FuzzyDarta: A Scalable Workload Generator for Testing Dataframe
Workflow Systems

Mohammed Suhail Rehman
University of Chicago
Chicago, USA
suhail@uchicago.com

ABSTRACT

Dataframes have become a popular means to represent, transform
and analyze data. This approach has gained traction and a large
user base for data science practitioners - resulting in a new wave
of systems that implement a dataframe API but allow for perfor-
mance, efficiency, and distributed/parallel extensions to systems
such as R and pandas. However, unlike relational databases and
NoSQL systems with a variety of benchmarking, testing, and work-
load generation suites, there is an acute lack of similar tools for
dataframe-based systems. This paper presents FuzzyDATA, a first
step in providing an extensible workflow generation system that
targets dataframe-based APIs. We present an abstract data process-
ing workflow model, random table and workflow generators, and
three clients implemented using our model. Using FuzzyDATA, we
can encode a real-world workflow or randomly generate workflows
using various parameters. These workflows can be scaled and re-
played on multiple systems to provide stress testing, performance
evaluation, and a breakdown of performance bottlenecks present
on popular dataframe systems.

CCS CONCEPTS

« Information systems — Database performance evaluation.

KEYWORDS
dataframe systems, benchmark, workflow generation

ACM Reference Format:

Mohammed Suhail Rehman and Aaron J. Elmore. 2022. FuzzyDATA: A Scal-
able Workload Generator for Testing Dataframe Workflow Systems. In
9th International Workshop of Testing Database Systems (DBTest’22), June
17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3531348.3532178

1 INTRODUCTION

The rise in popularity of data science and machine learning has
catapulted dataframe-based tools such as R [7] and the pandas [20]
library for Python to the forefront of the data science practice, en-
abling large and small organizations to extract insight from data
quickly. These tools allow for ad-hoc ingestion and transformation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DBTest 22, June 17, 2022, Philadelphia, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9353-9/22/06...$15.00
https://doi.org/10.1145/3531348.3532178

17

Aaron J. Elmore
University of Chicago
Chicago, USA
aelmore@cs.uchicago.edu

of small to moderate amounts of data, with the flexibility of inte-
grating arbitrary code or machine learning workflows to the data
analysis workflows.

The dataframe model has thus become a popular programmatic
interface to encode data manipulation and transformation opera-
tions. Typical dataframe APIs enable both spreadsheet-style manip-
ulation and relational-style operations and on tabular data, allowing
for data cleaning and wrangling during the ETL process while re-
taining most of the powerful querying semantics for analytical
and visualization tasks. With the rise in popularity of this model,
expectations of such systems have grown, resulting in the growing
demand for systems that support these APIs on massive tabular
datasets that may not fit a typical desktop or laptop computers’
memory. Projects such as dask [17], ray [13], modin [14], Spark-
DataFrames [1], either provide interfaces to python scientific tools
such as NumPy and pandas or implement their own version of the
dataframe API to work on parallel/distributed environments with
larger datasets.

However, there is an acute lack of workload generation, bench-
marking, and testing frameworks that allow for comparisons be-
tween these systems or evaluate optimizations within these sys-
tems. Prior work encompassing dataframe systems either lacks
a comprehensive evaluation or is evaluated against handwritten,
static queries run against specific datasets [9, 14, 18, 23]. Exist-
ing systems for relational benchmarking (such as TPC [4]), or for
NoSQL/key-value stores (such as YCSB [3]) do not adequately rep-
resent the workflows typically executed within these dataframe
environments. DataFrame systems are a kind of middle-ground
between relational systems and raw key-value stores; they do not
require strict schema definitions or DDL steps like the former but
are not entirely schema-less and support a vastly broader range of
queries and transformations, unlike the latter.

Correctness guarantees and performance bottlenecks are harder
to pinpoint with dataframe-based systems because of the diversity
in query language and semantics, supported data types, serializa-
tion formats, memory layouts and execution engines. For example,
the modin project advertises performance advantages over pandas
by parallelizing common dataframe operations over multiple cores,
ideally offering speedups of Nx where N is the number of cores
available [14]. However, during the time of writing, there were ~ 45
open performance issues on the modin GitHub page [15], with users
providing empirical evidence of modin’s performance being worse
than pandas for the same operation. A more robust workload gen-
eration suite can supplement regression testing practices to catch
performance and correctness bugs during the development lifecy-
cle. Thus, there is a need for a framework that allows for synthetic
workload generation, allowing for reproducibility, scalability, and

https://doi.org/10.1145/3531348.3532178
https://doi.org/10.1145/3531348.3532178
https://doi.org/10.1145/3531348.3532178

DBTest’22, June 17, 2022, Philadelphia, PA, USA

Artifact

Rehman and Elmore

« Abstract representation of
a Table

» Schema Information and
Serialization /

Deserialization Routines

| Verge,

' GroupBy()
: N\eﬂae\\

artifact_3

| artifact_2

Operation

« Transforms an artifact to
another artifact, with
corresponding change in
schema, if any

Abstract Representation

Workflow
« Sequence of Operations
performed on Artifacts

Modin Workflow

Implementation

Figure 1: The design of FuzzyDATA.

