Here is a concrete description of the Gale-Shapley algorithm, which depicts a state of the algorithm.

Initially, all $m \in M$ and $w \in W$ are free.

While there is a man m who is free and hasn't proposed to every woman:

- Choose such a man m.
- Let w be the highest-ranked woman in m's preference list to whom m has not yet proposed.
- If w is free then,
 - (m, w) become engaged
- Else w is currently engaged to m'.
 - If w prefers m' to m then
 - m remains free
 - Else w prefers m to m'
 - (m, w) become engaged
 - m' becomes free
- Endif

Endif

Endwhile

Return the set S of engaged pairs.

Def: w is a valid partner to m \iff (m, w) is a stable matching with (m, w)

w is a best valid partner to m \iff w a valid partner and

$\forall w': w$ a valid partner to m

m ranks w above w'.

[why?]
\[S^* = \{(b, \text{best}(b))\} \quad \text{[matching? why?]} \]

CLAIM: \(G - S \) returns \(S^* \)
- \(S^* \) is a stable perfect matching
- Order in execution of \(G - S \) doesn't matter

proof: (by contradiction)

Suppose not.

Then \(\exists E, \) execution of \(G - S \) where some \(b \) is matched with some girl \(h \neq \text{best}(b) \)

\[\Rightarrow \exists \text{ time } t \]

in execution \(E \) which is the first instance that \(b \) is rejected by a valid partner \(g \)

In fact \(g = \text{best}(b) \)

[Why?]

Boys propose in decreasing order of preference

[Why is there a rejection by a valid partner?]

REJECTION

- at proposal;
 - \(b \) engaged to \(b' \);
 - someone she rates higher
- at proposal \(b, g \) engaged;
 - but at time \(t \) \(g \) gets a proposal by someone she rates higher \((b')\)

Now \(g \) is a valid partner of \(b \) - so \(\exists \) stable matching \(S' \) with \((b, g)\)

[Is \(S' \) produced by \(G - S \)?]

In \(S' \), \(b' \) has a partner \(g' \).

\((b' , g') \) in \(S' \)

\((b, g)\)

In \(E \) \(b \) gets rejected by \(g \), in favor of \(b' \)

So \(b' \) must rank \(g \) over \(g' \) (otherwise \(b' \) would have proposed to \(g' \) first & must have been rejected by her, in order for \(b' \) get engaged to \(g - X \))

And \(g \) prefers \(b' \) to \(b \)

So \(S' \) is unstable \(X \)