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Abstract

Under the assumption that wagers remain integer-valued, as would
happen in most casinos, we identify the following bizarre situation:
there exists a sequence of coin flips X such that some effective gambler
manages to accumulate arbitrary wealth by betting on X, however any
such gambler goes bankrupt whenever he tries to take his winnings
outside the casino.

1 The savings trick

What good is money if you can’t spend it?

As one might expect, a successful real-valued gambler can, in the long
run, spend any sum of capital without damaging her gambling prospects
inside a casino. On the other hand, if we restrict wagers to integers, then
“no bets are off.” Indeed, there exists a situation in which an integer-valued
gambling strategy can gamble its way to arbitrary wealth inside a casino
but goes bankrupt whenever it tries to spend its accumulated winnings (see
Section 2). We review the Savings Trick for real-valued gambling strategies
and then explain why this trick doesn’t work for integer-valued gambling
strategies. References [1] and [2] provide background on restricted betting
strategies.

Notation. We shall focus on gambling strategies for betting on coin flips,
and throughout this discussion we always assume that strategies are com-
putable functions. More formally, a gambling strategy M is a computable



function from finite strings of coin flips to nonnegative reals satisfying the
fairness condition:
M(oh) + M(ot)

2
where M (o) gives the gambler’s capital after a finite series of coin flips
o € {h,t}*, “h” stands for heads, and “t” stands for tails. M (och)— M (o) is
M’s wager at o. If M’s wager at o is positive, we say that M bets on heads
at o and if M’s wager at o is negative, we say that M bets on tails at 0. A
gambling strategy is called integer-valued if its wagers are always integers,
and real-valued if its wagers can be any real number [1]. A gambling strategy
succeeds on a binary sequence X if limsup,, M(X [ n) = oco. Here X [ n
denotes the length n prefix of X, and X (n) will denote the n'® coin flip in
X. € denotes the empty string.

Over time, a gambling strategy may move capital into a permanent sav-
ings account. The gambling strategy cannot apply this money to future
wagers, and one can imagine that the gambler reserves these funds for ex-
ternal purchases. In the definition below, the “savings function” describes
the gambler’s savings account balance.

M(o) =

Definition. A computable function f mapping {h,t}* to reals is called a
savings function if for all binary strings ¢ and 7, ¢ is a prefix of 7 implies
f(o) < f(1). A gambling-and-savings strategy consists of a gambling strat-
egy and a savings function. A gambling-and-savings strategy (S, f) succeeds
on a binary sequence X if:

(1) lim, f(X | n) = co, and
(11) |S’s wager at o] < S(o) — f(o) for all prefixes o of X.

Let (S, f) be a gambling-and-savings strategy. We call S(o) — f(o) the
wagerable capital of (S, f) at o. Following the terminology for gambling
strategies, we say that (S, f) is integer-valued if S is integer-valued, real-
valued if S is real-valued, and we say that an integer-valued savings-and-
gambling strategy is bankrupt whenever it has less than $1 in wagerable
capital. An integer-valued gambling-and-savings strategy which is bankrupt
at position o cannot succeed on any sequence extending o.

The following result is folklore, see [3].

Savings Trick. If some real-valued gambling strategy succeeds on a sequence
X, then some real-valued gambling-and-savings strategy also succeeds on X .



Proof. Let M be a real-valued gambling strategy, and suppose that M suc-
ceeds on X. We will construct a gambling-and-savings strategy (S, f) which
always bets the same fraction of its (wagerable) capital as M but occasion-
ally puts money into savings. Each time S accumulates more than a dollar
of capital, S puts a dollar into savings and implements a scaled copy of
M’s strategy on its remaining wagerable capital. Since M’s capital goes to
infinity over the sequence X, (S, f) will have infinitely many opportunities
to sock away a dollar and hence will also succeed.
In more detail, initially f(e) =0 and S(e) = M (e). At each position o,

M’s wager at o
M (o)

-[S(0) = f(a)],

S’s wager at o =

and for a € {h, t},

f(oa) = {f (o) if S(oa) — f(oa) <1, and
f(O') +1 if S((ja) — f(aa) > 1.

At the positions where (S, f) does not save, S — f is positive and increases
by the same proportion as M. Since limsup M (X [ n) = oo, [S — f|(X [ n)
eventually becomes large enough that savings increase by $1. Since this
increase happens infinitely many times, (S, f) also succeeds. O

Combining the Savings Trick with the fact that a gambling-and-savings
strategy’s (total) capital is always bounded below by its savings, we see that
the set of sequences on which some real-valued gambling strategy succeeds
does not depend on whether we use “lim” or “limsup” in the definition of
succeeds. The same is true for integer-valued gambling strategies, albeit
for a different reason. This fact was noted in a footnote of [2], however we
include a short proof here to make this discussion self-contained.

