Fact: if \(\gcd(a, m) = 1 \), \(a \) has a multiplicative inverse \(\mod m \)

\[\text{relatively prime} \]

\[\exists x : xa \equiv 1 \pmod{m} \]

Equivalently, in \(\mathbb{Z}_m \)

\[\exists b \in \mathbb{Z}_m : ba = 1 \]

\[\text{multiplication in } \mathbb{Z}_m \]

[Why are these 2 statements equivalent?]

proof: We know that \(\exists u, v \in \mathbb{Z} : \)

\[\gcd(a, m) = ua + mv = 1 \]

Since \(m \mid mv \) we have

\[1 \equiv u a \pmod{m} \]

which means that in \(\mathbb{Z}_m \)

\[1 = \hat{a} \cdot a \]

where \(\hat{a} = (u \mod m) \) [Why?]

But then \(\hat{a} \) is the required inverse. \(\square \)

We show, by example, how we can obtain the \(u, v \) in the eqn above, by extending Euclid's algorithm

Compute \(\gcd(162, 51) \)

\[162 = 3 \cdot 51 + 9 \quad (*) \]

\[51 = 5 \cdot 9 + 6 \quad (***) \]

\[9 = 1 \cdot 6 + 3 \quad (***) \]

\[6 = 2 \cdot 3 + 0 \]

(\(\text{so } \gcd(162, 51) = 3 \))

From (***), \(\gcd(162, 51) = 3 = 9 - 1 \cdot 6 \) [this would be the required equality for \(\gcd(3, 6) \) with \(u = 1, v = -1 \)]

substitute \(6 \) from (**) \(\)

\[6 = 51 - 5 \cdot 9 \]

\[\gcd(162, 51) = 3 = 9 - 1 \cdot [51 - 5 \cdot 9] = 9 - 51 + 5 \cdot 9 = -51 + 6 \cdot 9 \]

Substitute \(9 \) from (*) \(\)

\[9 = 162 - 3 \cdot 51 \]

\[\gcd(162, 51) = 3 = -51 + 6 \cdot [162 - 3 \cdot 51] = 6 \cdot 162 - 413 \cdot 51 \]

which gives \(u = 6 \) \(v = -15 \)
Some properties of \mathbb{Z}_m +, * addition, multiplication in \mathbb{Z}_m

(i) $\forall a \in \mathbb{Z}_m \quad 0 + a = a + 0 = a$, $\forall a \in \mathbb{Z}_m \quad a \cdot 1 = a$

(ii) $\forall a \in \mathbb{Z}_m \quad \exists b \in \mathbb{Z}_m \quad a + b = 0 \quad b = -a$ 'additive inverse'
 For example, in \mathbb{Z}_4 the additive inverse of 2 is 2.

(iii) +, * are commutative, associative, and the distributive properties of +, * in \mathbb{Z} hold.

(iv) if a, m relatively prime $\left[\gcd(a, m) = 1\right]$ a has a multiplicative inverse.
 In particular, if m is prime, every nonzero $a \in \mathbb{Z}_m$ has a multiplicative inverse.

This means that we know how to solve linear equations in \mathbb{Z}_p, p prime:
 Find $x : a \cdot x + b = c$ (operations in \mathbb{Z}_p)

 $a \cdot x = c - b$ (add $-b$ to both sides -- it exists by (ii))
 $a^{-1} \cdot a \cdot x = a^{-1} (c - b)$ (a^{-1} exists by (iv))
 $x = a^{-1} (c - b)$

This also means we can solve congruences

 $a \cdot x + b \equiv c \pmod{p}$ $\alpha, \beta, y \in \mathbb{Z}$
 $x \equiv y - \beta \pmod{p}$

 [Of course, $a^{-1} = \left[a^{-1}\right]_m$]

Some more properties of divisibility, |, and of \mathbb{Z}_m

$\gcd(a, b) = 1 \land a \mid bc \rightarrow a \mid c$

Proof: $\exists x, y \in \mathbb{Z} \quad a \cdot x + b \cdot y = 1$ [Why?]
 multiply both sides by c
 $c \cdot a \cdot x + c \cdot b \cdot y = c$
 $a \mid c$ (because $a \mid b$)
 $a \mid (c + a \cdot b)$
 $a \mid c$

Thm If a has a multiplicative inverse in \mathbb{Z}_m, it is unique.
 Proof: suppose by contradiction $\exists b, c : a \cdot b = a \cdot c = 1$. But we have

$$\begin{cases} b = b \cdot 1 \quad \text{(prop. of 1)} \\ b = b \cdot (a \cdot c) \quad \text{(hypothesis)} \\ b = (b \cdot a) \cdot c \quad \text{(\cdot is associative)} \\ b = (a \cdot b) \cdot c \quad \text{(\cdot is commutative)} \\ b = d \cdot c \quad \text{(hypothesis)} \\ b = c \end{cases}$$