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Abstract. In this paper we define and investigate a binary word opera-
tion that formalizes an experimentally observed outcome of DNA com-
putations, performed to generate a small gene library and implemented
using a DNA recombination technique called Cross-pairing Polymerase
Chain Reaction (XPCR). The word blending between two words xwy1
and y2wz that share a non-empty overlap w, results in xwz. We study
closure properties of families in the Chomsky hierarchy under word blen-
ding, language equations involving this operation, and its descriptional
state complexity when applied to regular languages. Interestingly, this
phenomenon has been observed independently in linguistics, under the
name “blend word” or “portmanteau”, and is responsible for the creation
of words in the English language such as smog (smoke + fog), labradoodle
(labrador + poodle), and Brangelina (Brad + Angelina).

1 Introduction

Cross-pairing Polymerase Chain Reaction (XPCR) is an experimental DNA
protocol introduced in [11] for extracting, from a heterogeneous pool of DNA
strands, all the strands containing a given substrand. XPCR was then employed
to implement several DNA recombination algorithms [13], for the creation of the
solution space for a SAT problem [9], and for mutagenesis [12]. The combinatorial
power of such a technique has been explained by logical-symbolic schemes in [23],
while algorithms to create combinatorial libraries were improved and experimented
in [12], [10].

The formal language operation called overlap assembly, introduced in [5]
under the name of self-assembly, and further investigated in [7, 8, 3], also models
a special case of XPCR: The overlap assembly of two strings αx and xβ that
share a non-empty overlap x, results in the string αxβ. A particular case of
overlap assembly, called “chop operation”, where the overlap consists of a single
letter, was studied in [18, 19], and generalized to an arbitrary length overlap
in [20]. Other similar operations have been studied in the literature, such as
the “short concatenation” [4], which uses only the maximum-length (possibly
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empty) overlap y between operands, the “Latin product” of words [14] where
the overlap consists of only one letter, and the operation

Â
which imposes the

restriction that the non-overlapping part x is not empty [21]. Overlap assembly
can also be considered as a particular case of “semantic shuffle on trajectories”
with trajectory 0�σ�1� or as a generalization of the operation

Ä
N from [6]

which imposes the length of the overlap to be at least N . Many similar biological
phenomena and operations can also be modelled using splicing systems [26, 27].
However, modeling these operations often does not require the full power of
splicing. Properties of splicing languages under restrictions such as symmetry
and reflexivity have been studied in [2, 15].

Returning to the biological process that motivated the study of overlap
assembly, the XPCR procedure has been successfully used to join two different
genes if they are attached to compatible primers [10]. Formally, αAγ and γDβ
were combined to produce αAγDβ (here A and D are gene sequences and α, γ
and β are primers used). However, when A � D, that is, when two sequences
containing the same gene were combined by XPCR, the result was not as expected.
More specifically, when using XPCR with two strings αAγ and γAβ, instead of
obtaining the expected αAγAβ, the experiments repeatedly produced the result
αAβ.

In this paper, we define and investigate a formal language operation called
word blending, that formalizes this experimentally observed outcome of XPCR:
The word blending of two words xAy1 and y2Az that share a non-empty overlap A
results in xAz. Interestingly, this phenomenon has been observed independently
in linguistics [16], under the name “blend word” or “portmanteau”, and is
responsible for the creation of words in the English language such as smog
(smoke + fog), labradoodle (labrador + poodle), emoticon (emotion + icon), and
Brangelina (Brad + Angelina).

The paper is organized as follows. Section 2 details the biological motivation
behind the study of word blending, and introduces the main definitions and
notations. Section 3 studies closure properties of the families in the Chomsky
hierarchy under word blending, its right and left inverses, as well as iterated
word blending. Section 4 investigates the decidability of existence of solutions
to some language equations involving word blending, and Section 5 studies the
descriptional state complexity of this operation when applied to regular languages.

2 Preliminaries

An alphabet Σ is a finite non-empty set of symbols. Σ� denotes the set of all words
over Σ, including the empty word λ, and Σ� denotes the set of all non-empty
words over Σ. The length of the word w is denoted lgpwq. For words w, x, y, z P Σ�

such that w � xyz we call the subwords x, y, and z prefix, infix, and suffix of
w, respectively. The sets prefpwq, infpwq, and suffpwq contain, respectively, all
prefixes, infixes, and suffixes of w. This notation is extended to languages as
suffpLq �

�
wPL suffpwq. The mirror image of a word w P Σ� is defined as

mipλq � λ, and mipwq � ak . . . a2a1 if w � a1a2 . . . ak.The definition is extended
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to languages in the natural way, by mipLq �
�
wPL mipwq. The complement of a

language L � Σ� is Lc � Σ�zL. For two languages L1 and L2, the right quotient
of L1 by L2 is defined as L1L

�1
2 � tu P Σ�|Duv P L1, v P L2u, and the left

quotient of L1 by L2 is defined as L�1l
2 L1 � tv P Σ�|Duv P L1, u P L2u.