Proposition. The class of sequences where some integer-valued gambling
strategy succeeds does not change if we replace “limsup” with “lim” in the
definition of succeeds.

Proof. Suppose that some integer-valued gambling strategy M succeeds
limsup but not lim on a sequence X. Then M must return to some in-
teger capital value infinitely often, lest liminf M (X [ n) = co. Let $k be
the least amount of capital which M possesses infinitely often. Define a
further integer-valued gambling strategy A which bets zero dollars except
when M reaches capital $k, at which point A bets a dollar on the same
outcome as M. Since M’s capital only drops below $k finitely often, this



is almost always a sure bet for A, and since M visits capital $% infinitely
often, A succeeds lim provided that her initial capital is sufficient. O

Unlike the Savings Trick for real-valued gambling strategies, we do not
construct the successful lim strategy from the Proposition uniformly in the
lim sup one because we do not know a priori which value of k is correct or
even whether the lim sup strategy will infinitely often visit some value k at
all. Moreover, as we show in the next section, the lim successful gambler’s
capital may grow slower than any computable function.

2 A savings paradox

We show that the Savings Trick does not work when wagers are restricted
to integers.

Theorem. There exists a sequence on which some integer-valued gambling
strateqy succeeds but no integer-valued gambling-and-savings strateqy does.

Proof. We shall show that there is gambling strategy M which succeeds on a
sequence X and always bets $1 on heads while no integer-valued gambling-
and-savings strategy succeeds on X. Assume that M’s initial capital is
at least $1, and let (So, fo), (S1, f1), (S2, f2),... be a (noneffective) list of
all integer-valued gambling-and-savings strategies. The basic module for
bankrupting a single gambling-and-savings strategy (S, fe) is the following.
We may assume that S, never bets on tails because if he does, then X can
hurt S, while at the same time helping M. Roughly speaking, our construc-
tion helps M except at positions where (Se, fo) bets a sufficiently greater
fraction of his (wagerable) capital than M does. Our overall goal is to reduce
the ratio (S. — f.)/M, and we guarantee that this ratio eventually drops be-
low 1 if (Se, fe) saves enough money. Once M has more capital available to
wager than (Se, fe), X can bankrupt (S, f.) without bankrupting M simply
by hurting S, each time he makes a nonzero wager.

Without loss of generality, we may assume that S.(e) > fc(e) since
gambling-and-savings strategies which do not satisfy this initial condition
are already bankrupt. Moreover any gambling-and-savings strategy which
goes bankrupt thereafter cannot succeed, hence our finite extension con-
struction focuses exclusively on the cases where S¢(0) — fe(o) is nonnega-
tive. Similarly, we ignore any gambling-and-savings strategy once it places a
wager exceeding its wagerable capital. Throughout this proof we implicitly
round the functions S, — f. and M down to the nearest integer because only
the integer part of these quantities can ever be used for gambling.



In order to construct the desired sequence X, we will make use of three
auxiliary functions. Let w be the computable “high water mark” mapping
finite series of coin flips to nonnegative integers via

w(o) = max{M(7): 7 is a prefix of o}.

The next two integer-indexed functions, ¢ and r, map finite series of coin
flips to positive integers by way of a modified Division Algorithm. g.(o) and
re(o) are defined to be the unique positive integers, when they exist, such
that

Se(0) — fe(0) =qe(0) - M(0) —1e(0) and 0<re(o) <M(o). (1)

These integers are guaranteed to exist whenever M’s capital is nonzero, and
we shall argue that this condition is met on every prefix of the sequence X.

We define X by finite extensions. Assume that the length n prefix of X,
which we call o throughout the remainder of this proof, has already been
defined. We define the length n + 1 prefix of X, which we call ¢/, as follows.
Let e be the least index less than or equal to w(o), if it exists, such that S.’s
wager at o is not ¢.(0) — 1. We say that S, receives attention at position n.
Define

t if S.’s wager at o exceeds g.(0) — 1,

X(n+1):{

h if S.’s wager at o is less than ¢.(o) — 1.

If no such e exists, then X(n + 1) = h. By convention S,.’s wager at o is
positive iff S¢ bets on heads at o, and therefore X hurts S. whenever S,
both bets on tails and receives attention.

We first verify that ¢. and r. are defined on every prefix of X. For
simplicity of expression, we represent initial quantities in this paragraph
with the following symbols:

q = qe(e), r=re(e), m = M(e), s = Sc(€) — fe(e).

