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ABSTRACT
Dataframes have become a popular means to represent, transform
and analyze data. This approach has gained traction and a large
user base for data science practitioners - resulting in a new wave
of systems that implement a dataframe API but allow for perfor-
mance, efficiency, and distributed/parallel extensions to systems
such as R and pandas. However, unlike relational databases and
NoSQL systems with a variety of benchmarking, testing, and work-
load generation suites, there is an acute lack of similar tools for
dataframe-based systems. This paper presents FuzzyData, a first
step in providing an extensible workflow generation system that
targets dataframe-based APIs. We present an abstract data process-
ing workflow model, random table and workflow generators, and
three clients implemented using our model. Using FuzzyData, we
can encode a real-world workflow or randomly generate workflows
using various parameters. These workflows can be scaled and re-
played on multiple systems to provide stress testing, performance
evaluation, and a breakdown of performance bottlenecks present
on popular dataframe systems.
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1 INTRODUCTION
The rise in popularity of data science and machine learning has
catapulted dataframe-based tools such as R [7] and the pandas [20]
library for Python to the forefront of the data science practice, en-
abling large and small organizations to extract insight from data
quickly. These tools allow for ad-hoc ingestion and transformation
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of small to moderate amounts of data, with the flexibility of inte-
grating arbitrary code or machine learning workflows to the data
analysis workflows.

The dataframe model has thus become a popular programmatic
interface to encode data manipulation and transformation opera-
tions. Typical dataframe APIs enable both spreadsheet-style manip-
ulation and relational-style operations and on tabular data, allowing
for data cleaning and wrangling during the ETL process while re-
taining most of the powerful querying semantics for analytical
and visualization tasks. With the rise in popularity of this model,
expectations of such systems have grown, resulting in the growing
demand for systems that support these APIs on massive tabular
datasets that may not fit a typical desktop or laptop computers’
memory. Projects such as dask [17], ray [13], modin [14], Spark-
DataFrames [1], either provide interfaces to python scientific tools
such as NumPy and pandas or implement their own version of the
dataframe API to work on parallel/distributed environments with
larger datasets.

However, there is an acute lack of workload generation, bench-
marking, and testing frameworks that allow for comparisons be-
tween these systems or evaluate optimizations within these sys-
tems. Prior work encompassing dataframe systems either lacks
a comprehensive evaluation or is evaluated against handwritten,
static queries run against specific datasets [9, 14, 18, 23]. Exist-
ing systems for relational benchmarking (such as TPC [4]), or for
NoSQL/key-value stores (such as YCSB [3]) do not adequately rep-
resent the workflows typically executed within these dataframe
environments. DataFrame systems are a kind of middle-ground
between relational systems and raw key-value stores; they do not
require strict schema definitions or DDL steps like the former but
are not entirely schema-less and support a vastly broader range of
queries and transformations, unlike the latter.

Correctness guarantees and performance bottlenecks are harder
to pinpoint with dataframe-based systems because of the diversity
in query language and semantics, supported data types, serializa-
tion formats, memory layouts and execution engines. For example,
the modin project advertises performance advantages over pandas
by parallelizing common dataframe operations over multiple cores,
ideally offering speedups of 𝑁x where 𝑁 is the number of cores
available [14]. However, during the time of writing, there were ∼ 45
open performance issues on the modinGitHub page [15], with users
providing empirical evidence of modin’s performance being worse
than pandas for the same operation. A more robust workload gen-
eration suite can supplement regression testing practices to catch
performance and correctness bugs during the development lifecy-
cle. Thus, there is a need for a framework that allows for synthetic
workload generation, allowing for reproducibility, scalability, and
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Figure 1: The design of FuzzyData.

stress testing of dataframe systems while using some of the best
design practices and patterns from earlier benchmark and workload
generator suites designed for relational [4] and NoSQL systems [3].

In this paper, we present FuzzyData1. This system allows for
data analysis workflows to be manually specified or randomly gen-
erated, scaled, and replayed on various dataframe system clients,
allowing for “fuzzy” testing and direct performance comparisons
between dataframe systems. Our contributions are as follows:

• An implementation-agnostic data model to represent data
artifacts, operations, and workflows that can be used to ex-
press common data workflow operations in JSON (a human-
parsable format).

• A module that generates realistic and diverse tabular data
artifacts and workflows consisting of typical data transfor-
mations.