The biological phenomenon we model in this paper was observed during the
XPCR-based experiments, initially intended to achieve the catenation of two or
more genes (genomic DNA strands). It was namely observed in [10] that, in the
particular case where the two genes to be catenated were one and the same, that
is, when the two input DNA strands were αAγ and γAβ (here A represents a
gene sequence), the output of a PCR-based amplification with primers α and
β was αAβ. This output was different from the expected αAγAβ, which had
been the anticipated result. (Indeed, experiments using XPCR for the purpose of
catenating two different genes A and D flanked by primers, that is, when the
two input strands were αAγ and γDβ, had resulted in the output αAγDβ. This
“expected” output of XPCR was modelled by the previously mentioned operation
of overlap assembly, given by αAγ � γDβ � αAγDβ.)

Generalizing this experimentally newly-observed phenomenon to the case
where the end words of the input strings are different, we model this string
recombination as follows. Given two non-empty words x, y over an alphabet Σ,
we define the word blending, or simply blending, of x with y as

x ' y � tz P Σ� | Dα, β, γ1, γ2 P Σ
�, Dw P Σ� : x � αwγ1, y � γ2wβ, z � αwβu.

The definition of blending can be extended to languages L1 and L2 by

L1 ' L2 �
¤

xPL1,yPL2

x ' y.

Note that, for a realistic model, we would need additional restrictions such as
the fact that the w, γ1 and γ2 should be of a sufficient length and should not
appear as a substring in the other strings involved.

We can also extend the blending operation to an iterated version on a language.
Let L � Σ� be a language. We define the iterated (word) blending of L by L'0 � L
and L'i � L ' L'i�1 . We define the iterated blending closure of L by

L'� �
¤
i¥0

L'i .

We observe that the result of the iterated blending operation can be generated
by a splicing system with null context splicing rules [17]. Splicing rules in [17] are
of the form pu1, z, u2;u3, z, u4q. For such a rule, if we have strings x � x1u1zu2x2
and y � y1u3zu4y2, we obtain the word x1u1zu4y2. A splicing rule is a null
context rule when u1, u2, u3, u4 � λ. It is easy to see that the language L'� can
be generated from a splicing scheme with rules of the form pλ,w, λ;λ,w, λq for
every word w P Σ�. The relationship between iterated blending and splicing will
be discussed in greater detail in Section 3.
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3 Closure Properties

In this section, we prove that the families of regular, context-free and recursively
enumerable languages are closed under blending, and that the family of context-
sensitive languages is not. The section also contains closure properties of Chomsky
hierarchy families under the right and left inverse of word blending, as well as
under iterated word blending.

The following lemma shows that word-blending is equivalent to a restricted
version where only one-letter overlaps are utilized.

Lemma 1. If x, y are non-empty words in Σ�, then

x ' y � tz P Σ� | Dα, β, γ1, γ2 P Σ
�, Da P Σ : x � αaγ1, y � γ2aβ, z � αaβu.

This result can be extended to languages in the natural way. Then from this
lemma, we can show that the word blending of two languages can be obtained
by combining the right quotient, catenation, left quotient and union operations,
as follows.

Proposition 2. Given languages L1, L2 � Σ�,

L1 ' L2 �
¤
aPΣ

�
L1paΣ

�q�1
�
a
�
pΣ�aq�1lL2

�
.

Corollary 3. Every full AFL is closed under word blending.

We note that the families of regular languages, context-free languages and recur-
sively enumerable languages are all full AFLs [28].

Proposition 4. The family of context-sensitive languages is not closed under
word blending.

Proof. Let L0 be a recursively enumerable language over Σ, that is not context-
sensitive. It is known that a context-sensitive language L1 over Σ Y ta, bu with
a, b R Σ, can be constructed such that L1 consists of words of the form Pbai

where i ¥ 0 and P P L0 and, in addition, for every P P L0 there is an i ¥ 0 such
that Pbai P L1 (see, e.g., [28]).

Since it is obvious that L1 ' tbu � tPb | P P L0u, which is not context
sensitive, it follows that the family of context sensitive languages is not closed
under word blending with singleton words. [\

Recall that, given a binary word operation �, the binary word operation
� is called the right-inverse of � [22] if and only if for every triplet of words
u, y, w P Σ� the following relation holds: w P pu � yq if and only if y P pu � wq.
In other words, the operation � is called the right-inverse of � if it can be
used to recover the right operand y in u � y, from the other operand u and a
word w P pu � yq in the result. Define now the binary word operation '

r as

u 'r w �
�
aPΣ Σ

�a
��
upaΣ�q�1a

��1l w
	

. Informally, given a word w � αaβ P

pαaγ1 ' γ2aβq, the operation '
r outputs the right operand y � γ2aβ of word

blending, if it is given as inputs the result w � αaβ P pu ' yq and the left
operand u � αaγ1. The definition of 'r can be extended to languages naturally.
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Proposition 5. The operation '
r is the right-inverse of '.

Proof. If w P u ' y, there exist α, β, γ1, γ2 P Σ�, b P Σ such that w �
αbβ, u � αbγ1, y � γ2bβ by Lemma 1. Then, we have that y � γ2bβ P Σ

�bβ �

Σ�b
�
pαbq�1lpαbβq

�
� Σ�b

��
ppαbγ1qpbΣ

�q�1qb
��1l pαbβq

	
�
�
aPΣ Σ

�a
��
ppαb

γ1qpaΣ
�q�1qa

��1lpαbβq
	

.

