive at something like the picture
in Figure 3.1.

777777777 | descheduled ————
	=== >	
Running		Ready
	<emmmmm—	
——————	scheduled	——————

| R
I/0: \ | I/0
init \ / done
| |
v |
[=== I
| |
| Blocked |

Figure 3.1: Process: State Transitions

As you can see in the diagram, a process can be moved be-
tween the ready and running states at the discretion of the OS.
Being moved from ready to running means the process has been

WHAT
ARPACI-DUSSEAU HAPPENS
WHEN

THE ABSTRACTION: PROCESSES

OPERATING
SYSTEMS

DATA STRUCTURE: THE READY QUEUE
Operating systems are replete with various important data
structures that we will discuss in these notes. The ready queue
is the first such structure. It is one of the simpler ones, but cer-
tainly any OS that has the ability to run multiple programs at
once will have something akin to this structure.

scheduled; being moved from running to ready means the pro-
cess has been descheduled. Once a process has become blocked
(e.g., by initiating an I/O operation), the OS will keep it as such
until some event occurs (e.g., I/O completion); at that point, the
process moves to the ready state again (and potentially imme-
diately to running again, if the OS so decides).

Note that the OS must track the states of these processes. To
do so, the OS likely will keep some kind of ready queue for all
processes that are ready, as well as some additional information
to track which process is currently running. The OS must also
track, in some way, blocked processes, and when an I/O event
completes, make sure to wake the correct process and move it
on to the ready queue.

We should also note that there are some other states a pro-
cess can be in. Sometimes a system will have an initial state
that the process is in when it is being created. Also, a process
could be placed in a final state where it has exited but has not
yet been cleaned up (in UNIX-based systems, this is called the
zombie state!). This final state can be useful as it allows other
processes (usually the parent that created the process) to exam-
ine the return code of the process and see if it executed success-
fully. When finished, the parent will then make one final call to
indicate to the OS that it can completely forget about the now-
extinct process (the wait () system call in UNIX does this).

!Yes, the zombie state. Don’t worry — these zombies are not too scary.

ARPACI-DUSSEAU

3.3

THE ABSTRACTION: PROCESSES

Gaining Control of the CPU

At this point, you should have some understanding of the
lifetime of a process. It gets created, starts running on the CPU,
perhaps issues some I/O requests (moving to the blocked state
and back as I/Os complete), then runs again, and so forth, until
it completes. While a process is running, though, sometimes the
OS would like to be able to stop it and run some other process
(some other deserving process from the ready queue that is).

This sounds simple but it is actually a little bit tricky: specifi-
cally, if a process is running on the CPU, this by definition means
the OS is not running. If the OS is not running, how can it do
anything at all? It sounds almost philosophical, but it is a real
problem: there is clearly no way for the OS to take an action if it
is not running. Thus we arrive at the crux of the problem.

THE CRUX: HOW TO REGAIN CONTROL OF THE CPU
How can the operating system regain control of the CPU so
that it can switch between processes?

A Cooperative Approach: Wait For System Calls

One approach that some systems have taken in the past (for
example, early versions of the Macintosh operating system) is
known as the cooperative approach. In this style, the OS trusts
the processes of the system to behave reasonably. Processes that
run for too long are thus assumed to periodically give up the
CPU so that the OS can thus decide to run some other task.
Thus, you might ask, how does a friendly process give up
the CPU in this utopian world? Most processes, as it turns out,
transfer control of the CPU to the OS quite frequently by making
system calls, for example, to open a file and subsequently read
it, or to send a message to another machine, or to create a new
process. Systems like this often include an explicit yield system

ARPACI-DUSSEAU

WHAT
HAPPENS
WHEN

THE ABSTRACTION: PROCESSES

OPERATING
SYSTEMS

DESIGN T1P: DEALING WITH MISBEHAVIOR
Operating systems often have to deal with misbehaving pro-
cesses, those that either through design (maliciousness) or ac-
cident (bugs) attempt to do something that they shouldn’t. In
modern systems, the way the OS tries to handle such malfea-
sance is to simply terminate the offender. One strike and you're
out! Perhaps a little brutal, but what else should the OS do when
you try to access memory illegally or execute an illegal instruc-
tion?

call, which does nothing except to transfer control to the OS so
it can run other processes.

Applications also transfer control to the OS when they do
something illegal. For example, if an application divides by
zero, or tries to access memory that it shouldn’t be able to access,
it will generate a trap to the OS. The OS will then have control
of the CPU again (and likely terminate the offending process).

Thus, in a cooperative scheduling system, the OS regains
control of the OS by waiting for a system call or an illegal opera-
tion of some kind to take place. You might also be thinking: isn’t
this passive approach less than ideal? What happens, for exam-
ple, if a process (wWhether malicious, or just full of bugs) ends up
in an infinite loop, and never makes a system call? What can the
OS do then?