• Plug-in clients for FuzzyData that enable workflows to be
generated and replayed on SQLite, pandas, modin-dask, and
modin-ray. We show how, with a few lines of code, Fuzzy-
Data can be extended to more data operations or clients by
writing simple plug-ins.

• We demonstrate the use of FuzzyData in typical testing/
workload generation and replay scenarios and show the
types of insights that can be derived from its use. FuzzyData
was used to find one correctness bug (Section 4.1) which was
reported to the modin developers, as well as performance
issues in modin.

2 RELATEDWORK
Benchmarking and database workload generation systems have a
long and storied history in academia and industry [8].

The TPC benchmark suite [4] is the most popular benchmark
suite for database systems and encompasses transactional pro-
cessing, data warehousing, data integration, big-data systems, and

1Source Code is available at https://github.com/suhailrehman/fuzzydata

others. Vogelsgesang et al. [22] have empirically shown that typ-
ical data visualization workloads originating from BI application
dashboards such as Tableau consist of complex nested sub-queries,
which are very different from typical TPC workloads.

The rise in popularity of the Dataframe-based data analysis work-
flows has resulted in a large number of systems that implement
the API while making improvements to the memory model [6, 21],
leverage parallel and distributed computing [11, 13, 17], heteroge-
neous hardware [19] and usability improvements [12]. However,
the lack of a standardized workload or performance benchmark
for dataframe systems results in primarily anecdotal reports of
performance improvements. One prominent example is the H20.ai
benchmark website [9], which compares join and groupby query
performance against dataframes of various sizes (0.5, 5, and 50GB
at the time of writing); the website is designed to run periodically
against the latest versions of popular “database-like” systems in
an automated fashion. Among published work, the AFrame sys-
tem [18] used a version of the scalable Wisconsin benchmark [8],
consisting of mostly integer columns and a few string patterns with
varying cardinality to show performance improvements. Sanzu [23]
is a big-data benchmark suite designed to test data science envi-
ronments with a wide variety of operations such as wrangling and
machine learning but consists of static queries and datasets. Simi-
larly, Böhm et al. [2] conducts a deep dive into dask’s runtime and
scheduler system to find performance bottlenecks; the benchmark
suite is again a set of static tasks/operations performed against
static datasets.

YCSB [3], is a popular NoSQL benchmark system that is aimed
at cloud-serving systems that support a limited set of queries (in-
sert/update/read/scan), with the option of scaling and mixing query
types in a workload. YCSB’s popularity can be attributed to its
extensible client-server model – a new key-value store or database
client can be written using the YCSB API and run existing work-
load sets to compare against other YCSB clients. We have sought
to emulate this design pattern with FuzzyData.
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3 FUZZYDATA
This section discusses the abstract design of the FuzzyData system
and its implementation, along with the random table/workflow
generators and the three clients we have implemented using the
FuzzyData abstract model.

3.1 Data Model
The abstract model that we have created allows us to specify ar-
tifacts, operations, and workflows in an implementation agnostic
manner:

3.1.1 Artifact. An artifact is an abstract representation of a dataframe
in FuzzyData. The data model representing an artifact stores the
metadata about an artifact, such as:

• Schema related information: A mapping of column label →
column type

• Artifact representation: Information about the artifact repre-
sention in memory or as a table/view in a database

• Serialization routines: File system paths to store serialized
versions of artifacts, as well as function pointers to serial-
ization routines necessary to load/store the artifact from
disk

The abstract model for an artifact gives FuzzyData the flexibility
to support various data access and manipulation APIs. For example,
a pandas implementation of the artifact class would typically con-
tain the dataframe label, and a filesystem path to (de)-serialize the
dataframe artifact from/to disk. On the other hand, a SQL implemen-
tation of the artifact class will have much of the same information
as the pandas’ implementation with additional fields such as the
database table/view names, schema, and the specific SQL query
needed to retrieve a view of the artifact from a database.

3.1.2 Operation. An operation is the abstract representation of
one or more transformation(s) that takes one or more artifact(s)
as input and transforms them into a new artifact. The operation
model consists of metadata such as the source artifact labels, a list
of transformations and their arguments, and the label to be assigned
to the new destination artifact created as a result of the operation.
The operation interface consists of abstract specifications of each
of the transformations with their arguments and how each of the
transformations change the schema of the artifact. Note that the
actual query or code required to execute the transformations for a
particular operation is defined in the client implementation and left
out the abstract model. Table 1 has a listing of all the transforma-
tions that are currently implemented in FuzzyData. The operator
abstraction is designed to be extensible, allowing for additional
transformations or UDFs to be added to FuzzyData to support
even more diverse workload types in the future. Transformations
can be defined and implemented for data processing steps such as
one-hot-encoding or normalization.