If y P u 'r w �
�
aPΣ Σ

�a
��
pupaΣ�q�1qa

��1l w
	

, then there exist b P Σ,

and γ2 P Σ
�, γ3 P pupbΣ

�q�1qb such that y � γ2bpγ
�1l
3 wq. This implies that w P�

upbΣ�q�1
�
bpγ�1l

3 wq �
�
upbΣ�q�1

�
b
�
pγ2bq

�1lpγ2bpγ
�1l
3 wqq

�
which is included

in
�
upbΣ�q�1

�
b
�
pΣ�bq�1ly

�
�
�
aPΣ

�
upaΣ�q�1

�
a
�
pΣ�aq�1ly

�
� u ' y. [\

Corollary 6. The families of regular languages and recursively enumerable lan-
guages are closed under the right inverse of the blending. Moreover, if L1 is an
arbitrary language and L2 is a regular language, then L1 '

r L2 is regular; if
L1 is a regular language and L2 is a context-free language, then L1 '

r L2 is
context-free.

Proposition 7. The family of context-free languages is not closed under the
right inverse of blending.

Proof. Consider the context-free languages L1 � ta$pbi1ai1$q � � � pbinain$q | n ¥
1, im ¥ 1 for 1 ¤ m ¤ nu, L2 � tpaj1$b2j1q � � � pajk$b2jkqpaj$c2jq | j ¥ 1, k ¥
1, jm ¥ 1 for 1 ¤ m ¤ ku and the regular language R � t$c�u.

We now show that pL1 '
r L2q X R � t$c2

n

| n ¥ 2u. Since words in R
start with $ and contain only one symbol $, the only cases in which the words
in L1 '

r L2 have the pattern of the words in R are the cases of word pairs
where the overlap letter is $, and a prefix ending in $ in the word from L1

matches the prefix ending in the last occurrence of $ in the word from L2.
More precisely, let u � a$bi1ai1$bi2ai2$ � � � bimaim$ � � � binain$ P L1 and v �
aj1$b2j1aj2$b2j2 � � � ajm$b2jmaj$c2j P L2. For a word w P pL1 '

r L2q to belong
to R, we must have

a$bi1ai1$bi2ai2$ � � � bimaim$ � aj1$b2j1aj2$b2j2 � � � ajm$b2jmaj$,

which implies j1 � 1, j2 � i1 � 2j1 � 2, . . . , j � im � 2jm � 2m. Thus,
w � $c2j � $c2

m�1

, which implies pL1 '
r L2q XR � t$c2

n

| n ¥ 2u.
Since the family of context-free languages is closed under intersection with

regular languages, it follows that it is not closed under the right inverse of
blending. [\

Proposition 8. The family of context-sensitive languages is not closed under
the right inverse of blending.

Recall that given a binary word operation �, the binary word operation � is
called the left-inverse of � iff for every triplet of words x, v, w P Σ� the following
relation holds: w P px � vq if and only if x P pw � vq [22].
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Proposition 9. The left inverse of blending can be expressed using the right
inverse of blending, and mirror image as w '

l v � mipmipvq 'r mipwqq.

Because all families of languages in the Chomsky hierarchy are closed under
mirror image, their closure properties under the left-inverse of word blending are
the same as their closure properties under the right-inverse of word blending.

We now consider the iterated blending operation '�. Recall that, as mentioned
in Section 2, for any language L � Σ�, the language L'� can be generated by a
splicing system with null-context splicing rules defined as 6-tuples, as in [17]. As
shown in [1], every splicing system where the rules are defined by 6-tuples, can
also be implemented by a splicing system as defined in [27], which uses 4-tuple
rules (see Definition 10). This connection, together with Proposition 2, allows us
to express iterated word blending using so-called simple splicing systems [24],
themselves a particular case of splicing systems based on 4-tuple splicing rules.

Definition 10 ([27]). Let σ � pΣ,Rq be a splicing scheme, where Σ is the
alphabet and R is a set of rules R � Σ�#Σ�$Σ�#Σ�. A rule pu1, u2;u3, u4q is
a word u1#u2$u3#u4 P R. For two strings x, y P Σ�, we have

σpx, yq � tx1u1u4y2 |x � x1u1u2x2, y � y1u3u4y2;

x1, x2, y1, y2 P Σ
�, u1#u2$u3#u4 P Ru.

For a language L, we define σpLq � LY
�
x,yPL σpx, yq and we define the iterated

splicing of L by σ�pLq �
�
i¥0 σ

ipLq with σ0pLq � L and σi�1pLq � σpσipLqq.

Simple splicing schemes are splicing schemes as above, but restricted to rules
of the form pa, λ; a, λq for a P Σ. Note that for two languages L1 and L2 over Σ,
we now have that

L1 ' L2 �
¤

xPL1,yPL2

σ'px, yq,

where σ' is the simple splicing scheme σ' � pΣ,Rq with R � Σ#λ$Σ#λ. This
observation together with Proposition 2 which showed that the word blending
of two languages can be written L1 ' L2 �

�
aPΣpL1paΣ

�q�1qappΣ�aq�1lL2q,
gives us the following result.

