1 Recurrence Relations

They are recursive definitions of a sequence: expressions of the form \(a_n = G(a_{n-1}, \ldots, a_{n-k+1}) \) together with \textit{initial conditions} \(a_1 = \beta_1, \ldots, a_k = \beta_k \) (the \(\beta_i \) are constants – elements of \(\mathbb{R} \)). We can produce the sequence by applying \(G() \) first to the first \(k \) \(a \)'s to get \(a_{k+1} \), and computing successive elements. They are a kind of recursive program to compute elements of the sequence.

1.1 Fibonacci Sequence

The original motivation was the following:

Consider a pair of rabbits They are immortal, and produce pairs of off-springs every two months. The number of new pairs in month \(i + 2 \) is the number of pairs in month \(i \). Starting with 1 pair in month 1 we have the table of (month, number of pairs) below:

<table>
<thead>
<tr>
<th>Month</th>
<th>Pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>34</td>
</tr>
</tbody>
</table>
It is easy to see that the description of this sequence is given by the recurrence
\[f_n = f_{n-1} + f_{n-2} \]
with initial conditions \(f_1 = f_2 = 1 \).
Note: the sequence was defined by the Pisan mathematician Fibonacci (Filius Bonacci—the son of Bonacci) in 1202.

1.2 Tower of Hanoi

Read about it in Rosen – including a nice myth about it bringing about the end of the world when done (for some Buddhists, this is supposed to be a good thing!)

For us, the important part is that the solution for \(n \) requires a number of moves, \(H_n \), that is given by

- moving \(n-1 \) disks from peg 1 to peg 3 (using \(H_{n-1} \) moves)
- moving the \(n \)-th disk from peg 1 to peg 2 (1 move)
- moving \(n-1 \) disks from peg 3 to peg 2 (using \(H_{n-1} \) moves)

This yields the recurrence
\[H_n = 2H_{n-1} + 1 \]
with initial condition \(H_1 = 1 \)
that has \(H_n = 2^n - 1 \) as a solution.

For those with time on their hands, read the relevant SF short story ‘The nine billion names of god’ by Arthur C. Clarke.

1.3 Strings of length \(n \) with no 00

We want to count the number of binary strings of length \(n \) that do not have a substring of 2 consecutive 0s. Note that the ‘obvious’ first attempt, namely consider 00 as a new symbol, and count the number of ways in could be in each of the \(2^{n-2} \) binary strings of length \(n - 2 \) (it is easy to see that there are \(n - 1 \) possibilities) does not work! It is clear that this count is wrong, since for \(n > 4 \) the number we get, \((n-2)2^{n-2} \) is greater than \(2^n \), the number of binary strings of length \(n \). Can you see why the count is wrong?

We use recurrence relations as follows: let \(a_n \) denote the number of binary string with no 00 as a substring.

Clearly, \(a_1 = 2 \), and \(a_2 = 3 \).
Consider a string $x_1x_2 \cdots x_n$ in the set. There are 2 possible values for the last bit x_n; it can be 0 or 1.

Let us count the number of strings that end in 1. The first $n - 1$ bits, $x_1x_2 \cdots x_{n-1}$ can be any binary string of length $n - 1$ that has no 00 substring. The number of such strings is a_{n-1}.

Now let us count the number of strings of length n with no 00 substring, that end in 0. The bit in position $n - 2$ must be a 1 (otherwise we have a 00). But then we know that $x_1 \cdots x_{n-2}$ can be any binary string of length $n - 2$ with no 00 substring. The number of such strings is a_{n-2}.

So the number of strings, a_n satisfies the recurrence relation

$$a_n = a_{n-1} + a_{n-2} \text{ for } n > 2.$$

Our joy in discovering that this is exactly the recurrence relation for Fibonacci numbers is soon tempered by the realization that the initial conditions are different (for Fibonacci $f_1 = 1$, while we have $a_1 = 2$.)

A closer look yields that in fact $a_1 = 2 = f_3$, and $a_2 = 3 = f_4$. Since the recurrence is identical, we conclude that

$$a_n = f_{n+2}$$

1.4 Another Example

How many decimal strings of length n have an even number of 0s?

We do a similar case analysis. Let a_n be the number of strings with an even number of 0s and b_n be the number of strings with an odd number of 0s. Clearly $a_n + b_n = 10^n$

We reason as follows: if we have a string $x_1 \cdots x_{n-1}$ of length $n - 1$ with an even number of 0s, the string $x_1 \cdots x_{n-1}x_n$ will have an even number of 0s iff $x_n \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. The number of such strings is $9a_{n-1}$

$x_1 \cdots x_{n-1}$ of length $n - 1$ with an odd number of 0s, the string $x_1 \cdots x_{n-1}x_n$ will have an even number of 0s iff $x_n = 0$. The number of such strings is $b_{n-1} = 10^{n-1} - a_{n-1}$.

So $a_n = 9a_{n-1} + 10^{n-1} - a_{n-1} = 8a_{n-1} + 10^{n-1}$