3.1.3 Workflow. Formally, a workflow is a directed-acyclic-graph
(DAG)W = (𝑉 , 𝐸), where the set of vertices𝑉 is the set of artifacts
and the set of edges 𝐸 are the operations that are used to transform
an artifact 𝑣1 ∈ 𝑉 to another artifact 𝑣2 ∈ 𝑉 . Artifacts that have
no incoming edges are source artifacts, which are either loaded
from disk, or randomly generated. Note that the set of edges 𝐸 in

FuzzyData is ordered, and is the sequence of operations that is
implicit when encoding an existing workflow (Section 3.2), or is
the order of operations that is randomly generated by FuzzyData
(Section 3.4).

In FuzzyData, the workflow interface encapsulates information
about the workflow, sequence of operations, and the final workflow
directed acyclic graph, with enough information for FuzzyData to
load and replay specific workflows on different clients (Section 3.6).
As a workflow is replayed, the wall-clock time taken to load artifacts
from the disk and replay the individual operations are recorded for
analysis and visualization (Section 3.5).

3.2 Implementation
FuzzyData is implemented in Python, with pandas [20] used as the
internal dataframe representation used to represent artifacts during
generation (Section 3.3) and networkx [10] used to represent the
workflow graph. Users of FuzzyData have the option to specify
a workflow or have FuzzyData randomly generate a workflow
(Section 3.3) with generation parameters listed in Table 3.

FuzzyData supports workflow specifications to be provided
in a JSON file. The workflow specification includes a name for
the workflow and a list of operations. Each operation consists of
a list of source artifacts, the operation type, and the arguments
for the operation. When a workflow specification and the source
artifacts are loaded into a FuzzyData client, the following actions
are performed: (a) The operation list is loaded, (b) the operations are
performed in the order specified in the file, and (c) any artifact that
is currently not in memory and is needed for the next operation
will be deserialized from disk.

3.3 Generating Random Artifacts
FuzzyData provides a table generation system that leverages the
Python faker library [5]. The faker integration allows FuzzyData
to generate diverse tables with a wide range of columns and data,
simulating real-world datasets with realistic data values. A user can
supply the number of rows (𝑟 ) and columns (𝑐) to be generated, and
FuzzyData by default randomly chooses columns types to generate
from faker’s portfolio and generates a mix of string and numeric
columns with various levels of cardinality. These column types
are labeled as one or more of the following types: numeric, string,
groupable and joinable; these labels are essential when enumerating
the space of possible operations that can be performed on a given
artifact (enumerated in Table 1. Table 2 shows an example table
generated with parameters (𝑟 = 10, 𝑐 = 4) with a mix of column
types and labels. This table can now be used to generate additional
artifacts based on the rules described below in Section 3.4.

3.4 Generating and Replaying Random
Workflows

FuzzyData also supports the generation of entirely random work-
flows, including randomly generated source artifacts (using the
generator described in Section 3.3) and random operations. Users
have the option of supplying the following parameters (Table 3):

Users can specify the total number of artifacts to be generated (𝑛)
and the number of rows (𝑟 ) and columns (𝑐) of the base artifact, and
a few schema options, if any. The schema options in the generator
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Transformation Description Generation Constraints pandas SQLite modin

load Load (de-serialize) an artifact from a filesystem location – ✓ ✓ ✓

select Selects rows based on a filter condition numeric ≥ 1 ✓ ✓ ✓

apply Create a new derived column as a scalar function ap-
plied to an existing numeric column

numeric > 1 ✓ ✓ ✓

project Project a set of columns – ✓ ✓ ✓

sample Randomly select rows from the artifact – ✓ ✓ ✓

join Inner Join with another artifact based on a key column joinable ≥ 1 ✓ ✓ ✓

pivot Pivot the artifact by index, column and values groupable ≥ 2; numeric ≥ 1 ✓ – ✓

groupby Groupby set of group_columns and apply an aggregate
function on another set of agg_columns

groupable ≥ 1 ✓ ✓ ✓

fill Replace an old value in a column with another value – ✓ – ✓

materialize Execute stacked transformations to produce a new arti-
fact

– ✓ ✓ ✓

serialize Dump the contents of an artifact to disk – ✓ ✓ ✓

Table 1: Transformation Implementation Matrix. The Generation Constraints column lists the minimum number of columns
of each type required to generate each transformation using the random workflow generator.