Proposition 11. For any language L � Σ�, we have σ'pLq � L ' L and
σ�
'
pLq � L'� .

We note that the splicing scheme σ' is finite, since the number of rules
depends only on the number of symbols in Σ, and it is unary, since the rules use
words of length at most 1. We also note that, even though in [24] consideration
is restricted to the case when L is a finite language, the properties of the splicing
systems obtained therein imply the following closure properties.

Proposition 12. Every full AFL is closed under iterated word blending.

Proof. Recall that L'� � σ�
'
pLq and that σ�

'
is finite and unary. For a splicing

rule u1#u2$u3#u4, the words u1 and u4 are called visible sites and u2 and u3
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are invisible sites. In [26], it is shown that full AFLs are closed under regular
splicing systems with finitely many visible sites. Since σ�

'
is finite, the rules of

σ�
'

contain only finitely many visible sites. [\

Now, we will give an explicit construction for L'� when L is a regular
language. We will require the following lemma concerning the structure of words
generated by the iterated blending operation.

Lemma 13. Let L � Σ� be a language. Then for each word w P L'� , there
exists n P N such that there are words ui P infpLq, 1 ¤ i ¤ n and αj P Σ

�, 1 ¤
j ¤ n and symbols ak P Σ, 1 ¤ k ¤ n� 1 where

1. for n ¡ 1,

(a) w � α1a1α2a2 � � � an�1αn,
(b) ui � ai�1αiai P infpLq for all 2 ¤ i ¤ n� 1,
(c) u1 � α1a1 P prefpLq and un � an�1αn P suffpLq,

2. u1 � w P L for n � 1.

Proposition 14. Given an NFA A, there exists an NFA A1 recognizing the
language LpAq'� which is effectively constructible.

This construction gives us a way to test whether a regular language L is
closed under iterated blending.

Proposition 15. Let L be a regular language. It is decidable whether or not L
is closed under '�.

Let L,B � Σ� be two languages. We say that B is a base of L (with respect
to ') if L � B'� . In [24], it is shown that it is decidable whether or not a regular
language is generated by a simple splicing scheme and a finite language base.
Here, we extend the result to consider the case when the base need not be finite.

Theorem 16. It is decidable whether or not a regular language has a base over
'�.

As a consequence, we are able to not only decide whether a regular language
is closed under '�, but if it is, we know there always exists a finite base that
generates it.

Corollary 17. Let L be a regular language closed under '�. Then L can be
generated by a finite base.

Note that in [24] languages generated by simple splicing schemes are assumed
to have finite bases by definition. There it was also shown that the class of
languages generated by these simple splicing schemes is a subclass of the family of
regular languages. Here we do not have the finite base restriction, and Corollary 17
shows that allowing regular bases does not give simple splicing schemes and
iterated word blending any more power than restricting bases to be finite.



8 S.K. Enaganti et al.

4 Decision Problems

This section investigates the existence of solutions to language equations of the
type X ' L � R and L ' Y � R, where L,R are given known languages, X,Y
are unknown languages, and ' is the word blending operation.

Proposition 18. The existence of a solution Y to the equation L ' Y � R is
decidable for given regular languages L and R.

Proof. According to [22], since 'r is the right-inverse of word blending, if there
exists a solution Y to the given equation, then Y 1 � pL 'r Rcqc is also a solution.
Moreover, in this case Y 1 is the maximal solution, in the sense that it includes
all the other solutions to the equation. Since the family of regular languages is
closed under 'r and complement, the algorithm for deciding the existence of
a solution starts with constructing L ' Y 1, which is also regular, and checking
whether L ' Y 1 equals R. As equality of regular languages is decidable [25], if
the answer to the question “Is L ' Y 1 equal to R?” is “yes”, then a solution to
the equation exists, and Y 1 is such a solution. If the answer is “no”, then the
equation has no solution. [\

Proposition 19. The existence of a solution X to the equation X ' L � R is
decidable for regular languages L and R.

Proposition 20. The existence of a singleton solution twu to the equation
L ' twu � R is decidable for regular languages L and R.

Proof. If R is empty, a singleton solution twu to the equation L ' twu � R
exists if and only if L does not use all the letters from the alphabet Σ. The
decision algorithm will check the emptiness of all regular languages LXΣ�aΣ�,
where a P Σ: If any of them is empty, then twu � tau is a singleton solution,
otherwise no singleton solution exists.

We now consider the case when R is not empty. If there is a singleton solution
twu to the equation L ' twu � R, where L,R � Σ�, w P Σ� then there is a
shortest singleton solution of length k ¥ 1, denoted by ws � a1a2 � � � ak, with
a1, a2, . . . , ak P Σ. We now want to show that the number of states in any finite
state automaton that accepts R is at least k.

If lgpwsq � 1, then λ R R, so the number of states of any finite state machine
that recognizes R is at least 2, which is greater than the length of ws.

