Dynamic programming, like the divide-and-conquer method, solves problems by combining the solutions to subproblems. ("Programming" in this context refers to a tabular method, not to writing computer code.) As we saw in Chapters 2 and 4, divide-and-conquer algorithms partition the problem into disjoint subproblems, solve the subproblems recursively, and then combine their solutions to solve the original problem. In contrast, dynamic programming applies when the subproblems overlap—that is, when subproblems share subsubproblems. In this context, a divide-and-conquer algorithm does more work than necessary, repeatedly solving the common subsubproblems. A dynamic-programming algorithm solves each subsubproblem just once and then saves its answer in a table, thereby avoiding the work of recomputing the answer every time it solves each subsubproblem.

We typically apply dynamic programming to optimization problems. Such problems can have many possible solutions. Each solution has a value, and we wish to find a solution with the optimal (minimum or maximum) value. We call such a solution an optimal solution to the problem, as opposed to the optimal solution, since there may be several solutions that achieve the optimal value.

When developing a dynamic-programming algorithm, we follow a sequence of four steps:

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution, typically in a bottom-up fashion.
4. Construct an optimal solution from computed information.

Steps 1–3 form the basis of a dynamic-programming solution to a problem. If we need only the value of an optimal solution, and not the solution itself, then we can omit step 4. When we do perform step 4, we sometimes maintain additional information during step 3 so that we can easily construct an optimal solution.

The sections that follow use the dynamic-programming method to solve some optimization problems. Section 15.1 examines the problem of cutting a rod into
rods of smaller length in a way that maximizes their total value. Section 15.2 asks how we can multiply a chain of matrices while performing the fewest total scalar multiplications. Given these examples of dynamic programming, Section 15.3 discusses two key characteristics that a problem must have for dynamic programming to be a viable solution technique. Section 15.4 then shows how to find the longest common subsequence of two sequences via dynamic programming. Finally, Section 15.5 uses dynamic programming to construct binary search trees that are optimal, given a known distribution of keys to be looked up.

15.1 Rod cutting

Our first example uses dynamic programming to solve a simple problem in deciding where to cut steel rods. Serling Enterprises buys long steel rods and cuts them into shorter rods, which it then sells. Each cut is free. The management of Serling Enterprises wants to know the best way to cut up the rods.

We assume that we know, for \(i = 1, 2, \ldots, \), the price \(p_i \) in dollars that Serling Enterprises charges for a rod of length \(i \) inches. Rod lengths are always an integral number of inches. Figure 15.1 gives a sample price table.

The **rod-cutting problem** is the following. Given a rod of length \(n \) inches and a table of prices \(p_i \) for \(i = 1, 2, \ldots, n \), determine the maximum revenue \(r_n \) obtainable by cutting up the rod and selling the pieces. Note that if the price \(p_n \) for a rod of length \(n \) is large enough, an optimal solution may require no cutting at all.

Consider the case when \(n = 4 \). Figure 15.2 shows all the ways to cut up a rod of 4 inches in length, including the way with no cuts at all. We see that cutting a 4-inch rod into two 2-inch pieces produces revenue \(p_2 + p_2 = 5 + 5 = 10 \), which is optimal.

We can cut up a rod of length \(n \) in \(2^{n-1} \) different ways, since we have an independent option of cutting, or not cutting, at distance \(i \) inches from the left end.

<table>
<thead>
<tr>
<th>length (i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>price (p_i)</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>17</td>
<td>17</td>
<td>20</td>
<td>24</td>
<td>30</td>
</tr>
</tbody>
</table>

Figure 15.1 A sample price table for rods. Each rod of length \(i \) inches earns the company \(p_i \) dollars of revenue.
for $i = 1, 2, \ldots, n - 1$, we denote a decomposition into pieces using ordinary additive notation, so that $7 = 2 + 2 + 3$ indicates that a rod of length 7 is cut into three pieces—two of length 2 and one of length 3. If an optimal solution cuts the rod into k pieces, for some $1 \leq k \leq n$, then an optimal decomposition

$n = i_1 + i_2 + \cdots + i_k$

of the rod into pieces of lengths i_1, i_2, \ldots, i_k provides maximum corresponding revenue

$r_n = p_{i_1} + p_{i_2} + \cdots + p_{i_k}$.