index iso8601 cryptocurrency_code pyint rn

0 2004-09-21T09:46:38 NEO 1453 10
1 2016-04-07T21:19:57 BCN 877 7
2 1973-08-09T20:35:50 USDT 8198 8
3 1985-08-24T17:07:41 EOS 7492 10
4 1979-06-16T21:01:12 NEM 157 6
5 2020-12-30T03:19:01 IOTA 5439 12
6 1995-05-03T04:56:00 BCH 2348 13
7 1972-09-02T20:03:53 XRP 1244 13
8 1990-12-27T10:33:05 ETC 8354 11
9 2017-07-03T20:19:32 WAVES 9717 11

Table 2: An example artifact generated using FuzzyData. Col-
umn labels indicate the faker provider used to generate the
values for the column, except for rn, which is shorthand
for random_number. In this table, pyint and rn are numeric
columns, while cryptocurrency_code is a groupable, joinable
and string column.

Parameter Description
𝑛 Number of Artifacts
𝑟 Base Artifact Number of Rows
𝑐 Base Artifact Number of Columns
𝑏 Workflow Branching Factor
𝑇 Set of Allowed Transformations
𝑚 Materialization Rate

Table 3: Parameters for generating synthetic workflows.

can provide specific column types to be generated or an exclusion
list of the types of columns to avoid. If no schema options are
provided, the generator will try to evenly distribute the types of
columns in order to maximize the available operations that can be
performed (Table 1). Once the base artifact is generated, subsequent
artifacts are generated as follows:

(1) A random artifact is first selected from the set of artifacts al-
ready generated in the workflow. The workflow branch factor

parameter (𝑏) can be used to control the structure of the final
workflow graph by biasing the selection probability towards
artifacts that were more recently generated. Formally, given
we have a list of 𝑛′ artifacts that have been generated so far,
FuzzyData selects the next artifact from the list with index
𝑖 to be modified with probability (Equation 1)

𝑃 [𝑖] =
(

𝑏

𝑒𝑏𝑛
′ − 1

)
𝑒𝑏𝑖 (1)

Thus, with 𝑏 = 1.0, the probability is always skewed towards
the newest artifact that is generated, resulting in workflow
that is more linear, and with 𝑏 = 0.01, there is a uniform
probability, resulting in a more branched workflow (such as
the example workflow generated in Figure 2).

(2) Once an artifact has been selected as the source artifact for
an operation, FuzzyData generates a set of possible transfor-
mations that can be performed on the artifact, subject to the
set of allowed transformations𝑇 . The source artifact schema
map is inspected, and the number of columns of each type
is enumerated. It then follows the rules listed in Table 1 and
generates a set of transformations with randomized argu-
ments for each transformation.

(3) From the set of possible transformations that can now be
performed on a source artifact, a random option is selected
and added to the operation chain. The expected schema map
that results from the transformation is updated, ensuring
any future stacked transformations have accurate schema
representation, even if the operation is not materialized.

(4) Steps 2 and 3 are repeated until we have𝑚 transformations
in the current operation chain, i.e. we have reached the ma-
terialization rate.

(5) The operation chain is materialized (executed) to generate
the next artifact. This means that FuzzyData will use an
attached client (Section 3.6) to execute the chain of oper-
ations and generate the resulting artifact. If the generator
selects a merge operation to be performed, an additional
random artifact that contains the joinable column (from the

20



FuzzyData: A Scalable Workload Generator for Testing Dataframe Workflow Systems DBTest’22, June 17, 2022, Philadelphia, PA, USA

merge arguments) is generated and added to the workflow
to simulate an inner PK-FK join.

(6) The steps above are repeated until we have generated 𝑛

artifacts and there are no more artifacts that remain to be
generated.

(7) Once the workflow is generated, it can be written to disk,
which serializes all generated artifacts to disk, writes the
workflow graph, and generates a JSON specification of the
workflow, which can be loaded and replayed by FuzzyData
clients in the future.

