MAX FLOW CHEAT SHEET

Digraph $G = (V,E)$

$s, t \in V$, $s \neq t$

some sink

Capacities $\forall e \in E$ $c_e \geq 0$

Flow $f: E \rightarrow \mathbb{R} \geq 0$

capacity constraints:

$\forall e \in E$ $0 \leq f(e) \leq c_e$

conservation constraints

$\forall u, v \neq s, t$ $\sum e=(v,u) f(e) = \sum e=(u,v) f(e)$

$f^{\text{in}} = f^{\text{out}} (s)$

$J(f) \equiv$ value of the flow $= \sum e=(v,u) f(e)$

$= f^{\text{out}} (s)$

RESIDUAL GRAPH: given G, f

G_f

for each $e \in E$

back edge

forward edge

$c_e - f(e)$

\Rightarrow

(capacity of back edge = flow from $u \rightarrow v$)

(residual capacity)

delete edges w/ capacity 0.

AUGMENTING FLOW

Given $G, f \Rightarrow G_f$

Find directed path from $s \rightarrow t$ in G_f; min capacity edge $b \leftarrow$ bottleneck (P, f)

Augmented flow $f_{\text{new}}(e) = \begin{cases} f(e) + b & \text{if } e=(u,v) \text{ & P has the edge } (u,v) \text{ [forward edge]} \\ f(e) - b & \text{if } e=(v,u) \text{ & P has the edge } (v,u) \text{ [back edge]} \\ f(e) & \text{otherwise} \end{cases}$
Max-Flow
Initially \(f(e) = 0 \) for all \(e \) in \(G \)
While there is an \(s-t \) path in the residual graph \(G_f \)
 Let \(P \) be a simple \(s-t \) path in \(G_f \)
 \(f' = \text{augment}(f, P) \)
 Update \(f \) to be \(f' \)
 Update the residual graph \(G_f \) to be \(G'_f \)
Endwhile
Return \(f \)

Properties:
1. At all times, before the execution of the loop, \(f(e) \), capacities in \(G_f \) edges are integers.
2. Augment increases \(v(f) \) by at least 1.
3. \(C = \sum_{e=(s,0)} c_e \) I the total capacity of edges leaving \(s \) is an upper bound on \(\text{max flow} \)

\[\Rightarrow \text{Ford-Fulkerson terminates.} \]

\(s-t \) cut: partition \((A, B = V \setminus A) \) of \(V \) with \(s \in A \), \(t \in B \)

Capacity of \(s-t \) cut \((A, B) \) \(\text{def.} = \sum_{e \text{ out of } A} c_e = c(A, B) \)

Claim: \(f \) \(s-t \) flow, \((A, B) \) \(s-t \) cut

\[v(f) = f^{\text{out}}(A) - f^{\text{in}}(A) \]

pf: \(v(f) = \sum_{v \in A} (f^{\text{out}}(v) - f^{\text{in}}(v)) = \sum_{v \text{ out of } A} f(e) - \sum_{v \text{ in } A} f(e) = f^{\text{out}}(A) - f^{\text{in}}(A) \)

Claim: \(f \) \(\text{ANY} s-t \) flow, \((A, B) \) \(\text{ANY} s-t \) cut

\[v(f) \leq c(A, B) \]

Corollary: if equal, both optimal
MAX FLOW MIN CUT THEOREM

When FF halts, no s-t paths in G_f

$$A^* = \{ v \in V : \exists \text{ directed s-t path in } G_f \} = \{ v \text{ reachable from } s \text{ in } G \}$$

$$B^* = V \setminus S$$

(A^*, B^*) is an s-t cut.

Let $e = (u, v)$, $u \in A^*$, $v \in B^*$

\uparrow

edges of G

Claim: $f(e) = c_e$

Otherwise in G_f

v reachable from s in G_f

$u \in A^*$

Claim: $f(e) = 0$

Otherwise in G_f

v reachable from s in G_f

$f(e)$

\leftarrow

Back edge

So $\nu(f) = c(A^*, B^*)$

Thm: In every flow network the maximum value of an s-t flow is equal to the minimum capacity of an s-t cut.

If capacities are integral, Ford-Fulkerson finds it.