For our sample problem, we can determine the optimal revenue figures r_i, for $i = 1, 2, \ldots, 10$, by inspection, with the corresponding optimal decompositions

\[\text{Figure 15.2 The 8 possible ways of cutting up a rod of length 4. Above each piece is the value of that piece, according to the sample price chart of Figure 15.1. The optimal strategy is part (c)—cutting the rod into two pieces of length 2—which has total value 10.}\]
Chapter 15 Dynamic Programming

\begin{align*}
 r_1 &= 1 \text{ from solution } 1 = 1 \text{ (no cuts)}, \\
 r_2 &= 5 \text{ from solution } 2 = 2 \text{ (no cuts)}, \\
 r_3 &= 8 \text{ from solution } 3 = 3 \text{ (no cuts)}, \\
 r_4 &= 10 \text{ from solution } 4 = 2 + 2, \\
 r_5 &= 13 \text{ from solution } 5 = 2 + 3, \\
 r_6 &= 17 \text{ from solution } 6 = 6 \text{ (no cuts)}, \\
 r_7 &= 18 \text{ from solution } 7 = 1 + 6 \text{ or } 7 = 2 + 2 + 3, \\
 r_8 &= 22 \text{ from solution } 8 = 2 + 6, \\
 r_9 &= 25 \text{ from solution } 9 = 3 + 6, \\
 r_{10} &= 30 \text{ from solution } 10 = 10 \text{ (no cuts)}. \\
\end{align*}

More generally, we can frame the values \(r_n \) for \(n \geq 1 \) in terms of optimal revenues from shorter rods:

\[r_n = \max \left(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \ldots, r_{n-1} + r_1 \right). \tag{15.1} \]

The first argument, \(p_n \), corresponds to making no cuts at all and selling the rod of length \(n \) as is. The other \(n - 1 \) arguments to \(\max \) correspond to the maximum revenue obtained by making an initial cut of the rod into two pieces of size \(i \) and \(n - i \), for each \(i = 1, 2, \ldots, n - 1 \), and then optimally cutting up those pieces further, obtaining revenues \(r_i \) and \(r_{n-i} \) from those two pieces. Since we don’t know ahead of time which value of \(i \) optimizes revenue, we have to consider all possible values for \(i \) and pick the one that maximizes revenue. We also have the option of picking no \(i \) at all if we can obtain more revenue by selling the rod uncut.

Note that to solve the original problem of size \(n \), we solve smaller problems of the same type, but of smaller sizes. Once we make the first cut, we may consider the two pieces as independent instances of the rod-cutting problem. The overall optimal solution incorporates optimal solutions to the two related subproblems, maximizing revenue from each of those two pieces. We say that the rod-cutting problem exhibits \textit{optimal substructure}: optimal solutions to a problem incorporate optimal solutions to related subproblems, which we may solve independently.

In a related, but slightly simpler, way to arrange a recursive structure for the rod-cutting problem, we view a decomposition as consisting of a first piece of length \(i \) cut off the left-hand end, and then a right-hand remainder of length \(n - i \). Only the remainder, and not the first piece, may be further divided. We may view every decomposition of a length-\(n \) rod in this way: as a first piece followed by some decomposition of the remainder. When doing so, we can couch the solution with no cuts at all as saying that the first piece has size \(i = n \) and revenue \(p_n \) and that the remainder has size \(0 \) with corresponding revenue \(r_0 = 0 \). We thus obtain the following simpler version of equation (15.1):

\[r_n = \max_{1 \leq i \leq n} (p_i + r_{n-i}). \tag{15.2} \]
In this formulation, an optimal solution embodies the solution to only one related subproblem—the remainder—rather than two.

Recursive top-down implementation

The following procedure implements the computation implicit in equation (15.2) in a straightforward, top-down, recursive manner.

```
CUT-ROD(p, n)
1   if n == 0
2       return 0
3   q = -∞
4   for i = 1 to n
5       q = max(q, p[i] + CUT-ROD(p, n - i))
6   return q
```

Procedure CUT-ROD takes as input an array $p[1..n]$ of prices and an integer n, and it returns the maximum revenue possible for a rod of length n. If $n = 0$, no revenue is possible, and so CUT-ROD returns 0 in line 2. Line 3 initializes the maximum revenue q to $-∞$, so that the for loop in lines 4–5 correctly computes $q = \max_{1 \leq i \leq n} (p[i] + \text{CUT-ROD}(p, n - i))$; line 6 then returns this value. A simple induction on n proves that this answer is equal to the desired answer r_n, using equation (15.2).