Figure 2 is an example of the DAG associated with a workflow
generated in FuzzyData. While step 2 in our workflow generator
currently implements a simple, randomized, rule-based approach
for generating operations on artifacts, we foresee the ability to
use intelligent, ML-based approaches to automatically generate
meaningful operations given the source artifact, similar to AutoSug-
gest [24], implemented via the plug-in architecture of FuzzyData.
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Figure 2: DAG of a randomly generated workflow using the
generator described in Section 3.4. The generation parame-
ters used were (𝑛 = 15, 𝑟 = 1000, 𝑐 = 20, 𝑏 = 0.01,𝑚 = 1).

3.5 Instrumentation
FuzzyData includes timing hooks implemented into the workflow
interface for artifact generation, loading, and operations. These
hooks can be used to collect runtime performance information
for the execution of the workflow. This feature makes FuzzyData
valuable for system testing and performance analysis and evaluation
of potential bottlenecks in the systems being evaluated.

3.6 Clients Implemented
Implementing a FuzzyData client requires implementing each of
the abstract interfaces described in Section 3. The artifact interface
requires implementing load/store routines and a hook to the ran-
dom artifact generation function. The operation interface requires
implementing each of the operations listed in Table 1, using the
specific syntax of the client’s query language or DSL. The workflow
interface provides space for setting up parameters used by all the
artifacts in the workflow, like filesystem paths or database/execu-
tion engine parameters. Thus, with a few lines of code, a client
can be implemented in FuzzyData that can generate and replay

workflows. Three clients have been implemented in FuzzyData for
this paper:

pandas: The pandas client is a dataframe-based implementation
of the three abstract interfaces described in Section 3. The opera-
tion implementation generates dataframe transformation code as a
string of chained dataframe function calls. To materialize an artifact,
the string containing all the dataframe transformations is evaluated
and run against the source dataframe artifact. Appendix B lists our
client implementation code in its entirety.

modin: The modin client is an extension of the pandas’ client, in
which all pandas operations are simply routed through the modin
library [14]. The client provides the user an option of specifying
either a dask or ray execution engine, along with initialization
parameters such as number of workers, which can distribute the
dataframe operations on parallel hardware.

SQLite: The SQLite client creates a file-based embedded database
on disk and uses the generator described in Section 3.3 to generate
base table artifacts. The base table artifacts are then operated upon
by SQL queries constructed for each operation to generate other
artifacts as views in the database. We use nested sub-queries to
chain all of the transformations into an operation. All table views
are serialized to disk as CSV files at the end of the workflow. A no-
table exclusion from the SQLite client is the pivot operation since
generic pivots in a generic SQL dialect are quite complex to gener-
ate. The client initialization parameters include an SQL connection
string, so this client can be used with other SQL databases as well.
In case of a SQL dialect mismatch for other database systems, this
client could be extended to re-implement any of the incompatible
operations.

4 USE CASES
In this section, we demonstrate the various uses of FuzzyData. We
first recreate a simple workflow using a publicly available Jupyter
notebook. We then generate a randomized workflow, scale the
workflow size and show the runtime performance on the three
clients. All of our experiments were run on a server running Ubuntu
18.04, with an Intel Xeon Silver 4416 CPU, 196 GB RAM . All of
our code was executed using the Python 3.8.5 interpreter with
pandas v1.4.0, SQLite v3.33.0, modin v0.13.2, dask v2022.2.0, and
ray v1.10.0. The dask engine was configured using default settings,
which resulted in 8 processes and 48 threads being spawned for each
bechmarking session. ray was also configured similarly, resulting
in upto 48 worker threads being spawned in each session.

4.1 Fuzzy Testing Suite for Dataframe Systems
Any client implemented in the FuzzyData library can use the built-
in test suite, generating many workflow test cases with variable
number of artifacts, rows, columns and operations2. These tests
can be used to check API and result equivalences and corner cases
for operations run using diverse column types. Using FuzzyData’s
test suite, we uncovered an API corner case in modin, wherein a

2https://github.com/suhailrehman/fuzzydata/tree/main/tests
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Figure 3: Results of the Workload Replay and Scaling Experiments

dataframe generated in memory fails to execute consecutive group-
bys, and reported the issue to the modin developers3. The issue
stems from lazy metadata propagation in modin.

4.2 Encoding and Replaying an Existing
Workflow

In this experiment, we encode an existing workflow from the modin
examples page [16]. The encoded JSON file for this workflow is in
Appendix A. The primary artifact that is loaded into this workflow
is a 1.8GB CSV file, following which we execute three different
group-by operations on the same artifact. The resulting execution
timeline is depicted in Figure 3a. We can see that the modin-ray
client completes the workflow the fastest at approximately 2.8x
faster than pandas and 21.5x faster than SQLite, with the runtime
being dominated by the CSV loading process.

