9th Lecture

INDUCTIVE DEFINITIONS

(familiar from recursive definitions of functions—e.g. in Haskell)

Fibonacci Numbers: $F_0 = 0; F_1 = 1; F_n = F_{n-1} + F_{n-2}$

Obvious recursive algorithm (but if not carefully implemented horribly inefficient)

Exercise: Prove that the number of recursive call to $f(n)$ in the program

$$f(n): \quad \text{if } n < 2$$
$$\quad \quad \quad \text{if } n = 0 \text{ return 0 else return 1}$$
$$\quad \text{else}$$
$$\quad \quad A \leftarrow f(n-1)$$
$$\quad \quad B \leftarrow f(n-2)$$
$$\quad \text{return } A + B$$

if is $2 \cdot F_n + 1$

One can use memoization (google it!)

One can also use a 'bottom up' algorithm, computing $F_3 \cdot F_4 \cdots F_n$ at constant cost for each new number.

FORMULA We look for some α such that $F_k = \alpha^k$ [we know that F_k grows exponentially fast]

Since we don't know the value of α, call it x, so $F_n = x^n$

We should have $x^n = x^{n-1} + x^{n-2}$ (from the inductive definition)

$x^n - x^{n-1} - x^{n-2} = 0$

$x^{n-2} (x^2 - x - 1) = 0$

So x can be: 0, $\Phi = \frac{1 + \sqrt{5}}{2}$, $\overline{\Phi} = \frac{1 - \sqrt{5}}{2}$

not interesting

Golden Ratio (google it!)

Unfortunately, for $n=0, n=1$

neither Φ^n nor $\overline{\Phi}^n$ equal F_n

Bummer

However
Consider the recurrence \(U(n) = U(n-1) + U(n-2) \) *

Claim: If the sequences \(h(n), q(n) \) satisfy *, so does \(ah(n) + bq(n) \) for any numbers \(a, b \) (\(a, b \in \mathbb{R} \))

So we can try to find \(a, b \) s.t. \(aq^0 + bq^0 = 0 \) \(aq^1 + bq^1 = 1 \)

Then \(f(n) = aq^n + bq^n \) satisfy the definition of Fibonacci numbers.

It is easy to see that \(a = \frac{1}{\sqrt{5}}, b = \frac{-1}{\sqrt{5}} \) works.

So \(F_n = \frac{q^n}{\sqrt{5}} - \frac{\overline{q}^n}{\sqrt{5}} \) [This can be evaluated in \(\sim \log n \) operations!]

--- * ---

Application to Euclid's gcd algorithm:

Lame's thm: let \(a_n > a_{n-1} > \ldots > a_0 = 0 \) be the sequence of residues in the algorithm (initial values are \(a_n = a, a_{n-1} = b \), we're computing gcd\((a, b) \) and \(a_{n-2} = a_k \mod a_{k-1} \))

Claim: \(a_i \geq F_i \)

proof: (induction on \(i \)) \(a_0 = 0 = F_0 \)
\(a_1 > a_0 \) so \(a_1 > 0 \) so \(a_1 > 1 = F_1 \)

I.H. is: \(a_i \geq F_i \) for \(i < k \) (and by hypothesis of Euclid \(a_i \geq F_i \))

then \(a_k = qa_{k-1} + a_{k-2} \) (for some \(q \in \mathbb{N}, q > 0 \))
(because \(a_k \equiv a_k \mod a_{k-1} \))

Since \(q \geq 1 \)
\(a_k \geq a_{k-1} + a_{k-2} \)
by IH \(a_{k-1} \geq F_{k-1}, a_{k-2} \geq F_{k-2} \)
so \(a_k \geq F_{k-1} + F_{k-2} = F_k \) \(\square \)
This can be used to prove that EUCLID is efficient.

Thm Let \(a > b \) be the inputs to EUCLID and let \(a \) require \(d \) decimal digits to write. Suppose the algorithm requires \(t \) executions of the while loop. Then \(t \leq Cd \) for some constant \(C > 0 \).

proof \(a = a_t \times 10^d \)

by Lame, \(a_t \geq F_t \) so \(F_t \leq a_t < 10^d \)

If we could say \(F_i \geq \phi^i \frac{1}{\sqrt{5}} \) we could argue:

\[
10^d \geq F_t \geq \frac{\phi^t}{\sqrt{5}}
\]

Taking logs (base 2)

\[
d \log 10 \geq t \log \phi - \log \sqrt{5}
\]

\[
d \geq t \left[\frac{\log \phi}{\log 10} \right] - \log \sqrt{5}
\]

\[
d \geq At \quad [\text{why?}]
\]

for some \(A > 0 \).

This is what I sketched in class. Unfortunately only 1 student challenged me,

asking 'Isn't \(F_i = \frac{\phi^i}{\sqrt{5}} - \frac{\bar{\phi}^i}{\sqrt{5}} \)? What about the subtraction?!

It takes a bit of trickery to show that all we need is a smaller constant.

Claim \(|\bar{\phi}| \leq 2\phi \)

\[
\frac{1 - \sqrt{5}}{2} \geq \frac{\phi^2 - 1}{(\phi^2 + 1)^2} = \frac{4}{5 + 2\sqrt{5}} \geq \frac{1}{2}
\]

so \(\phi^i - \bar{\phi}^i \geq \phi^i \left(\frac{1}{2} \phi \right)^i \geq \frac{1}{2} \phi^i \) and \(F_t \geq \frac{1}{2} \phi^t \Rightarrow F_t > B \phi^t \)

Again, taking logs we get \(d \geq C t \) for some \(C \)

Exercise: Compute (a good bound on) \(C \).

Corollary The number of executions of the loop in EUCLID is bounded by a constant times \(d \).

Corollary EUCLID runs in time polynomial in the length of its input.