$P \subseteq NP$

Def H is NP-hard (under polynomial time reductions, \leq_P) if for every $Y \in NP$

$Y \leq_P H$

Def X is NP-complete if X is NP-hard and $X \in NP$.

Easy observation; if X is NP-complete then

$$X \in P \iff P = NP$$

(if $X \in P$, then $\forall A \in NP$ $A \leq_X X$, so $A \in P$; If $X \notin P$ then it witnesses $P \neq NP$)

Thm 0. There are NP-complete problems.

Thm 1. There are interesting NP-complete problems. [proof later]

In particular, CIRCUIT-SAT (circuit satisfiability)

List of interesting NP-complete problems:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Input</th>
<th>Yes-Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIRCUIT-SAT</td>
<td>T: Boolean circuit with n inputs, t-bit output</td>
<td>There is an assignment to inputs that yields output 1</td>
</tr>
<tr>
<td>(CNF-)SAT</td>
<td>literal: variable or negated variable clause: OR (v) of literals CNF: AND (v) of clauses</td>
<td>as above, but each clause has ≤ 3 literals</td>
</tr>
<tr>
<td>3-(CNF-)SAT</td>
<td>$G = (V, E)$, integer k</td>
<td>G has a vertex cover of size $\leq k$</td>
</tr>
<tr>
<td>Vertex Cover</td>
<td>$G = (V, E)$, integer k</td>
<td>G is an independent set of size $\geq k$</td>
</tr>
<tr>
<td>Independent Set</td>
<td>$U = {1, \ldots, n}$, $S \subseteq U$ $i \neq j$, integer k</td>
<td>There are $m \leq k$, S_j whose union is U</td>
</tr>
<tr>
<td>Set Cover</td>
<td>$G = (V, E)$</td>
<td>G has a cycle that visits every vertex exactly once.</td>
</tr>
<tr>
<td>Hamiltonian Cycle</td>
<td>$G = (V, E)$ $E = {(u, v)}$ distance $d: (u_i, v_i) \rightarrow d(u_i, v_i)$</td>
<td>There is a path of length $\leq D$ that starts at u_i, ends at v_i, and visits every vertex.</td>
</tr>
<tr>
<td>Traveling Salesman</td>
<td>$G = (V, E)$</td>
<td>There are n triples in T such that every element of xuv is in one triple in T</td>
</tr>
<tr>
<td>3-D Matching</td>
<td>$G = (V, E)$</td>
<td>G has a valid k-coloring (even for $k=3$)</td>
</tr>
<tr>
<td>Graph k-coloring</td>
<td>$G = (V, E)$</td>
<td>G has a valid k-coloring (even for $k=3$)</td>
</tr>
</tbody>
</table>
SUBSET SUM: \(w_1, \ldots, w_n \) positive integers
\(W \) positive integer

There is \(J \subseteq \{1, \ldots, n\} \)
\[\sum_{j \in J} w_j = W \]

0-1 INTEGER (LINEAR) PROGRAMMING

SCHEDULING w/RELEASE TIMES AND DEADLINES

Objective function:
\[f = \sum_{i} c_i x_i \quad (c_i \text{ given}) \]

Matrix \(A = (a_{ij}) \quad i = 1, n \]
\(j = 1, m \)

Vector \(b = (b_i) \quad i = 1, n \)

Value \(v \)

n jobs

Job \(i \) has release time \(r_i \)
Deadline \(d_i \)
Processing duration \(t_i \)

A job once scheduled must run its duration

There are choices for \(x_i \)
in \(\{0, 1\} \)
such that
\[\sum_{i} c_i x_i \geq v \]
\[A x \leq b \]

There is a schedule that makes all jobs run within the constraints.