4.3 Scaling and Replaying a Generated
Workflow

Figure 2 represents a workflow generated by FuzzyData with pa-
rameters (𝑛 = 15, 𝑟 = 1000, 𝑐 = 20, 𝑏 = 0.01,𝑚 = 1), with all
operations permitted except pivots. The workflow was loaded and
replayed in the three FuzzyData clients with the results shown in
Figures 3b.

For the workflow generated in Section 3.4, we scaled the base
artifact up from 1000 rows up to 5 million and re-ran the workload
on all the clients. Figure 3b shows the results of our scaling experi-
ment. This specific example shows that pandas outperforms all the
other clients, even at 5M rows (2.1 GB). Figure 3c illustrates the run-
time breakdown grouped by operation. Despite the improvement in
loading times, the total time to draw the six random samples from
the distributed dataframes is much slower than the corresponding
operation in pandas, slowing down the total runtime in modin com-
pared to pandas, indicating a potential avenue for improvement in
modin.

5 CONCLUSIONS AND FUTUREWORK
We have shown FuzzyData to be a useful workflow generation
system that can be used to generate workflows and test/evaluate

3https://github.com/modin-project/modin/issues/4287

dataframe-style systems. Due to the pluggable nature of our imple-
mentation, many extensions can be considered for future work:

• Further enhancement of the randomized table generator,
allowing users to express inter-column functional dependen-
cies and expected cardinalities for columns.

• The rule-based operation/workflow generator can be ex-
tended to use learned features to automatically generate
even more realistic operations and arguments, based on arti-
fact features, such as those described in [24].

• Integrate additional serialization formats such as parquet
to enable comparisons across serialization formats.

• Additional clients can be implemented in FuzzyData to pro-
vide even more points of comparison.
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A WORKFLOW SPEC USED IN SECTION 4.2
The following JSON file is a manually encoded list of operations
derived from the workflow example in [16]. This JSON input file
and source artifact can be used as input to replay the workflow on
all FuzzyData clients. The runtime result of this workflow on all
clients is in Section 4.2.

1 {
2 "name": "nyc -cab",
3 "operation_list": [{
4 "sources": [
5 "yellow_tripdata_2015-01"
6 ],
7 "new_label": "gb_vendor_id_amount_sum",
8 "operation_list": [{
9 "op": "groupby",
10 "args": {
11 "group_columns": [
12 "VendorID"
13 ],
14 "agg_columns": [
15 "total_amount"
16 ],
17 "agg_function": "sum"
18 }}]},
19 {
20 "sources": [
21 "yellow_tripdata_2015-01"
22 ],
23 "new_label": "gb_pcount_amount_mean",
24 "operation_list": [{
25 "op": "groupby",
26 "args": {
27 "group_columns": [
28 "passenger_count"
29 ],
30 "agg_columns": [

31 "total_amount"
32 ],
33 "agg_function": "mean"
34 }}]
35 },
36 {
37 "sources": [
38 "yellow_tripdata_2015-01"
39 ],
40 "new_label": "gb_pcount_vendor_total_mean",
41 "operation_list": [{
42 "op": "groupby",
43 "args": {
44 "group_columns": [
45 "passenger_count",
46 "VendorID"
47 ],
48 "agg_columns": [
49 "total_amount"
50 ],
51 "agg_function": "mean"
52 }}]
53 }
54 ]
55 }

B PANDAS CLIENT IMPLEMENTATION
We show a compact client implementation of FuzzyData on pandas
below, which implements the interfaces defined in Section 3, along
with the operations listed in Section 1.