Suppose k ¥ 2. Define Li � pL ' aiqai�1 � � � ak for 1 ¤ i   k, and define

Lk � L ' ak. Then, we have R �
�k
i�1 Li. Note that L1 �

�k
i�2 Li, as otherwise

a2a3 � � � ak would be a shorter singleton solution than ws—a contradiction.
Let α P L1 � R; α can be represented as α � α1a1a2 � � � ak, where α1 P Σ

�.
Assume now that R is recognized by a DFA M � pQ,Σ, δ, q0, F q with n   k
states. Then there is a derivation

q0α1a1a2 � � � ak ùñ
� qi1a1a2 � � � ak ùñ qi2a2 � � � ak ùñ � � � ùñ qikak ùñ qik�1

.
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Because M has n   k states, there is a state that occurs twice in the set
tqi2 , qi3 , . . . , qik�1

u.
If qij � qik�1

where 2 ¤ j ¤ k, then α1a1 � � � aj�1paj � � � akq
� � R, and so

there exists a word α2 P Σ
� such that α1a1 � � � aj�1paj � � � akq

�α2 � L. Thus, we

have α P α1a1 � � � aj�1paj � � � akq
�α2 ' ak � Lk �

�k
i�2 Li.

If qij � qih where 2 ¤ j   h ¤ k, then α1a1 � � � aj�1paj � � � ah�1q
�ah � � � ak �

R, and so there exists a word α2 P Σ
� such that α1a1 � � � aj�1paj � � � ah�1q

�α2 �

L. Then α P
�
α1a1 � � � aj�1paj � � � ah�1q

�α2 ' ah�1

�
ah � � � ak � Lh�1 �

�k
i�2 Li.

In either case, for all words α P L1, α P
�k
i�2 Li. Thus, we have that L1 ��k

i�2 Li, which is a contradiction.
For the equation L ' Y � R, if there is a singleton solution, there is a

singleton solution ws of minimal length k, and the number of states in any finite
state machine for R is at least k. If the minimal deterministic finite automaton
that generates R has k states, the algorithm for deciding the existence of a
singleton solution will check all the words β, where lgpβq ¤ k. The answer is“yes”
if this algorithm finds a string β such that L ' tβu � R, and “no” otherwise. [\

Proposition 21. The existence of a singleton solution twu to the equation
twu ' L � R is decidable for regular languages L and R.

Proposition 22. The existence of a singleton solution twu to the equation
L ' twu � R is undecidable for regular languages R and context-free languages
L.

Proof. Assume, for the sake of contradiction, that the existence of a singleton
solution twu to the equation L ' twu � R is decidable for regular languages R
and context-free languages L.

Given an arbitrary context-free language L1 over an alphabet Σ, the context-
free language L1 � #Σ�#Y L1$ can be constructed where #, $ R Σ. Note now
that the equation L1 ' twu � Σ�$ has a singleton solution twu if and only if
L1 � Σ� and the solution is twu � t$u. Thus, if we could decide the problem in
the proposition, we would be able to decide whether or not L1 � Σ� for arbitrary
context-free languages L1, which is impossible.

[\

Corollary 23. The existence of a solution Y to the equation L ' Y � R is
undecidable for regular languages R and context-free languages L.

Proposition 24. 1. The existence of a singleton solution twu to the equation
twu ' L � R is undecidable for a regular language R and a context-free
language L.

2. The existence of a solution X to the equation X ' L � R is undecidable for
a regular language R and a context-free language L.

5 State Complexity

By Proposition 2, the family of regular languages is closed under word blending.
Thus, we can consider the state complexity of the blending operation on two
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regular languages. Recall from Proposition 2 that the blending of two languages
can be expressed as a series of union, catenation, and quotient operations. While
the state complexity of each of these operations is known, the state complexity
of a combination of operations is not necessarily the same as the composition of
the state complexities of the operations [29].

First, for illustrative purposes, we will construct an NFA that recognizes
the blending of two languages given by DFAs. Let Am � pQm, Σ, δm, sm, Fmq
be a DFA with m ¥ 1 states that recognizes the language Lm and let An �
pQn, Σ, δn, sn, Fnq be a DFA with n ¥ 1 states that recognizes the language Ln.
We construct an NFA B1 � pQ1, Σ, δ1, s1, F 1q, where Q1 � Qm Y Qn, s1 � sm,
F 1 � Fn, and the transition function δ1 : Q1 �Σ Ñ 2Q

1

is defined for all q P Q1

and a P Σ by

δ1pq, aq �

$'&
'%
�
pPQn

δnpp, aq if q P Qm and δmpq, aq is not the sink state,

δmpq, aq if q P Qm and δmpq, aq is the sink state,

δnpq, aq if q P Qn.

In Figure 1, we define two DFAs Am and An and show the NFA B1 resulting from
the construction described above. Intuitively, the machine B1 operates by first
reading the input word assuming that it is the prefix of some word recognized
by Am. Since the blending occurs on only one symbol, the machine guesses at
which symbol the blend occurs. Once the blend occurs the machine continues
and assumes the rest of the word is the suffix of some word recognized by An.

p0start p1 p2

Am b

a

b

a

c

c

a, b, c

q0start q1

An a, c

b

c

a, b

p0start p1 p2B1

b

a

b

a

c

c

a, b, c

q0 q1a, c

b

c

a, b

a, b

a, b
b

b

Fig. 1. The NFA B1 recognizes the blend of the languages recognized by the DFAs Am

and An



Word blending in formal languages: The Brangelina effect 11

Proposition 25. The NFA B1 recognizes the language Lm ' Ln.