stress testing of dataframe systems while using some of the best
design practices and patterns from earlier benchmark and workload
generator suites designed for relational [4] and NoSQL systems [3].
In this paper, we present FuzzyData!. This system allows for
data analysis workflows to be manually specified or randomly gen-
erated, scaled, and replayed on various dataframe system clients,
allowing for “fuzzy” testing and direct performance comparisons
between dataframe systems. Our contributions are as follows:

¢ An implementation-agnostic data model to represent data
artifacts, operations, and workflows that can be used to ex-
press common data workflow operations in JSON (a human-
parsable format).

e A module that generates realistic and diverse tabular data
artifacts and workflows consisting of typical data transfor-
mations.

o Plug-in clients for FuzzyDATA that enable workflows to be
generated and replayed on SQL1ite, pandas, modin-dask, and
modin-ray. We show how, with a few lines of code, Fuzzy-
DATA can be extended to more data operations or clients by
writing simple plug-ins.

e We demonstrate the use of FuzzyDATA in typical testing/
workload generation and replay scenarios and show the
types of insights that can be derived from its use. FuzzyDATa
was used to find one correctness bug (Section 4.1) which was
reported to the modin developers, as well as performance
issues in modin.

2 RELATED WORK

Benchmarking and database workload generation systems have a
long and storied history in academia and industry [8].

The TPC benchmark suite [4] is the most popular benchmark
suite for database systems and encompasses transactional pro-
cessing, data warehousing, data integration, big-data systems, and

Source Code is available at https://github.com/suhailrehman/fuzzydata

18

others. Vogelsgesang et al. [22] have empirically shown that typ-
ical data visualization workloads originating from BI application
dashboards such as Tableau consist of complex nested sub-queries,
which are very different from typical TPC workloads.

The rise in popularity of the Dataframe-based data analysis work-
flows has resulted in a large number of systems that implement
the API while making improvements to the memory model [6, 21],
leverage parallel and distributed computing [11, 13, 17], heteroge-
neous hardware [19] and usability improvements [12]. However,
the lack of a standardized workload or performance benchmark
for dataframe systems results in primarily anecdotal reports of
performance improvements. One prominent example is the H20.ai
benchmark website [9], which compares join and groupby query
performance against dataframes of various sizes (0.5, 5, and 50GB
at the time of writing); the website is designed to run periodically
against the latest versions of popular “database-like” systems in
an automated fashion. Among published work, the AFrame sys-
tem [18] used a version of the scalable Wisconsin benchmark [8],
consisting of mostly integer columns and a few string patterns with
varying cardinality to show performance improvements. Sanzu [23]
is a big-data benchmark suite designed to test data science envi-
ronments with a wide variety of operations such as wrangling and
machine learning but consists of static queries and datasets. Simi-
larly, Bohm et al. [2] conducts a deep dive into dask’s runtime and
scheduler system to find performance bottlenecks; the benchmark
suite is again a set of static tasks/operations performed against
static datasets.

YCSB [3], is a popular NoSQL benchmark system that is aimed
at cloud-serving systems that support a limited set of queries (in-
sert/update/read/scan), with the option of scaling and mixing query
types in a workload. YCSB’s popularity can be attributed to its
extensible client-server model — a new key-value store or database
client can be written using the YCSB API and run existing work-
load sets to compare against other YCSB clients. We have sought
to emulate this design pattern with FuzzyDATA.

https://github.com/suhailrehman/fuzzydata

FuzzyDATA: A Scalable Workload Generator for Testing Dataframe Workflow Systems

3 FUZZYDATA

This section discusses the abstract design of the FuzzyDATA system
and its implementation, along with the random table/workflow
generators and the three clients we have implemented using the
FuzzyDATA abstract model.

3.1 Data Model

The abstract model that we have created allows us to specify ar-
tifacts, operations, and workflows in an implementation agnostic
manner:

3.1.1 Artifact. An artifactis an abstract representation of a dataframe
in FuzzyDATA. The data model representing an artifact stores the
metadata about an artifact, such as:

e Schema related information: A mapping of column label —
column type
o Artifact representation: Information about the artifact repre-
sention in memory or as a table/view in a database
e Serialization routines: File system paths to store serialized
versions of artifacts, as well as function pointers to serial-
ization routines necessary to load/store the artifact from
disk
The abstract model for an artifact gives FuzzyDATa the flexibility
to support various data access and manipulation APIs. For example,
a pandas implementation of the artifact class would typically con-
tain the dataframe label, and a filesystem path to (de)-serialize the
dataframe artifact from/to disk. On the other hand, a SQL implemen-
tation of the artifact class will have much of the same information
as the pandas’ implementation with additional fields such as the
database table/view names, schema, and the specific SQL query
needed to retrieve a view of the artifact from a database.

