of its tape, T_1 can decide what move T makes next. T_1 makes these changes on its next sweep. Note that no two head markers can move apart by more than $\frac{1}{4}T(n)$ cells if T is $\frac{1}{4}T(n)$ time bounded. Thus a sweep requires no more than $\frac{1}{4}T(n) + 2k$ moves. Hence, T_1 is of time complexity at most $T^0(n)$.

Theorem 10.5. If L is accepted by a k-tape $T(n)$ time-bounded Turing machine T, then L is accepted by a two storage tape Tm T_1 in time $T(n) \log T(n)$.\[^{\dagger}\]

Proof. The proof is complicated, and only an indication of how T_1 could simulate T in time proportional to $T(n) \log T(n)$ will be given. The Tm T_1 that we shall describe has storage tapes infinite in both directions. The construction used in Theorem 6.1 shows that T_1 could be converted to a Tm making the same number of moves as T_1, but with semi-infinite tapes. The first storage tape of T_1 will have two tracks for each storage tape of T. For convenience, we focus on two tracks corresponding to a particular tape of T. The other tapes of T are handled in exactly the same way. The second tape of T_1 is used only for scratch, to transport blocks of data on tape 1.

One particular cell of tape 1, known as B_0, will hold the storage symbols scanned by each of the heads of T. That is, rather than moving head markers, T_1 will transport data across B_0 in the direction opposite that of the motion of the head of T being simulated. To the right of cell B_0 will be blocks B_1, B_2, \ldots of exponentially increasing length; that is, B_i is of length 2^{i-1}. Likewise, to the left of B_0 are blocks B_{-1}, B_{-2}, \ldots, with the length of B_{-1} the same as the length of B_1. The markers between blocks are assumed to exist, although they will not actually appear until the block is scanned.

\[^{\dagger}\] By Theorems 10.1 and 10.3, constant factors are irrelevant, so we do not need to specify logarithmic bases.
Let us denote the contents of the cell initially scanned by this tape head of T by a_0. The contents of the cells to the right of this cell are a_1, a_2, \ldots, and those to the left, a_{-1}, a_{-2}, \ldots. Initially these are all blank, however it is not their value, but their position on the tracks of tape 1 of T_2, that is important. Initially the upper track of T_1 for the tape of T in question is assumed to be empty, while the lower track is assumed to hold $\ldots, a_{-2}, a_{-1}, a_0, a_1, a_2, \ldots$. These are placed in blocks $\ldots, B_{-2}, B_{-1}, B_0, B_1, B_2, \ldots$ as shown in Fig. 10.4.

Fig. 10.4. Blocks on Tape 1.

As we mentioned previously, data will be shifted across B_0 and perhaps changed as it passes through. The method of shifting data will obey the following rules.

1. For any $i > 0$, either B_i is full (both tracks) and B_{i-1} is empty, or B_i is empty and B_{i-1} is full, or the bottom tracks of both B_i and B_{i-1} are full, while the upper tracks are empty.

2. The contents of any B_i, B_{-i} represents consecutive cells on the tape of T represented. For $i > 0$, the upper track represents cells to the left of those of the lower track; and for $i < 0$, the upper track represents cells to the right of those of the lower track.

3. B_i represents cells to the left of those of B_j, for $-\infty < i < j < \infty$.

4. B_0 always has only its lower track filled.

To see how data is transferred, let us imagine that on successive moves the tape head of T in question moves to the left. Then T_1 must shift the corresponding data right. To do so, T_1 moves the head of tape 1 from B_0, where it rests, and goes to the right until it finds the first block, say B_0, which is not full. Then T_1 copies all the data of $B_0, B_1, \ldots, B_{i-1}$ onto tape 2 and stores it in the lower track of $B_1, B_2, \ldots, B_{i-1}$ and, if B_i is completely empty, the lower track of B_i. If the lower track of B_i is already filled, then the upper track of B_i, as well as the lower track of $B_1, B_2, \ldots, B_{i-1}$ receives all the data of $B_0, B_1, \ldots, B_{i-1}$.

Note that, in either case, there is just enough room to distribute the data. Also, the data can be picked up and stored in its new location in time proportional to the length of B_i. Finally, note that the data can be easily stored in a manner that satisfies Rules 1, 2, and 3, above.
Next, in time proportional to the length of B_0, T_1 can find B_{-i} (using tape 2 to measure the distance from B_i to B_0 makes this easy). If B_{-1} is completely full, T_1 picks up the upper track of B_{-1} and stores it on tape 2. If B_{-i} is half full, the lower track is put on tape 2. In either case, what has been copied to tape 2 is next copied to the lower tracks of $B_{-(i-1)}$, $B_{-(i-2)}$, \ldots, B_0. (By Rule 1, these tracks have to be empty, since B_1, B_2, \ldots, B_{i-1} were full.) Again, note that there is just enough room to store the data, and all the above operations can be carried out in time proportional to the length of B_i.

We call all that we have described above a B_i operation. The case in which the head of T moves to the right is analogous. The successive contents of the blocks as T moves its tape head in question five cells to the right is shown in Fig. 10.5.
We note that on any pair of tracks T_1 can perform a B_i operation at most once per 2^{i-1} moves of T, since it takes this long for $B_1, B_2, \ldots, B_{i-1}$, which are half empty after a B_i operation, to fill. Also, a B_i operation cannot be performed for the first time until the 2^{i-1}th move of T. Hence, if T operates in time $T(n)$, T_1 will perform only B_i operations, for those i such that $i \leq \log_2 T(n) + 1$.

We have seen that there is a constant m, such that T_1 uses at most $m2^i$ moves to perform a B_i operation. If T makes $T(n)$ moves, T_1 makes at most

$$T_1(n) = \sum_{i=1}^{\log_2 T(n) + 1} m2^i \frac{T(n)}{2^i}$$

(10.1)

moves.

From (10.1), we obtain

$$T_1(n) = 2mT(n)[\log_2 T(n) + 1]$$

(10.2)

and from (10.2),

$$T_1(n) \leq 4mT(n) \log_2 T(n).$$

The reader should be able to see that T_1 operates in time $T_1(n)$ even when T makes moves using different storage tapes rather than only the one upon which we have concentrated.

10.4 SINGLE-TAPE TURING MACHINES AND CROSSING SEQUENCES

For single-tape Turing machines we can prove some results of the form that “such and such a language requires $T(n)$ time to be recognized by a single-tape Tm.” In such a case, it is possible that the language could be recognized in less than $T(n)$ steps by a Tm with more than one tape.

First, let us give a speed up theorem for single-tape Tm’s.

Theorem 10.6. If L is accepted by a single-tape Tm T of time complexity $T(n)$ and $\inf_{n \to \infty} T(n)/n^2 = \infty$, then, for any $c > 0$, L is accepted by a single-tape Tm of time complexity $cT(n)$.†

Proof. In n^2 steps, a single-tape Tm T_1 can condense its input by encoding m symbols into 1. The proof then proceeds as in Theorem 10.3.

For these simple machines, a useful tool has been developed known as the crossing sequence. We imagine that when the Tm makes its move it first overprints the symbol scanned and changes state, then moves its head. Thus, for any pair of adjacent cells on the input tape, we may list the sequence of states in which the Tm crosses from one to the other. Note that the first

† Again, we replace $cT(n)$ by $n + 1$ if $cT(n) < n + 1$.