1 Discrete Probability

(The definitions follow Babai’s Notes, the examples are mostly from Rosen.)

Definition 1. A finite probability space is a finite set Ω of atomic events or elementary events together with a function $Pr : \Omega \rightarrow R^+$ (the probability distribution), that maps atomic events to positive reals. The probability distribution function is defined on all subsets E of Ω (called events) by $Pr(E) = \sum_{\omega \in E} Pr(\omega)$. $Pr()$ has the following properties:

(i) for all atomic events ω $Pr(\omega) > 0$

(ii) $Pr(\Omega) = 1$

(iii) $Pr(\emptyset) = 0$

Ω is also called sample space.

Definition 2. The uniform distribution assigns the same probability to all atomic events ($= \frac{1}{|\Omega|}$)

The uniform distribution on coin toss is often called ‘unbiased coin’, the uniform distribution on the faces as outcome of a toss of a die, a ‘fair die’. In general, this is also called a ‘random choice’.

Example 3. Consider a random choice of 3 fair dice. The sample space is all triples $(a, b, c) : a, b, c \in \{1, 2, 3, 4, 5, 6\}$ Each atomic event has probability $\frac{1}{216}$.
To compute the probability of the event $E = \text{`the sum of the three dice is 9’}$ we need to count the number of outcomes where this happens:

\{
(6,1,2); (6,2,1); (5,3,1); (5,1,3); (5,2,2); (4,4,1); (4,1,4); (4,3,2); (4,2,3); (3,5,1);
(3,1,5); (3,4,2); (3,2,4); (3,3,3); (2,6,1); (2,1,6); (2,5,2); (2,2,5); (2,4,3); (2,3,4); (1,3,5); (1,5,3);
(1,6,2); (1,2,6)\}. So the probability is $\frac{24}{60} = \frac{2}{5}$

Of course, we want to use our knowledge of counting combinatorial configurations to avoid listing them.

Example 4. What is the probability of getting a hand with 4 of a kind? (Recall that the deck has 4 suits of 13 ‘kinds’ in each: a ‘kind’ is an A, or a 2, or a 3, or, ...)

The sample space Ω is the set of 5-tuples (subsets of size 5) taken from the deck. We assume the uniform distribution. The number of 5-tuples is $\binom{52}{5}$. To compute the number of hands that are 4 of a kind we

- choose a kind – we choose a subset of size 1 from a universe of 13 elements: $\binom{13}{1}$ ways
- We must take all 4 of the 4 cards of the kind in the deck – no choice, or, formally $\binom{4}{4}$
- We take a 5th card from the remaining 52-4 cards – $\binom{48}{1}$ ways

Using the product rule, the number of ‘good’ configurations is $\binom{13}{1} \times \binom{4}{4} \times \binom{48}{1}$, and so the probability is $\frac{\binom{13}{1} \times \binom{4}{4} \times \binom{48}{1}}{\binom{52}{5}}$.

Example 5. What is the probability of a ‘full house’ in poker? (A full house is 3 of a kind and 2 of a kind.) The sample space is the same as before.

Our choices for the good configurations are

- choose the two kinds (why must they be different?) – $\binom{13}{2}$ ways
- choose which 3 for the triple – $\binom{4}{3}$ ways
- choose which 2 for the pair – $\binom{4}{2}$ ways

So the probability is $\frac{\binom{13}{2} \times \binom{4}{3} \times \binom{4}{2}}{\binom{52}{5}}$.

2
1.1 Union of Events

Assuming the uniform distribution, it is clear that for any events \(A, B \)
\[
Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)
\]
since when if count the atomic events in \(A \cup B \) by counting the elements of \(A \), then the elements in \(B \), we count the elements of \(A \cap B \) twice.

In particular, when \(A \cap B = \emptyset \) (\(A \) and \(B \) are disjoint) this simplifies to
\[
Pr(A \cup B) = Pr(A) + Pr(B)
\]

1.2 Conditional Probability, Independence, Correlation

Definition 6. Let \(F \neq \emptyset \).

The ‘conditional probability of \(E \) given \(F \)’ is \(Pr(E|F) = \frac{Pr(E \cap F)}{Pr(F)} \)

Looking at the definition (draw a Venn diagram!) we see that it corresponds at the probability mass in the intersection of \(E \) and \(F \), normalized by the probability of \(F \). One can think of it as looking at a new sample space, consisting of the event \(F \), and looking at the probability of the portion of \(E \) inside this space.

Note: the interpretation above fails if \(Pr(E|F) = 0 \) – but we explicitly excluded this possibility when defining conditional probability!

Note on events of probability 0. We could have considered elementary events with probability 0: the reason we forbade it in the definition is simply to make statements of definitions and theorems shorter. Also, one could then possibly have to consider an infinite sequence of 0 probability events... On the other hand, for the same reason nonatomic events can have 0 probability – if they are the empty set.

Example 7. Suppose a family has 2 children. The probabilities of the four possible boy (B) / girl (G) children – namely BB, BG, GB, and GG—are all the same. Given that one of the children is a boy, what is the probability that the family has 2 boys?

We have that \(E=\{BB\} \), \(F=\{BG, GB, BB\} \), \(Pr(E|F) = \frac{Pr(E \cap F)}{Pr(F)} = \frac{1/4}{3/4} = \frac{1}{3} \)