Since m > 1 and s > 0, we can let g be the least positive integer such
that s < gm, and we let r = gm —s. Then 0 < r < m as in (1). Now
assume that ¢, and r. are defined on ¢ and M (o) > 1. If no index receives
attention at position n, then X(n + 1) = h, so M(¢’) > 2, and therefore
the argument from the base case shows that g, and 7. are defined on o’.
On the other hand, suppose that e receives attention at n. Note that if
M(o) = 1, then (S, fe) has at most ¢g.(0) — 1 capital to wager at o, and
therefore X(n + 1) = h. Consequently, M(c') > 2. Otherwise M (o) > 2,



and in this case M also cannot go broke because M wagers only one dollar
at each position. Either way, we obtain values for ¢(¢’) and r(¢’) just as in
the base case.

In the next six paragraph, we employ the following abbreviations:

QZQe(U)v T:Te(a)v m:M(U)7 5256(0) _fe(a)a
q/ = qe(o',)a = TC(U/)v m' = M(U/)v s’ = SG(U/) - fe(al)’

We show that whenever e receives attention at position n, one of the two
Things below happens.

(1) ¢ =qand m' —1' <m —r, or

(1) ¢’ <gq.

Suppose that S.’s wager at o is greater than ¢ — 1, say (¢ — 1) + k, for
some k > 1. By definition of X, S, and M lose capital on this bet, so
m' =m — 1 and

s'=s—[(g-D)+k=(@gm—r)—qg—k+1=qm—1)—(r+k—1).

If r+k < m we have ¢ = g and m’ —r' = (m —r) — k, satisfying Thing (1).
If not, then s’ = ¢(m — 1) — 7’ for some integers 0 < ¢’ < g and 0 < r’ < m,
which is Thing (11).

The case where S.’s wager at o is less than ¢ — 1 is similar. Suppose the
wager is (¢ — 1) — k for some k > 1. Then by definition of X, m’ =m + 1
and

ss=s+(¢g-1)—kl=(gmn-r)+q—k—1=q(m+1)— (r+k+1).

If r +k <m, then ¢ = ¢ and m' — ' = (m —r) — k, satisfying Thing (1). If
not, then s’ = ¢’(m + 1) — / for some integers 0 < ¢’ < g and 0 < 1’ < m,
which gives Thing (11).

If index e does not receive attention at position n, then S.’s wager at o
is ¢ — 1. In this case, ¢ = ¢ and m’ —r’ = m — r regardless of whether the
(n + 1)% coin flip is heads or tails. Indeed if X (n + 1) = h, then

s=s+(@-1)=(gm-r)+q-—1=qm+1)—(r+1),
and if X(n + 1) = t, then

s=s—(¢g-1)=(gm~-r)—qg+1=gqm—1)—(r—1).



Based on the above calculations, we deduce that each index receives
attention at most finitely many times over the course of the sequence X.
Suppose this were not the case, and let e be the least index which receives
attention infinitely often. Wait until a position ng such that no index lower
than e ever again receives attention and w(X [ ng) > e. From then on, e
receives attention at each position n where S, wagers a value other than
q because S, is always the lowest-indexed strategy to do so. Things (1)
and (11) then guarantee that the sequence {(q,m —7)}n>n, lexicographically
decreases each time e receives attention at position n while the sequence
remains constant between other adjacent positions. Since e receives atten-
tion infinitely often and S, is integer-valued, ¢ eventually reaches the value
1 whereafter m — r reaches 0. Once this happens, (S, fe) is bankrupt. But
a bankrupt gambling-and-savings strategy can no longer receive attention,
a contradiction.

It is clear that once the last position has passed where some j < e receives
attention, M immediately achieves a new high water mark of $(e + 1), if
M did not already achieve this earlier, because the function w prevents any
further gambling-and-savings strategy from receiving attention before this
has happened. Thus M succeeds on X.

It remains to show that no gambling-and-savings strategy succeeds on X.
The behavior of any gambling-and-savings strategy (Se, fe), once all
gambling-and-savings strategies with index at most e have finished receiving
attention, is simple: at position n, S, always wagers $(¢ — 1). Since such
wagers preserve ¢ = g and m’ —r’ = m—r, there are two possibilities. Either
fe only saves a finite amount of money, in which case (S, fe) is certainly
not successful, or else f. saves an infinite amount. In the latter case, either
Thing (1) or Thing (11) happens whenever f. saves while ¢ and r remain
frozen at all other times. Therefore (S, f.) eventually goes bankrupt. [

The anonymous referee asked whether we can obtain a similar paradox
using more relaxed wager restrictions. In particular,

Question. Does the Theorem above still hold if integer-valued gambling
strategies are replaced with gambling strategies who wagers lie in the broader
set of reals

V={x:|z| >1} U{0}?

In general, determining whether there is additional power in gambling with
wagers in V' rather than integers remains an outstanding problem [1, 2].
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