If you were to code up CUT-ROD in your favorite programming language and run it on your computer, you would find that once the input size becomes moderately large, your program would take a long time to run. For $n = 40$, you would find that your program takes at least several minutes, and most likely more than an hour. In fact, you would find that each time you increase n by 1, your program’s running time would approximately double.

Why is CUT-ROD so inefficient? The problem is that CUT-ROD calls itself recursively over and over again with the same parameter values; it solves the same subproblems repeatedly. Figure 15.3 illustrates what happens for $n = 4$: CUT-ROD(p, n) calls CUT-ROD($p, n - i$) for $i = 1, 2, \ldots, n$. Equivalently, CUT-ROD(p, n) calls CUT-ROD(p, j) for each $j = 0, 1, \ldots, n - 1$. When this process unfolds recursively, the amount of work done, as a function of n, grows explosively.

To analyze the running time of CUT-ROD, let $T(n)$ denote the total number of calls made to CUT-ROD when called with its second parameter equal to n. This expression equals the number of nodes in a subtree whose root is labeled n in the recursion tree. The count includes the initial call at its root. Thus, $T(0) = 1$ and
Figure 15.3 The recursion tree showing recursive calls resulting from a call `CUT-ROD(p, n)` for \(n = 4 \). Each node label gives the size \(n \) of the corresponding subproblem, so that an edge from a parent with label \(s \) to a child with label \(t \) corresponds to cutting off an initial piece of size \(s - t \) and leaving a remaining subproblem of size \(t \). A path from the root to a leaf corresponds to one of the \(2^{n-1} \) ways of cutting up a rod of length \(n \). In general, this recursion tree has \(2^n \) nodes and \(2^{n-1} \) leaves.

\[
T(n) = 1 + \sum_{j=0}^{n-1} T(j).
\]

(15.3)

The initial 1 is for the call at the root, and the term \(T(j) \) counts the number of calls (including recursive calls) due to the call `CUT-ROD(p, n - i)`, where \(j = n - i \). As Exercise 15.1-1 asks you to show,

\[
T(n) = 2^n,
\]

(15.4)

and so the running time of `CUT-ROD` is exponential in \(n \).

In retrospect, this exponential running time is not so surprising. `CUT-ROD` explicitly considers all the \(2^{n-1} \) possible ways of cutting up a rod of length \(n \). The tree of recursive calls has \(2^{n-1} \) leaves, one for each possible way of cutting up the rod. The labels on the simple path from the root to a leaf give the sizes of each remaining right-hand piece before making each cut. That is, the labels give the corresponding cut points, measured from the right-hand end of the rod.

Using dynamic programming for optimal rod cutting

We now show how to convert `CUT-ROD` into an efficient algorithm, using dynamic programming.

The dynamic-programming method works as follows. Having observed that a naive recursive solution is inefficient because it solves the same subproblems repeatedly, we arrange for each subproblem to be solved only once, saving its solution. If we need to refer to this subproblem's solution again later, we can just look it
up, rather than recompute it. Dynamic programming thus uses additional memory to save computation time; it serves an example of a time-memory trade-off. The savings may be dramatic: an exponential-time solution may be transformed into a polynomial-time solution. A dynamic-programming approach runs in polynomial time when the number of distinct subproblems involved is polynomial in the input size and we can solve each such subproblem in polynomial time.

There are usually two equivalent ways to implement a dynamic-programming approach. We shall illustrate both of them with our rod-cutting example.

The first approach is top-down with memoization. In this approach, we write the procedure recursively in a natural manner, but modified to save the result of each subproblem (usually in an array or hash table). The procedure now first checks to see whether it has previously solved this subproblem. If so, it returns the saved value, saving further computation at this level; if not, the procedure computes the value in the usual manner. We say that the recursive procedure has been memoized; it "remembers" what results it has computed previously.