Now, using the same basic idea, we will construct a DFA that recognizes the
language of the blending of the two languages recognized by two given DFAs Am
and An. We construct a DFA A1 � pQ1, Σ, δ1, s1, F 1q where

– Q1 � Qm � 2Qn ,
– s1 � psm,Hq,
– F 1 � tpq, P q P Qm � 2Qn | P X Fn � Hu,
– δ1ppq, P q, aq � pδmpq, aq, P

1q for a P Σ, where

P 1 �

#�
pPP δnpp, aq if δmpq, aq is the sink state,�
pPQn

δnpp, aq otherwise.

Figure 2 shows the DFA A1 that results from following the construction
described above, where Am and An are the DFAs shown in Figure 1. Each state
of A1 is a pair consisting of a state of Am and a subset of states of An. Informally,
we can divide the computation of a word into two phases. In the first phase, states
of the form pq, P q are reached where q is not the sink state of Am. Here, the set
P is determined solely by the input symbol as the machine tries to guess the
symbol on which the blending occurs. In the second phase, the machine reaches
states pqH, P q, where qH is the sink state of Am. The second phase only occurs
when the blend occurs and the input that has been read is no longer a prefix of a
word recognized by Am. In this phase, the set P is determined by the transition
function of An. We will show this formally in the following.

Proposition 26. The DFA A1 recognizes the language Lm ' Ln.

A simple count of the number of states in the state set of A1 gives us as many
as m2n states. We will show that, depending on the size of the alphabet, not all
of these states are necessarily reachable. First, we consider the case where the
alphabet is unary.

Theorem 27. Let Lm and Ln be regular languages defined over a unary alphabet
such that Lm is recognized by an m-state DFA and Ln is recognized by an n-state
DFA. Then the state complexity of Lm ' Ln is m� n� 1 if both Lm and Ln are
finite or 1 otherwise. Furthermore, this bound is reachable.

Now, we will consider the state complexity when the languages are defined
over alphabets of size greater than 1.

Lemma 28. The DFA A1 requires at most pm�1q � pk�1q�2n�1 states, where
k � |Σ| ¤ 2n.

Lemma 29. Let k ¥ 3 and m,n ¥ 2. There exist families of DFAs Am with m
states and Bn with n states defined over an alphabet with k letters such that a
DFA recognizing Am ' Bn requires at least pm� 1q � pk � 1q � 2n � 1 states.

These results together give us the following theorem.
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xp0,Hystart

A1

xp0, pq0qy xp0, pq0, q1qy

xp1, pq0qy xp1, pq0, q1qy

xp2, pq0qy xp2, pq0, q1qyxp2, pq1qy

xp2,Hy

a

b

c

a, b, c

a

b

c

a

b

c

a

b

c

a

b

c

a, c

b

a, b

c
a

b, c

Fig. 2. The DFA A1 recognizes the blend of the languages recognized by Am and An

from Figure 1

Theorem 30. Let Am be a DFA with m states recognizing the language Lm and
let An be a DFA with n states recognizing the language Ln, where Lm and Ln
are defined over an alphabet Σ of size k. Then

scpLm ' Lnq ¤ pm� 1q � pk � 1q � 2n � 1,

and this bound can be reached in the worst case.

Acknowledgements. We thank Giuditta Franco for fruitful discussions on
modelling the outcomes of various XPCR experiments.
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A Appendix

Here we include proofs that were omitted in the paper due to the limitation on
the number of pages.

Lemma 1. If x, y are non-empty words in Σ�, then (p. 4)

x ' y � tz P Σ� | Dα, β, γ1, γ2 P Σ
�, Da P Σ : x � αaγ1, y � γ2aβ, z � αaβu.

Proof. Let A denote the right hand side of the equality. The inclusion A � x ' y
is obvious by the definition of word blending. To prove the converse, let z P x ' y.
Then z � αwβ for some α, β, γ1, γ2 P Σ

� and w P Σ� such that x � αwγ1,
y � γ2wβ. As w P Σ�, w can be written as w � w1a, where w1 P Σ

�, a P Σ.
It follows that x � αw1aγ1, y � γ2w1aβ and z � αw1aβ, that is, x � α1aγ1,
y � γ12aβ and z � α1aβ with α1 � αw1 P Σ

� and γ12 � γ2w1 P Σ
�. Thus, z P A,

and the equality is proved. [\

Proposition 2. Given languages L1, L2 � Σ�, (p. 4)

L1 ' L2 �
¤
aPΣ

�
L1paΣ

�q�1
�
a
�
pΣ�aq�1lL2

�

Proof. (�) Let z P L1 ' L2. Then, by Lemma 1, z � αaβ, for some x P
L1 and y P L2 such that x � αaγ1, y � γ2aβ where a P Σ,α, β, γ1, γ2 P
Σ�. It is clear that α P L1paΣ

�q�1 and β P pΣ�aq�1lL2, so z � αaβ P�
L1paΣ

�q�1
�
a
�
pΣ�aq�1lL2

�
.