3.1.2 Operation. An operation is the abstract representation of
one or more transformation(s) that takes one or more artifact(s)
as input and transforms them into a new artifact. The operation
model consists of metadata such as the source artifact labels, a list
of transformations and their arguments, and the label to be assigned
to the new destination artifact created as a result of the operation.
The operation interface consists of abstract specifications of each
of the transformations with their arguments and how each of the
transformations change the schema of the artifact. Note that the
actual query or code required to execute the transformations for a
particular operation is defined in the client implementation and left
out the abstract model. Table 1 has a listing of all the transforma-
tions that are currently implemented in FuzzyDATA. The operator
abstraction is designed to be extensible, allowing for additional
transformations or UDFs to be added to FuzzyDATA to support
even more diverse workload types in the future. Transformations
can be defined and implemented for data processing steps such as
one-hot-encoding or normalization.

3.1.3 Workflow. Formally, a workflow is a directed-acyclic-graph
(DAG) ‘W = (V, E), where the set of vertices V is the set of artifacts
and the set of edges E are the operations that are used to transform
an artifact v € V to another artifact vy € V. Artifacts that have
no incoming edges are source artifacts, which are either loaded
from disk, or randomly generated. Note that the set of edges E in

19

DBTest’22, June 17, 2022, Philadelphia, PA, USA

FuzzyDATA is ordered, and is the sequence of operations that is
implicit when encoding an existing workflow (Section 3.2), or is
the order of operations that is randomly generated by FuzzyData
(Section 3.4).

In FuzzyDATA, the workflow interface encapsulates information
about the workflow, sequence of operations, and the final workflow
directed acyclic graph, with enough information for FuzzyDATa to
load and replay specific workflows on different clients (Section 3.6).
As a workflow is replayed, the wall-clock time taken to load artifacts
from the disk and replay the individual operations are recorded for
analysis and visualization (Section 3.5).

3.2 Implementation

FuzzyDATA is implemented in Python, with pandas [20] used as the
internal dataframe representation used to represent artifacts during
generation (Section 3.3) and networkx [10] used to represent the
workflow graph. Users of FuzzyDATA have the option to specify
a workflow or have FuzzyDATA randomly generate a workflow
(Section 3.3) with generation parameters listed in Table 3.

FuzzyDATA supports workflow specifications to be provided
in a JSON file. The workflow specification includes a name for
the workflow and a list of operations. Each operation consists of
a list of source artifacts, the operation type, and the arguments
for the operation. When a workflow specification and the source
artifacts are loaded into a FuzzyDaTAa client, the following actions
are performed: (a) The operation list is loaded, (b) the operations are
performed in the order specified in the file, and (c) any artifact that
is currently not in memory and is needed for the next operation
will be deserialized from disk.

3.3 Generating Random Artifacts

FuzzyDATA provides a table generation system that leverages the
Python faker library [5]. The faker integration allows FuzzyDATA
to generate diverse tables with a wide range of columns and data,
simulating real-world datasets with realistic data values. A user can
supply the number of rows (r) and columns (c) to be generated, and
FuzzyDaTA by default randomly chooses columns types to generate
from faker’s portfolio and generates a mix of string and numeric
columns with various levels of cardinality. These column types
are labeled as one or more of the following types: numeric, string,
groupable and joinable; these labels are essential when enumerating
the space of possible operations that can be performed on a given
artifact (enumerated in Table 1. Table 2 shows an example table
generated with parameters (r = 10,¢ = 4) with a mix of column
types and labels. This table can now be used to generate additional
artifacts based on the rules described below in Section 3.4.

3.4 Generating and Replaying Random
Workflows

FuzzyDaATa also supports the generation of entirely random work-
flows, including randomly generated source artifacts (using the
generator described in Section 3.3) and random operations. Users
have the option of supplying the following parameters (Table 3):
Users can specify the total number of artifacts to be generated (n)
and the number of rows (r) and columns (c) of the base artifact, and
a few schema options, if any. The schema options in the generator

DBTest’22, June 17, 2022, Philadelphia, PA, USA

Rehman and Elmore

Transformation [Description

Generation Constraints

pandas [SQLite [modin]

load Load (de-serialize) an artifact from a filesystem location | - v v v

select Selects rows based on a filter condition numeric > 1 v v v

apply Create a new derived column as a scalar function ap- | numeric > 1 N N v
plied to an existing numeric column

project Project a set of columns - N v v

sample Randomly select rows from the artifact - v v v

join Inner Join with another artifact based on a key column | joinable >1 v N4 v

pivot Pivot the artifact by index, column and values groupable > 2;numeric > 1 v - N

groupby Groupby set of group_columns and apply an aggregate | groupable > 1 v v v
function on another set of agg_columns

fill Replace an old value in a column with another value | - v - v

materialize Execute stacked transformations to produce a new arti- | - v v v
fact

serialize Dump the contents of an artifact to disk - v v v

Table 1: Transformation Implementation Matrix. The Generation Constraints column lists the minimum number of columns
of each type required to generate each transformation using the random workflow generator.

index is08601 cryptocurrency_code pyint rn
0 2004-09-21T09:46:38 NEO 1453 10
1 2016-04-07T21:19:57 BCN 877 7
2 1973-08-09T20:35:50 USDT 8198 8
3 1985-08-24T17:07:41 EOS 7492 10
4 1979-06-16T21:01:12 NEM 157 6
5 2020-12-30T03:19:01 IOTA 5439 12
6 1995-05-03T04:56:00 BCH 2348 13
7 1972-09-02T20:03:53 XRP 1244 13
8 1990-12-27T10:33:05 ETC 8354 11
9 2017-07-03T20:19:32 ' WAVES 9717 11

Table 2: An example artifact generated using FuzzyDarta. Col-
umn labels indicate the faker provider used to generate the
values for the column, except for rn, which is shorthand
for random_number. In this table, pyint and rn are numeric
columns, while cryptocurrency_code is a groupable, joinable
and string column.