The second approach is the bottom-up method. This approach typically depends on some natural notion of the "size" of a subproblem, such that solving any particular subproblem depends only on solving "smaller" subproblems. We sort the subproblems by size and solve them in size order, smallest first. When solving a particular subproblem, we have already solved all of the smaller subproblems its solution depends upon, and we have saved their solutions. We solve each subproblem only once, and when we first see it, we have already solved all of its prerequisite subproblems.

These two approaches yield algorithms with the same asymptotic running time, except in unusual circumstances where the top-down approach does not actually recurse to examine all possible subproblems. The bottom-up approach often has much better constant factors, since it has less overhead for procedure calls.

Here is the pseudocode for the top-down CUT-ROD procedure, with memoization added:

```
MEMOIZED-CUT-ROD(p, n)
1   let r[0..n] be a new array
2   for i = 0 to n
3       r[i] = -\infty
4   return MEMOIZED-CUT-ROD-AUX(p, n, r)
```

2This is not a misspelling. The word really is memoization, not memorization. Memoization comes from memo, since the technique consists of recording a value so that we can look it up later.
MEMOIZED-CUT-ROD-AUX(p, n, r)
1 if r[n] ≥ 0
2 return r[n]
3 if n == 0
4 q = 0
5 else q = −∞
6 for i = 1 to n
7 q = max(q, p[i] + MEMOIZED-CUT-ROD-AUX(p, n − i, r))
8 r[n] = q
9 return q

Here, the main procedure MEMOIZED-CUT-ROD initializes a new auxiliary array r[0 . . . n] with the value −∞, a convenient choice with which to denote “unknown.” (Known revenue values are always nonnegative.) It then calls its helper routine, MEMOIZED-CUT-ROD-AUX.

The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of our previous procedure, CUT-ROD. It first checks in line 1 to see whether the desired value is already known and, if it is, then line 2 returns it. Otherwise, lines 3–7 compute the desired value q in the usual manner, line 8 saves it in r[n], and line 9 returns it.

The bottom-up version is even simpler:

BOTTOM-UP-CUT-ROD(p, n)
1 let r[0 . . . n] be a new array
2 r[0] = 0
3 for j = 1 to n
4 q = −∞
5 for i = 1 to j
6 q = max(q, p[i] + r[j − i])
7 r[j] = q
8 return r[n]

For the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-ROD uses the natural ordering of the subproblems: a subproblem of size i is “smaller” than a subproblem of size j if i < j. Thus, the procedure solves subproblems of sizes j = 0, 1, . . . , n, in that order.

Line 1 of procedure BOTTOM-UP-CUT-ROD creates a new array r[0 . . . n] in which to save the results of the subproblems, and line 2 initializes r[0] to 0, since a rod of length 0 earns no revenue. Lines 3–6 solve each subproblem of size j, for j = 1, 2, . . . , n, in order of increasing size. The approach used to solve a problem of a particular size j is the same as that used by CUT-ROD, except that line 6 now
directly references array entry $r[j - i]$ instead of making a recursive call to solve the subproblem of size $j - i$. Line 7 saves in $r[j]$ the solution to the subproblem of size j. Finally, line 8 returns $r[n]$, which equals the optimal value r_n.

The bottom-up and top-down versions have the same asymptotic running time. The running time of procedure BOTTOM-UP-CUT-ROD is $\Theta(n^2)$, due to its doubly-nested loop structure. The number of iterations of its inner for loop, in lines 5–6, forms an arithmetic series. The running time of its top-down counterpart, MEMOIZED-CUT-ROD, is also $\Theta(n^2)$, although this running time may be a little harder to see. Because a recursive call to solve a previously solved subproblem returns immediately, MEMOIZED-CUT-ROD solves each subproblem just once. It solves subproblems for sizes 0, 1, \ldots, n. To solve a subproblem of size n, the for loop of lines 6–7 iterates n times. Thus, the total number of iterations of this for loop, over all recursive calls of MEMOIZED-CUT-ROD, forms an arithmetic series, giving a total of $\Theta(n^3)$ iterations, just like the inner for loop of BOTTOM-UP-CUT-ROD. (We actually are using a form of aggregate analysis here. We shall see aggregate analysis in detail in Section 17.1.)

Subproblem graphs

When we think about a dynamic-programming problem, we should understand the set of subproblems involved and how subproblems depend on one another.