(�) Let z P
�
aPΣ

�
L1paΣ

�q�1
�
a
�
pΣ�aq�1lL2

�
. Then there exists a P Σ and

words α, γ1, γ2, β P Σ
�, such that z � αaβ, where x � αaγ1 P L1, y � γ2aβ P L2,

which implies that z P L1 ' L2. [\

Corollary 3. Every full AFL is closed under word blending. (p. 4)

Proof. It follows from Proposition 2, and every full AFL is closed under left/right
quotient with regular languages, catenation and finite union [28]. [\

Proposition 8. The family of context-sensitive languages is not closed under (p. 5)

the right inverse of blending.

Proof. Let L0 be a recursively enumerable language over Σ, that is not context-
sensitive, and the context-sensitive language L1 over Σ Y ta, bu with a, b R Σ,
that can be associated to L0 such that L1 consists of words of the form aibP
where i ¥ 0 and P P L0 and, in addition, for every P P L0 there is an i ¥ 0 such
that aibP P L1.

The result now follows as pL1 '
r ta�buq XΣ�bΣ� � tΣ�bP | b R Σ,P P L0u,

which is not context-sensitive, and the family of context-sensitive languages is
closed under intersection with regular languages. [\

Proposition 9. The left inverse of blending can be expressed using the right (p. 6)

inverse of blending, and mirror image as w '
l v � mipmipvq 'r mipwqq.



16 S.K. Enaganti et al.

Proof. If w P x ' v, there exist α, β, γ1, γ2 P Σ
�, b P Σ such that w � αbβ, x �

αbγ1, v � γ2bβ by Lemma 1. Then, since x � αbγ1 � mi pmipγ1qbmipαqq, we
have

x P mipΣ�bmipαqq

� mi
�
Σ�b

�
pmipβqbq

�1l pmipβqbmipαqq
		

� mi

�
Σ�b

��
pmipβqbmipγ2qq pbmipγ2qq

�1
b
	�1l

mipwq





� mi

�
Σ�b

���
mipvq pbmipγ2qq

�1
	
b
	�1l

mipwq





� mi

�¤
aPΣ

�
Σ�a

���
mipvq paΣ�q

�1
	
a
	�1l

mipwq



�

� mi pmipvq 'r mipwqq

� w '
l v.

Now consider x P w '
l v. Then,

x P w '
l v � mipmipvq 'r mipwqq

� mi

�¤
aPΣ

Σ�a
��
pmipvqpaΣ�q�1qa

��1l
mipwq

	�
.

Thus, there exist b P Σ, γ1 P Σ
�, γ3 P pmipvqpbΣ�q�1qb such that

x � mi
�
mipγ1qbpγ

�1l
3 mipwqq

�
� pwmipγ3q

�1qbγ1.

Then we have

w P pwmipγ3q
�1qbppΣ�bq�1lvq

� pwmipγ3q
�1qbγ1pbΣ

�q�1bppΣ�bq�1lvq

�
¤
aPΣ

pppwmipγ3q
�1qbγ1qpaΣ

�q�1qappΣ�aq�1lvq

�
¤
aPΣ

pxpaΣ�q�1qappΣ�aq�1lvq

� x ' v.

[\

Lemma 13. Let L � Σ� be a language. Then for each word w P L'� , there exists(p. 7)

n P N such that there are words ui P infpLq, 1 ¤ i ¤ n and αj P Σ
�, 1 ¤ j ¤ n

and symbols ak P Σ, 1 ¤ k ¤ n� 1 where

1. for n ¡ 1,



Word blending in formal languages: The Brangelina effect 17

(a) w � α1a1α2a2 � � � an�1αn,
(b) ui � ai�1αiai P infpLq for all 2 ¤ i ¤ n� 1,
(c) u1 � α1a1 P prefpLq and un � an�1αn P suffpLq,

2. u1 � w P L for n � 1.

Proof. Let w P L'� . Then w P L'j for some j ¥ 0. We will prove the statement
by induction on j. If j � 0 then w P L and the statement holds taking n � 1.
Assume that the statement holds for words in L'j for any j ¤ k, and consider
a word w P L'k�1 � L ' L'k . This implies that w P x ' y for some x P L and
y P L'k . By the induction hypothesis, either y P L or y � β1b1β2b2 � � � bm�1βm
for some m ¥ 2 with bi P Σ, 1 ¤ i ¤ m� 1 and βj P Σ

�, 1 ¤ j ¤ m satisfying
the conditions of the Lemma.

If y P L, then x ' y consists of all words of the form α1a1α2 where x � α1a1γ1
for α1, γ1 P Σ

� and a1 P Σ and y � γ2a1α2 for some γ2, α2 P Σ
�. It is easy to

see that α1a1α2 satisfies the conditions of the Lemma.
Otherwise, if y � β1b1β2b2 � � � bm�1βm for some m ¥ 2, then the set x ' y

consists of words of the form α11a
1
1β

1
`b` � � � bm�1βm where α11a

1
1 P prefpxq and

1 ¤ ` ¤ m. Here, we observe that in order for the blend to occur, we have
a11β

1
` P suffpb`�1β`q. Then by definition, we have α11a

1
1 P prefpxq � prefpLq and

a11β
1
`b` P infpLq and the rest follows. [\

Proposition 14. Given an NFA A, there exists an NFA A1 recognizing the (p. 7)

language LpAq'� which is effectively constructible.