[Parameter [Description
n Number of Artifacts
r Base Artifact Number of Rows
c Base Artifact Number of Columns
b Workflow Branching Factor
T Set of Allowed Transformations
m Materialization Rate

Table 3: Parameters for generating synthetic workflows.

can provide specific column types to be generated or an exclusion
list of the types of columns to avoid. If no schema options are
provided, the generator will try to evenly distribute the types of
columns in order to maximize the available operations that can be
performed (Table 1). Once the base artifact is generated, subsequent
artifacts are generated as follows:

(1) A random artifact is first selected from the set of artifacts al-
ready generated in the workflow. The workflow branch factor

20

~

=

~

=

parameter (b) can be used to control the structure of the final
workflow graph by biasing the selection probability towards
artifacts that were more recently generated. Formally, given
we have a list of n’ artifacts that have been generated so far,
FuzzyDATaA selects the next artifact from the list with index
i to be modified with probability (Equation 1)

Pli] = (—”_ 1) b)

7
ebn

Thus, with b = 1.0, the probability is always skewed towards
the newest artifact that is generated, resulting in workflow
that is more linear, and with b = 0.01, there is a uniform
probability, resulting in a more branched workflow (such as
the example workflow generated in Figure 2).

Once an artifact has been selected as the source artifact for
an operation, FuzzyDATA generates a set of possible transfor-
mations that can be performed on the artifact, subject to the
set of allowed transformations T. The source artifact schema
map is inspected, and the number of columns of each type
is enumerated. It then follows the rules listed in Table 1 and
generates a set of transformations with randomized argu-
ments for each transformation.

From the set of possible transformations that can now be
performed on a source artifact, a random option is selected
and added to the operation chain. The expected schema map
that results from the transformation is updated, ensuring
any future stacked transformations have accurate schema
representation, even if the operation is not materialized.
Steps 2 and 3 are repeated until we have m transformations
in the current operation chain, i.e. we have reached the ma-
terialization rate.

The operation chain is materialized (executed) to generate
the next artifact. This means that FuzzyDAaTa will use an
attached client (Section 3.6) to execute the chain of oper-
ations and generate the resulting artifact. If the generator
selects a merge operation to be performed, an additional
random artifact that contains the joinable column (from the

FuzzyDATA: A Scalable Workload Generator for Testing Dataframe Workflow Systems

merge arguments) is generated and added to the workflow
to simulate an inner PK-FK join.

(6) The steps above are repeated until we have generated n
artifacts and there are no more artifacts that remain to be
generated.

(7) Once the workflow is generated, it can be written to disk,
which serializes all generated artifacts to disk, writes the
workflow graph, and generates a JSON specification of the
workflow, which can be loaded and replayed by FuzzyDaTa
clients in the future.

Figure 2 is an example of the DAG associated with a workflow
generated in FuzzyDATA. While step 2 in our workflow generator
currently implements a simple, randomized, rule-based approach
for generating operations on artifacts, we foresee the ability to
use intelligent, ML-based approaches to automatically generate
meaningful operations given the source artifact, similar to AutoSug-
gest [24], implemented via the plug-in architecture of FuzzyDATa.

- groupby
el jOIN

—fp SAMple
project

Additional Input Artifact Artifact generated by
Generated for Join operation

Source
Artifact

Figure 2: DAG of a randomly generated workflow using the
generator described in Section 3.4. The generation parame-
ters used were (n = 15,7 = 1000,¢ = 20,b = 0.01,m = 1).

3.5 Instrumentation

FuzzyDATa includes timing hooks implemented into the workflow
interface for artifact generation, loading, and operations. These
hooks can be used to collect runtime performance information
for the execution of the workflow. This feature makes FuzzyDaTa
valuable for system testing and performance analysis and evaluation
of potential bottlenecks in the systems being evaluated.

3.6 Clients Implemented

Implementing a FuzzyDATA client requires implementing each of
the abstract interfaces described in Section 3. The artifact interface
requires implementing load/store routines and a hook to the ran-
dom artifact generation function. The operation interface requires
implementing each of the operations listed in Table 1, using the
specific syntax of the client’s query language or DSL. The workflow
interface provides space for setting up parameters used by all the
artifacts in the workflow, like filesystem paths or database/execu-
tion engine parameters. Thus, with a few lines of code, a client
can be implemented in FuzzyDATA that can generate and replay

21

DBTest’22, June 17, 2022, Philadelphia, PA, USA

workflows. Three clients have been implemented in FuzzyDAta for
this paper:

pandas: The pandas client is a dataframe-based implementation
of the three abstract interfaces described in Section 3. The opera-
tion implementation generates dataframe transformation code as a
string of chained dataframe function calls. To materialize an artifact,
the string containing all the dataframe transformations is evaluated
and run against the source dataframe artifact. Appendix B lists our
client implementation code in its entirety.

modin: The modin client is an extension of the pandas’ client, in
which all pandas operations are simply routed through the modin
library [14]. The client provides the user an option of specifying
either a dask or ray execution engine, along with initialization
parameters such as number of workers, which can distribute the
dataframe operations on parallel hardware.