A Non-Cooperative Approach: The OS Takes Control

Without some additional help from the hardware, it turns out
the OS can’t do much at all when a process refuses to make sys-
tem calls (or mistakes) and thus return control to the OS. In fact,
in the cooperative approach, your only recourse when a process
gets stuck in an infinite loop is to resort to the age-old solution to
all problems in computer systems: reboot the machine. Thus,
we again arrive at a subproblem of our general quest to gain
control of the CPU.

ARPACI-DUSSEAU

THE ABSTRACTION: PROCESSES

THE CRUX: GAINING CONTROL WITHOUT COOPERATION
How can the OS gain control of the CPU even if processes are
not being cooperative?

The answer turns out to be simple and was discovered by a
number of people building computer systems many years ago:
a timer interrupt. A timer device can be programmed to raise
an interrupt every so many milliseconds; when the interrupt is
raised, the currently running process is halted, and a preconfig-
ured interrupt handler in the OS runs. At this point, the OS has
regained control of the CPU, and thus can do what it pleases:
stop the current process from running, and start a new one run-
ning.

There are three important aspects of managing the timer in-
terrupt that the OS and hardware must perform together. First,
the hardware must know which OS code to run when the inter-
rupt takes place. The OS establishes such a trap table at boot
time, basically giving the hardware a pointer to some memory
where the code that should run lives. Of course, this is a privi-
leged operation; only the OS should be able to perform the op-
erations needed in order to set up this table.

Second, the OS must start the timer, also a privileged opera-
tion. Once begun, the OS can thus feel safe in that control will
eventually be returned to it. Note that the timer can also be
turned off, something we will discuss later when we understand
concurrency in more detail.

HARDWARE SUPPORT: THE TIMER INTERRUPT
The addition of a timer interrupt gives the OS the ability
to regain control of the CPU even if processes act in a non-
cooperative fashion. Thus, this hardware is key in helping the
OS maintain control of the system.

Finally, the OS must be very careful when first running in
such an interrupt handler. In particular, the OS must be able to

ARPACI-DUSSEAU

WHAT
HAPPENS
WHEN

THE ABSTRACTION: PROCESSES

3.4

OPERATING
SYSTEMS

correctly save the context of the running process, and, if it de-
cides to switch to another process, restore the context of the new
process. The saving of the context of one process and restoring
of another is called a context switch, which we now discuss in
more detail.

The Tricky Part: Saving and Restoring Context

When a timer interrupt goes off, the hardware takes control
and does a number of things before transferring control to the
OS. In particular, the OS needs to be able to successfully save the
context of the currently-running process and restore the context
of the about-to-be-run process. This code has to be written care-
fully in assembly, as it deals with the intricacies of the machine
upon which it runs.

One thing the hardware absolutely must do is save the pro-
gram counter for the OS somewhere. Once the hardware jumps
to the interrupt handler, the PC (by definition) changes; once
changed, the old PC is lost and the OS will not be able to save
the context of the current process correctly. Thus, most hard-
ware has some machinery to put the PC at the time of the inter-
rupt someplace the OS can access it (e.g., on the kernel stack, or
in a special register).

The code that runs also must be careful to avoid overwriting
any registers that the process was using before it saves them.
Unfortunately, just to execute instructions, registers must be used,
and thus the code to save them must again be quite careful.
Some hardware systems reserve a few registers for the OS to use
in this piece of code; others have instructions that can directly
save registers to well-known memory locations.

Thus, when switching from one process to another, the OS
must be careful so as not to overwrite any registers before it
saves them. But where should it save the values? The data
structure that the OS saves such values to is usually called the
process control block (PCB), which contains such information.
This data structure thus contains room for all the registers of the

ARPACI-DUSSEAU

3.5

3.6

THE ABSTRACTION: PROCESSES

process including special ones like the PC and stack and base
pointers. Thus, to switch between processes, the OS must know
the locations of the PCB structures for each; once known, the OS
can save the state of the current process to its PCB, restore the
state of the about-to-be-run process, and then run that process.

To start running a process, the OS must execute one more
special instruction that the hardware provides: a return-from-
trap instruction. This instruction not only returns execution to
the proper PC but also reduces the privilege level of the process
to user mode as needed.

The Dispatcher

One final note: all of these low-level actions, like taking switch-
ing between processes, and mucking around with the run queue,
and so forth, are found in a part of the OS often referred to as the
dispatcher (or low-level scheduler). The dispatcher is thus re-
sponsible for managing the state of the processes (as described
above) and for performing context switches.

Summary

We have introduced the most basic abstraction of the OS: the
process. We have further discussed what process context is, and
how the OS can virtualize the CPU by switching from one pro-
cess to another via a context switch. We have also discussed
a key issue: how to forcefully regain control of the CPU when
a process is not cooperating. This key issue allows the OS to
control the hardware as desired, instead of trusting processes to
work correctly and non-maliciously.

ARPACI-DUSSEAU

WHAT
HAPPENS
WHEN