1 import logging
2 from typing import List
3
4 import pandas
5
6 from fuzzydata.core.artifact import Artifact
7 from fuzzydata.core.generator import generate_table
8 from fuzzydata.core.operation import Operation , T
9 from fuzzydata.core.workflow import Workflow
10
11 logger = logging.getLogger(__name__)
12
13
14 class DataFrameArtifact(Artifact):
15
16 def __init__(self , *args , ** kwargs):
17 self.pd = kwargs.pop("pd", pandas)
18 from_df = kwargs.pop("from_df", None)
19 super(DataFrameArtifact , self).__init__ (*args , ** kwargs)
20 self._deserialization_function = {
21 'csv': self.pd.read_csv
22 }
23 self._serialization_function = {
24 'csv': 'to_csv '
25 }
26
27 self.operation_class = DataFrameOperation
28 self.table = None
29 self.in_memory = False
30
31 if from_df is not None:
32 self.from_df(from_df)
33
34 def generate(self , num_rows , schema):
35 self.table = generate_table(num_rows , column_dict=schema , pd=self.pd)
36 self.schema_map = schema
37 self.in_memory = True
38
39 def from_df(self , df):
40 self.table = self.pd.DataFrame(df)
41 self.in_memory = True
42
43 def deserialize(self , filename=None):
44 if not filename:
45 filename = self.filename
46
47 self.table = self._deserialization_function[self.file_format ]( filename)
48 self.in_memory = True
49
50 def serialize(self , filename=None):
51 if not filename:
52 filename = self.filename
53
54 if self.in_memory:
55 serialization_method = getattr(self.table , self.

_serialization_function[self.file_format ])
56 serialization_method(filename)
57
58 def destroy(self):
59 del self.table
60
61 def to_df(self) -> pandas.DataFrame:
62 return self.table
63
64 def __len__(self):
65 if self.in_memory:
66 return len(self.table.index)
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67
68
69 class DataFrameOperation(Operation['DataFrameArtifact ']):
70 def __init__(self , *args , ** kwargs):
71 self.artifact_class = kwargs.pop('artifact_class ', DataFrameArtifact)
72 super(DataFrameOperation , self).__init__ (*args , ** kwargs)
73 self.code = 'self.sources [0]. table' # Starting point for chained code

generation.
74
75 def apply(self , numeric_col: str , a: float , b: float) -> DataFrameArtifact:
76 super(DataFrameOperation , self).apply(numeric_col , a, b)
77 new_col_name = f"{numeric_col}__{int(a)}x_{int(b)}"
78 return f'.assign ({ new_col_name} = lambda x: x.{ numeric_col }*{a}+{b})'
79
80 def sample(self , frac: float) -> DataFrameArtifact:
81 super(DataFrameOperation , self).sample(frac)
82 return f'.sample(frac={frac})'
83
84 def groupby(self , group_columns: List[str], agg_columns: List[str],

agg_function: str) -> T:
85 super(DataFrameOperation , self).groupby(group_columns , agg_columns ,

agg_function)
86 return f'[{ group_columns+agg_columns }]. groupby ({ group_columns }).{

agg_function }().reset_index ()'
87
88 def project(self , output_cols: List[str]) -> T:
89 super(DataFrameOperation , self).project(output_cols)
90 return f'[{ output_cols }]'
91
92 def select(self , condition: str) -> T:
93 super(DataFrameOperation , self).select(condition)
94 return f'.query ("{ condition }")'
95
96 def merge(self , key_col: List[str]) -> T:
97 super(DataFrameOperation , self).merge(key_col)
98 return f'.merge(self.sources [1]. table , on="{ key_col }")'

99
100 def pivot(self , index_cols: List[str], columns: List[str], value_col: List[

str], agg_func: str) -> T:
101 super(DataFrameOperation , self).pivot(index_cols , columns , value_col ,

agg_func)
102 return f'.pivot_table(index={ index_cols}, columns ={ columns},values ={

value_col},aggfunc ={ agg_func })'
103
104 def fill(self , col_name: str , old_value , new_value):
105 super(DataFrameOperation , self).fill(col_name , old_value , new_value)
106 return f'.replace ({{ "{ col_name }": {old_value} }}, {new_value })'
107
108 def chain_operation(self , op, args):
109 self.code += getattr(self , op)(** args)
110 super(DataFrameOperation , self).chain_operation(op, args)
111
112 def materialize(self , new_label):
113 new_df = eval(self.code)
114 super(DataFrameOperation , self).materialize(new_label)
115 return self.artifact_class(label=self.new_label ,
116 from_df=new_df ,
117 schema_map=self.current_schema_map)
118
119
120 class DataFrameWorkflow(Workflow):
121 def __init__(self , *args , ** kwargs):
122 super(DataFrameWorkflow , self).__init__ (*args , ** kwargs)
123 self.artifact_class = DataFrameArtifact
124 self.operator_class = DataFrameOperation
125
126 def initialize_new_artifact(self , label=None , filename=None , schema_map=None

):
127 return DataFrameArtifact(label , filename=filename , schema_map=schema_map

)
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