SQLite: The SQLite client creates a file-based embedded database
on disk and uses the generator described in Section 3.3 to generate
base table artifacts. The base table artifacts are then operated upon
by SQL queries constructed for each operation to generate other
artifacts as views in the database. We use nested sub-queries to
chain all of the transformations into an operation. All table views
are serialized to disk as CSV files at the end of the workflow. A no-
table exclusion from the SQLite client is the pivot operation since
generic pivots in a generic SQL dialect are quite complex to gener-
ate. The client initialization parameters include an SQL connection
string, so this client can be used with other SQL databases as well.
In case of a SQL dialect mismatch for other database systems, this
client could be extended to re-implement any of the incompatible
operations.

4 USE CASES

In this section, we demonstrate the various uses of FuzzyDaTa. We
first recreate a simple workflow using a publicly available Jupyter
notebook. We then generate a randomized workflow, scale the
workflow size and show the runtime performance on the three
clients. All of our experiments were run on a server running Ubuntu
18.04, with an Intel Xeon Silver 4416 CPU, 196 GB RAM . All of
our code was executed using the Python 3.8.5 interpreter with
pandas v1.4.0, SQLite v3.33.0, modin v0.13.2, dask v2022.2.0, and
ray v1.10.0. The dask engine was configured using default settings,
which resulted in 8 processes and 48 threads being spawned for each
bechmarking session. ray was also configured similarly, resulting
in upto 48 worker threads being spawned in each session.

4.1 Fuzzy Testing Suite for Dataframe Systems

Any client implemented in the FuzzyDATA library can use the built-
in test suite, generating many workflow test cases with variable
number of artifacts, rows, columns and operationsz, These tests
can be used to check API and result equivalences and corner cases
for operations run using diverse column types. Using FuzzyDATA’s
test suite, we uncovered an API corner case in modin, wherein a

Zhttps://github.com/suhailrehman/fuzzydata/tree/main/tests

https://github.com/suhailrehman/fuzzydata/tree/main/tests

DBTest’22, June 17, 2022, Philadelphia, PA, USA

Rehman and Elmore

350
mE Joad 301 5004 pandas ';.. 500 B pandas EEE groupby
3001 mmm groupby 1 modin_dask K #=#8 modin dask load
2 250 mmm groupby 2 2 400 i mo.dmiray 400 @27 modin_ray S merge
g == groupby 3 & -#- sqlite] B sqlite BN project
S 200 3 300 08) s sample
@ 2 & 3001
o @
£150 £ 200 g
g B 5
5 E £ 200
Z 100 E L
100 =
50 1001
01 # %
pandas modin_dask modin_ray sqlite 1K 10K 100K 1M 5M 0° 1K 10K 100K 1M 5M

Client

(a) Real-World Workflow Replay

Base Artifact Number of Rows (r)

(b) Scaling Experiment -Total Runtime

Base Artifact Number of Rows (r)

(c) Scaling Experiment - Breakdown of runtime.

Figure 3: Results of the Workload Replay and Scaling Experiments

dataframe generated in memory fails to execute consecutive group-
bys, and reported the issue to the modin developers®. The issue
stems from lazy metadata propagation in modin.

4.2 Encoding and Replaying an Existing
Workflow

In this experiment, we encode an existing workflow from the modin
examples page [16]. The encoded JSON file for this workflow is in
Appendix A. The primary artifact that is loaded into this workflow
is a 1.8GB CSV file, following which we execute three different
group-by operations on the same artifact. The resulting execution
timeline is depicted in Figure 3a. We can see that the modin-ray
client completes the workflow the fastest at approximately 2.8x
faster than pandas and 21.5x faster than SQLite, with the runtime
being dominated by the CSV loading process.

4.3 Scaling and Replaying a Generated
Workflow

Figure 2 represents a workflow generated by FuzzyDAtA with pa-
rameters (n = 15,r = 1000,c = 20,b = 0.01,m = 1), with all
operations permitted except pivots. The workflow was loaded and
replayed in the three FuzzyDATA clients with the results shown in
Figures 3b.

For the workflow generated in Section 3.4, we scaled the base
artifact up from 1000 rows up to 5 million and re-ran the workload
on all the clients. Figure 3b shows the results of our scaling experi-
ment. This specific example shows that pandas outperforms all the
other clients, even at 5M rows (2.1 GB). Figure 3c illustrates the run-
time breakdown grouped by operation. Despite the improvement in
loading times, the total time to draw the six random samples from
the distributed dataframes is much slower than the corresponding
operation in pandas, slowing down the total runtime in modin com-
pared to pandas, indicating a potential avenue for improvement in
modin.