The subproblem graph for the problem embodies exactly this information. Figure 15.4 shows the subproblem graph for the rod-cutting problem with $n = 4$. It is a directed graph, containing one vertex for each distinct subproblem. The sub-
problem graph has a directed edge from the vertex for subproblem \(x \) to the vertex for subproblem \(y \) if determining an optimal solution for subproblem \(x \) involves directly considering an optimal solution for subproblem \(y \). For example, the subproblem graph contains an edge from \(x \) to \(y \) if a top-down recursive procedure for solving \(x \) directly calls itself to solve \(y \). We can think of the subproblem graph as a “reduced” or “collapsed” version of the recursion tree for the top-down recursive method, in which we coalesce all nodes for the same subproblem into a single vertex and direct all edges from parent to child.

The bottom-up method for dynamic programming considers the vertices of the subproblem graph in such an order that we solve the subproblems \(y \) adjacent to a given subproblem \(x \) before we solve subproblem \(x \). (Recall from Section B.4 that the adjacency relation is not necessarily symmetric.) Using the terminology from Chapter 22, in a bottom-up dynamic-programming algorithm, we consider the vertices of the subproblem graph in an order that is a “reverse topological sort,” or a “topological sort of the transpose” (see Section 22.4) of the subproblem graph. In other words, no subproblem is considered until all of the subproblems it depends upon have been solved. Similarly, using notions from the same chapter, we can view the top-down method (with memoization) for dynamic programming as a “depth-first search” of the subproblem graph (see Section 22.3).

The size of the subproblem graph \(G = (V, E) \) can help us determine the running time of the dynamic programming algorithm. Since we solve each subproblem just once, the running time is the sum of the times needed to solve each subproblem. Typically, the time to compute the solution to a subproblem is proportional to the degree (number of outgoing edges) of the corresponding vertex in the subproblem graph, and the number of subproblems is equal to the number of vertices in the subproblem graph. In this common case, the running time of dynamic programming is linear in the number of vertices and edges.

Reconstructing a solution

Our dynamic-programming solutions to the rod-cutting problem return the value of an optimal solution, but they do not return an actual solution: a list of piece sizes. We can extend the dynamic-programming approach to record not only the optimal value computed for each subproblem, but also a choice that led to the optimal value. With this information, we can readily print an optimal solution.

Here is an extended version of BOTTOM-UP-CUT-ROD that computes, for each rod size \(j \), not only the maximum revenue \(r_j \), but also \(s_j \), the optimal size of the first piece to cut off:
15.1 Rod cutting

EXTENDED-BOTTOM-UP-CUT-ROD\((p, n)\)

1 let \(r[0..n]\) and \(s[0..n]\) be new arrays
2 \(r[0] = 0\)
3 for \(j = 1\) to \(n\)
4 \(q = -\infty\)
5 for \(i = 1\) to \(j\)
6 \(\text{if } q < p[i] + r[j - i]\)
7 \(q = p[i] + r[j - i]\)
8 \(s[j] = i\)
9 \(r[j] = q\)
10 return \(r\) and \(s\)

This procedure is similar to BOTTOM-UP-CUT-ROD, except that it creates the array \(s\) in line 1, and it updates \(s[j]\) in line 8 to hold the optimal size \(i\) of the first piece to cut off when solving a subproblem of size \(j\).

The following procedure takes a price table \(p\) and a rod size \(n\), and it calls EXTENDED-BOTTOM-UP-CUT-ROD to compute the array \(s[1..n]\) of optimal first-piece sizes and then prints out the complete list of piece sizes in an optimal decomposition of a rod of length \(n\):

PRINT-CUT-ROD-SOLUTION\((p, n)\)

1 \((r, s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)\)
2 while \(n > 0\)
3 print \(s[n]\)
4 \(n = n - s[n]\)

In our rod-cutting example, the call EXTENDED-BOTTOM-UP-CUT-ROD\((p, 10)\) would return the following arrays:

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r[i])</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td>17</td>
<td>18</td>
<td>22</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>(s[i])</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>

A call to PRINT-CUT-ROD-SOLUTION\((p, 10)\) would print just 10, but a call with \(n = 7\) would print the cuts 1 and 6, corresponding to the first optimal decomposition for \(r\), given earlier.

Exercises

15.1-1
Show that equation (15.4) follows from equation (15.3) and the initial condition \(T(0) = 1\).