We define a small functional language – an applied, typed lambda calculus with integers and booleans as primitive types. This is a very tiny approximation to ML, so we might call it MicroML. The abstract syntax of MicroML is given by the following pseudo grammar, defining type expressions τ and ordinary expressions e.

$$
\tau ::= \text{int} \mid \text{bool} \mid \tau_1 \to \tau_2
$$

$$
e ::= n \mid \text{true} \mid \text{false} \mid x \mid + (e_1, e_2) \mid < (e_1, e_2) \mid \ldots \quad (\text{other possible primitive ops})
\quad \mid \text{if } e \text{ then } e_1 \text{ else } e_2 \mid e_1 \ e_2 \mid \lambda x : \tau. \ e
$$

where n ranges over integer constants and x ranges over a set of variables (metavariable b ranges over the boolean constants true and false). In this language a value is either a number, a boolean constant, or a function expression. The metavariable v ranges over values. The dynamic semantics of evaluation is given by a transition relation defined by the rules

$$
\frac{(m = n_1 + n_2)}{+(n_1, n_2) \mapsto m} \quad (D1) \quad \frac{(b = (n_1 = n_2))}{=(n_1, n_2) \mapsto b} \quad (D2)
$$

$$
\frac{e_1 \mapsto e_1'}{+(e_1, e_2) \mapsto + (e_1', e_2)} \quad (D3) \quad \frac{e_2 \mapsto e_2'}{+(v_1, e_2) \mapsto + (v_1, e_2')} \quad (D4)
$$

$$
\frac{\text{if true then } e_1 \text{ else } e_2 \mapsto e_1}{(D5)} \quad \frac{\text{if false then } e_1 \text{ else } e_2 \mapsto e_2}{(D6)}
$$

$$
\frac{e \mapsto e'}{\text{if } e \text{ then } e_1 \text{ else } e_2 \mapsto \text{if } e' \text{ then } e_1 \text{ else } e_2} \quad (D7)
$$

$$
\frac{e_1 \mapsto e_1'}{e_1 \ e_2 \mapsto e_1' \ e_2} \quad (D8) \quad \frac{e_2 \mapsto e_2'}{v_1 \ e_2 \mapsto v_1 \ e_2'} \quad (D9)
$$

$$
\frac{e \mapsto e'}{\frac{(\lambda x : \tau. \ e)v \mapsto \{v/x\}e}{(D10)}}
$$
Here we presented representative rules for the + arithmetic operator and the = relational operator. Similar rules would cover other operators like * (multiplication) and <. These semantic rules specify a call by value regime for function applications, where the argument is evaluated before the function is applied.

An expression that is not a value and for which no transition is derivable by these rules is said to be stuck. Stuck expressions represent the dynamic detection of a type error.

The typing rules for MicroML are given below.

\[
\frac{(\Gamma(x) = \tau)}{\Gamma \vdash x : \tau} \quad (S1)
\]

\[
\Gamma \vdash n : \text{int} \quad (S2)
\]

\[
\Gamma \vdash b : \text{bool} \quad (S3)
\]

\[
\frac{\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash (e_1, e_2) : \text{int}} \quad (S4)
\]

\[
\frac{\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash (e_1, e_2) : \text{bool}} \quad (S5)
\]

\[
\frac{\Gamma \vdash e : \text{bool} \quad \Gamma \vdash e_1 : \tau \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau} \quad (S6)
\]

\[
\frac{\Gamma \vdash e_1 : \tau \rightarrow \tau \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 \ e_2 : \tau} \quad (S7)
\]

\[
\frac{\Gamma \vdash x : \tau' \vdash e : \tau}{\Gamma \vdash \lambda x : \tau. e : \tau' \rightarrow \tau} \quad (S8)
\]

The following Theorems express the relation between between typing judgements and evaluation. Together these prove type soundness, i.e. that the evaluation of any well typed expression will not reach a stuck state.

Theorem [Preservation]: If \(\vdash e : \tau \) and \(e \mapsto e' \) then \(\vdash e' : \tau \).

Theorem [Progress]: If \(\vdash e : \tau \) then either \(e \) is a value, or there exists an \(e' \) such that \(e \mapsto e' \).

Problem 1: Complete the proofs of the Preservation and Progress theorems that were started in class. Recall that the proof of Preservation is by induction on the rules deriving \(e \mapsto e' \), and we considered the cases for rules \(D10 \). The proof of Progress is by induction on the rules deriving \(\vdash e : \tau \), and we looked at the cases for rules \(S2 \) and \(S4 \) in class.

Problem 2: One of the simpler extensions of MicroML is to add expressions for pairs and corresponding binary product types:

\[
\tau ::= \ldots \tau_1 \times \tau_2 \n\]

\[
e ::= \ldots \mid (e_1, e_2) \mid \text{fst}(e) \mid \text{snd}(e)
\]
with new typing rules

\[
\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2} \quad (S9)
\]

\[
\frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \text{fst}(e) : \tau_1} \quad (S10) \quad \frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \text{snd}(e) : \tau_2} \quad (S11)
\]

Specify what new values terms are introduced for pairs, and give evaluation rules for the pair constructs (i.e. pairing, and the projections \text{fst} and \text{snd}).

For a bonus, give the proof cases for Preservation and Progress that deal with the pairing constructs.