5 CONCLUSIONS AND FUTURE WORK

We have shown FuzzyDATA to be a useful workflow generation
system that can be used to generate workflows and test/evaluate

3https://github.com/modin-project/modin/issues/4287

22

dataframe-style systems. Due to the pluggable nature of our imple-
mentation, many extensions can be considered for future work:

e Further enhancement of the randomized table generator,
allowing users to express inter-column functional dependen-
cies and expected cardinalities for columns.

e The rule-based operation/workflow generator can be ex-
tended to use learned features to automatically generate
even more realistic operations and arguments, based on arti-
fact features, such as those described in [24].

o Integrate additional serialization formats such as parquet
to enable comparisons across serialization formats.

e Additional clients can be implemented in FuzzyDATA to pro-
vide even more points of comparison.

REFERENCES

[1] Michael Armbrust, Tathagata Das, Aaron Davidson, Ali Ghodsi, Andrew Or,

Josh Rosen, Ion Stoica, Patrick Wendell, Reynold Xin, and Matei Zaharia. 2015.

Scaling spark in the real world: performance and usability. Proceedings of the

VLDB Endowment 8,12 (Aug. 2015), 1840-1843. https://doi.org/10.14778/2824032.

2824080

Stanislav Bohm and Jakub Beranek. 2020. Runtime vs Scheduler: Analyzing

Dask’s Overheads. In 2020 IEEE/ACM Workflows in Support of Large-Scale Science

(WORKS). 1-8. https://doi.org/10.1109/WORKS51914.2020.00006

[3] BrianF. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing - SoCC ’10. ACM Press, Indianapolis,
Indiana, USA, 143. https://doi.org/10.1145/1807128.1807152

[4] TPC Council. 2022. TPC-Homepage. https://tpc.org/default5.asp

[5] Daniele Faraglia and Other Contributors. 2022. Faker. https://github.com/joke2k/
faker original-date: 2012-11-12T23:00:09Z.

[6] Apache Software Foundation. 2020. Apache Arrow. https://arrow.apache.org/

[7] The R Foundation. 2022. R: The R Project for Statistical Computing. https:
//www.r-project.org/

[8] Jim Gray (Ed.). 1994. The Benchmark handbook: for database and transaction
processing systems (2. ed., 2. [print.] ed.). Morgan Kaufmann, San Francisco,
Calif.

[9] H20.ai. 2022.

benchmark/

Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,

dynamics, and function using networkx. Technical Report LA-UR-08-05495; LA-

UR-08-5495. Los Alamos National Lab. (LANL), Los Alamos, NM (United States).

https://www.osti.gov/biblio/960616

Andreas Kunft, Lukas Stadler, Daniele Bonetta, Cosmin Basca, Jens Meiners,

Sebastian Bref, Tilmann Rabl, Juan Fumero, and Volker Markl. 2018. ScootR:

Scaling R Dataframes on Dataflow Systems. In Proceedings of the ACM Symposium

on Cloud Computing (SoCC ’18). Association for Computing Machinery, New

York, NY, USA, 288-300. https://doi.org/10.1145/3267809.3267813

Doris Jung-Lin Lee, Dixin Tang, Kunal Agarwal, Thyne Boonmark, Caitlyn Chen,

Jake Kang, Ujjaini Mukhopadhyay, Jerry Song, Micah Yong, Marti A. Hearst, and

Aditya G. Parameswaran. 2021. Lux: always-on visualization recommendations

—_
&,

Database-like ops benchmark. https://h2oai.github.io/db-

[12

https://github.com/modin-project/modin/issues/4287
https://doi.org/10.14778/2824032.2824080
https://doi.org/10.14778/2824032.2824080
https://doi.org/10.1109/WORKS51914.2020.00006
https://doi.org/10.1145/1807128.1807152
https://tpc.org/default5.asp
https://github.com/joke2k/faker
https://github.com/joke2k/faker
https://arrow.apache.org/
https://www.r-project.org/
https://www.r-project.org/
https://h2oai.github.io/db-benchmark/
https://h2oai.github.io/db-benchmark/
https://www.osti.gov/biblio/960616
https://doi.org/10.1145/3267809.3267813

FuzzyDATA: A Scalable Workload Generator for Testing Dataframe Workflow Systems

for exploratory dataframe workflows. Proceedings of the VLDB Endowment 15, 3
(Nov. 2021), 727-738. https://doi.org/10.14778/3494124.3494151

[13] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. 2018. Ray: A Distributed Framework for Emerging AI Applications.
In 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). USENIX Association, Carlsbad, CA, 561-577. https://www.usenix.
org/conference/osdi18/presentation/moritz

[14] Devin Petersohn, Stephen Macke, Doris Xin, William Ma, Doris Lee, Xiangxi

Mo, Joseph E. Gonzalez, Joseph M. Hellerstein, Anthony D. Joseph, and Aditya

Parameswaran. 2020. Towards scalable dataframe systems. Proceedings of

the VLDB Endowment 13, 12 (Aug. 2020), 2033-2046. https://doi.org/10.14778/

3407790.3407807

Modin Project. 2022. Issues - modin-project/modin. https://github.com/modin-

project/modin

[16] Modin Project. 2022. Modin NYC Taxi Example Notebook. https://github.

com/modin-project/modin/blob/dd9beee3a599d3a91036cbaeef8b8499badccscl/

examples/jupyter/NYC_Taxi.ipynb original-date: 2018-06-21T21:35:05Z.

Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms and

Task Scheduling. In Proceedings of the 14th Python in Science Conference. Austin,

TX, 130-136.

[18] Phanwadee Sinthong and Michael J. Carey. 2019. AFrame: Extending DataFrames
for Large-Scale Modern Data Analysis. In 2019 IEEE International Conference on
Big Data (Big Data). IEEE, 359-371. https://doi.org/10.1109/BigData47090.2019.
9006303

[19] RAPIDS Development Team. 2018. RAPIDS: Collection of Libraries for End to

End GPU Data Science. https://rapids.ai

The pandas development team. 2020. pandas-dev/pandas: Pandas. https:

//doi.org/10.5281/zenodo.3509134

[21] Ritche Vink. 2021. Polars. https://github.com/pola-rs/polars original-date:

2020-05-13T19:45:33Z.

Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor

Leis, Tobias Muehlbauer, Thomas Neumann, and Manuel Then. 2018. Get Real:

How Benchmarks Fail to Represent the Real World. In Proceedings of the Workshop

on Testing Database Systems (DBTest’18). Association for Computing Machinery,

New York, NY, USA, 1-6. https://doi.org/10.1145/3209950.3209952

Alex Watson, Deepigha Shree Vittal Babu, and Suprio Ray. 2017. Sanzu: A data

science benchmark. In 2017 IEEE International Conference on Big Data (Big Data).

263-272. hitps://doi.org/10.1109/BigData.2017.8257934

[24] Cong Yan and Yeye He. 2020. Auto-Suggest: Learning-to-Recommend Data
Preparation Steps Using Data Science Notebooks. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (SIGMOD °20).
Association for Computing Machinery, Portland, OR, USA, 1539-1554. https:
//doi.org/10.1145/3318464.3389738

[15

[17

[20

[22

[23

A WORKFLOW SPEC USED IN SECTION 4.2

The following JSON file is a manually encoded list of operations
derived from the workflow example in [16]. This JSON input file
and source artifact can be used as input to replay the workflow on
all FuzzyDATA clients. The runtime result of this workflow on all
clients is in Section 4.2.

"name": "nyc-cab",
"operation_list": [{
"sources": [
"yellow_tripdata_2015-01"
1,
"new_label": "gb_vendor_id_amount_sum",
"operation_list": [{
"op": "groupby",
"args": {
"group_columns": [
"VendorID"
1,
"agg_columns": [
"total_amount"
1,
"agg_function": "sum"

3333,
{

"sources": [
"yellow_tripdata_2015-01"
1,
"new_label": "gb_pcount_amount_mean",
"operation_list": [{
"op": "groupby",
"args": {
"group_columns": [
"passenger_count"
1,
"agg_columns": [

23

DBTest’22, June 17, 2022, Philadelphia, PA, USA

"total_amount"
]

"agg_function": "mean"

331
3,
{
"sources": [

"yellow_tripdata_2015-01"

1,

"new_label": "gb_pcount_vendor_total_mean",
"operation_list": [{

"op": "groupby",

"args": {

"group_columns": [
"passenger_count",
"VendorID"

1,

"agg_columns": [
"total_amount"

1,

"agg_function": "mean"

33
}

B
We

PANDAS CLIENT IMPLEMENTATION

show a compact client implementation of FuzzyDATA on pandas

below, which implements the interfaces defined in Section 3, along
with the operations listed in Section 1.

impo
from
impo
from
from
from

from

logg

clas

rt logging

typing import List

rt pandas

fuzzydata.core.artifact import Artifact
fuzzydata.core.generator import generate_table
fuzzydata.core.operation import Operation, T
fuzzydata.core.workflow import Workflow

er = logging.getLogger(__name__)

s DataFrameArtifact(Artifact):

def __init__(self, =*args, x*xkwargs):
self.pd = kwargs.pop("pd", pandas)
from_df = kwargs.pop("from_df", None)
super (DataFrameArtifact, self).__init__(xargs, *xkwargs)
self._deserialization_function = {
'csv': self.pd.read_csv

self. _serialization_function = {
'esv': 'to_csv'

3}

self.operation_class = DataFrameOperation
self.table = None
self.in_memory = False

if from_df is not None:
self.from_df (from_df)

def generate(self, num_rows, schema):
self.table = generate_table(num_rows, column_dict=schema, pd=self.pd)
self.schema_map = schema
self.in_memory = True

def from_df (self, df):
self.table = self.pd.DataFrame(df)
self.in_memory = True

def deserialize(self, filename=None):
if not filename:
filename = self.filename

self.table = self._deserialization_function[self.file_format](filename)
self.in_memory = True

def serialize(self, filename=None):
if not filename:
filename = self.filename

if self.in_memory:
serialization_method = getattr(self.table, self.
_serialization_function[self.file_format])
serialization_method(filename)

def destroy(self):
del self.table

def to_df(self) -> pandas.DataFrame:
return self.table

def __len__(self):
if self.in_memory:
return len(self.table.index)

https://doi.org/10.14778/3494124.3494151
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi18/presentation/moritz
https://doi.org/10.14778/3407790.3407807
https://doi.org/10.14778/3407790.3407807
https://github.com/modin-project/modin
https://github.com/modin-project/modin
https://github.com/modin-project/modin/blob/dd9beee3a599d3a91036cbaeef8b8499ba9cc4c1/examples/jupyter/NYC_Taxi.ipynb
https://github.com/modin-project/modin/blob/dd9beee3a599d3a91036cbaeef8b8499ba9cc4c1/examples/jupyter/NYC_Taxi.ipynb
https://github.com/modin-project/modin/blob/dd9beee3a599d3a91036cbaeef8b8499ba9cc4c1/examples/jupyter/NYC_Taxi.ipynb
https://doi.org/10.1109/BigData47090.2019.9006303
https://doi.org/10.1109/BigData47090.2019.9006303
https://rapids.ai
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://github.com/pola-rs/polars
https://doi.org/10.1145/3209950.3209952
https://doi.org/10.1109/BigData.2017.8257934
https://doi.org/10.1145/3318464.3389738
https://doi.org/10.1145/3318464.3389738

67
68

70
71
72
73

74
75
76
77
78
79
80
81
82
83
84

85

86

87
88
89
90
91
92
93
94
95
96
97
98

DBTest’22, June 17, 2022, Philadelphia, PA, USA

class DataFrameOperation(Operation['DataFrameArtifact']):
def __init__(self, xargs, *xkwargs):
self.artifact_class = kwargs.pop('artifact_class', DataFrameArtifact)
super (DataFrameOperation, self).__init__(xargs, *xkwargs)
self.code = 'self.sources[@].table' # Starting point for chained code
generation.

def apply(self, numeric_col: str, a: float, b: float) -> DataFrameArtifact:

super (DataFrameOperation, self).apply(numeric_col, a, b)
new_col_name = f"{numeric_col}__{int(a)}x_{int(b)}"
return f'.assign({new_col_name} = lambda x: x.{numeric_col}*{a}+{b})"

def sample(self, frac: float) -> DataFrameArtifact:
super (DataFrameOperation, self).sample(frac)
return f'.sample(frac={frac})"'

def groupby(self, group_columns: List[str], agg_columns: List[str],
agg_function: str) -> T:
super (DataFrameOperation, self).groupby(group_columns, agg_columns,
agg_function)
return f'[{group_columns+agg_columns}].groupby({group_columns}).{
agg_function}().reset_index()"'

def project(self, output_cols: List[str]) -> T:
super (DataFrameOperation, self).project(output_cols)
return f'[{output_cols}]"

def select(self, condition: str) -> T:
super (DataFrameOperation, self).select(condition)
return f'.query("{condition}")"

def merge(self, key_col: List[strl) -> T:
super (DataFrameOperation, self).merge(key_col)
return f'.merge(self.sources[1].table, on="{key_col}")"

99
100

101
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

121
122
123
124
125
126

127

24

Rehman and Elmore

def pivot(self, index_cols: List[str], columns: List[str], value_col: List[
str], agg_func: str) -> T:
super (DataFrameOperation, self).pivot(index_cols, columns, value_col,
agg_func)
return f'.pivot_table(index={index_cols}, columns={columns},values={
value_col}, aggfunc={agg_func})'

def fill(self, col_name: str, old_value, new_value):
super (DataFrameOperation, self).fill(col_name, old_value, new_value)
return f'.replace({{ "{col_name}": {old_value} }}, {new_value})'

def chain_operation(self, op, args):
self.code += getattr(self, op)(**args)

super (DataFrameOperation, self).chain_operation(op, args)

de

o

materialize(self, new_label):

new_df = eval(self.code)

super (DataFrameOperation, self).materialize(new_label)

return self.artifact_class(label=self.new_label,
from_df=new_df,
schema_map=self.current_schema_map)

class DataFrameWorkflow(Workflow):

def __init__(self, =*args, **kwargs):
super (DataFrameWorkflow, self).__init__(*args, **kwargs)
self.artifact_class = DataFrameArtifact
self.operator_class = DataFrameOperation

def initialize_new_artifact(self, label=None, filename=None, schema_map=None

)
return DataFrameArtifact(label, filename=filename, schema_map=schema_map
)

	Abstract
	1 Introduction
	2 Related Work
	3 Fuzzydata
	3.1 Data Model
	3.2 Implementation
	3.3 Generating Random Artifacts
	3.4 Generating and Replaying Random Workflows
	3.5 Instrumentation
	3.6 Clients Implemented

	4 Use Cases
	4.1 Fuzzy Testing Suite for Dataframe Systems
	4.2 Encoding and Replaying an Existing Workflow
	4.3 Scaling and Replaying a Generated Workflow

	5 Conclusions and Future Work
	References
	A Workflow Spec used in Section 4.2
	B Pandas Client Implementation