Proof. Given an NFA A � pQ,Σ, δ, s, F q, we can construct an NFA A1 �
pQ1, Σ, δ1, s1, F 1q that recognizes the language LpAq'� . Informally, the machine
operates by guessing when a blend occurs. Recall from Lemma 13, words of
LpAq'� are of the form α1a1α2a2 � � � an�1αn. When a blend occurs on a symbol
ai, the machine then simulates the operation of A on the blended suffix αi�1 and
continues to guess when the next blend may occur. This process repeats until the
machine reaches a final state of A and accepts or it does not and the machine
rejects.

Formally, we define A1 by

– Q1 � txpy, xq, ry | p, q, r P Qu,
– s1 � xsy,
– F 1 � txqy | q P F u,

and the transition function is defined by

– δ1pxqy, aq � txq1y, xq1, r1y | q1 P δpq, aq, r1 P
�
pPQ δpp, aqu,

– δ1pxq, ry, aq � txr1y, xr1, p1y | r1 P δpr, aq, p1 P
�
pPQ δpp, aqu.

First, we show that LpA1q � LpAq'� . Consider a word w P LpA1q. There
exists a sequence of states, or path, in A1 on w from xsy to xq1ny where xq1ny P F

1.
Recall that states of A1 are of the form xqy or xq, ry. Of the states on the path
defined by the computation of w, we consider those states of the form xq, ry and
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label them xq1i, qi�1y for 0 ¤ i ¤ n. Each state xq1i, qi�1y is entered upon reading
a symbol which we will call ai P Σ.

Now for each 1 ¤ i ¤ n � 1, consider the path in A1 between xq1i�1, qiy
and xq1i, qi�1y. Between these two states, each state on the path is of the form
xqy, as we have already labeled states that are of the form xq, ry. This implies
that there is a word αi�1ai�1 which takes A from qi to q1i. But this means that
aiαi�1ai�1 is a subword of some word recognized by A. Then we can write
w � α1a1α2a2 � � � an�1αn where α1a1 P prefpLpAqq since it takes A from s to s1

and αn P suffpLpAqq since it takes A from a state qn to q1n P F . Thus, we have
w P LpAq'� .

Now, we show that LpAq'� � LpA1q. Consider a word w P LpAq'� . We can
write w � α1a1α2a2 � � � an�1αn. Since each aiαi�1ai�1 is a subword of a word
recognized by A, there must exist a path between two states of A, say qi and q1i,
on each word αi�1ai�1. Then a path can be traced in A1 from the initial state
xsy by

xsy
α1a1ÝÝÝÑ xq10, q1y

α2a2ÝÝÝÑ xq11, q2y
α3a3ÝÝÝÑ � � �

αn�1an�1
ÝÝÝÝÝÝÑ xq1n�1, qny

αnÝÝÑ xq1ny.

Recall that by Lemma 13, α1a1 P prefpLpAqq and therefore there is a path from s
to a state q10 in A. Note also that since an�1αn P suffpLpAqq, the state q1n which is
reached on a path on αn must be an accepting state of A and therefore xq1ny P F

1

and w P LpA1q. [\

Proposition 15. Let L be a regular language. It is decidable whether or not L(p. 7)

is closed under '�.

Proof. Let A be an NFA that recognizes L. Then by the construction given
in Proposition 14, we can construct an NFA A1 that recognizes L'� . Testing
equivalence of two NFAs is known to be decidable [28] and therefore, testing
whether L � L'� is decidable. [\

Theorem 16. It is decidable whether or not a regular language has a base over(p. 7)

'�.

Proof. Let L � Σ� be a regular language given as a finite automaton. Let
R � tw P Σ� | |w|a ¤ 2 for all a P Σu be the set of words in which each symbol
of Σ appears at most twice. We claim that if L is closed under '�, it must be
generated by a base B � LXR.

Suppose otherwise and that L is generated by a base B1 which is not a
subset of LXR. Then B1 contains a word of the form w � x1ax2ax3ax4, where
x1, x2, x3, x4 P Σ� and a P Σ. Let w1 � x1ax2ax4 and w2 � x1ax3ax4 and
note that w1, w2 P w ' w and therefore w1, w2 P L. Furthermore, we have
w P w1 ' w2 and we can define an equivalent base B2 � pB1ztwuq Y tw1, w2u.

Now, we show that we only need to repeat this procedure a finite number
of times. One only needs to consider words of length at most n, where n is the
pumping length of L. Indeed, consider a word u of length greater than n. Since
L is regular, we can write u � xy2z where x, y, z P Σ� and xyz P L is of length
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at most n. But then we have xyz P u ' u. Thus, it suffices to consider only those
words in L of length up to n.

We can test whether the base B obtained via this process generates L. Using
the construction of Proposition 14, we can construct an NFA C that recognizes
B'� and test whether LpCq � LpAq. This is decidable since NFA equivalence is
known to be decidable [28]. [\

Proposition 19. The existence of a solution X to the equation X ' L � R is (p. 8)

decidable for regular languages L and R.

Proof. Similar to the preceding proof, and using the closure of the family of
regular languages under the left-inverse of word blending. [\

Proposition 21. The existence of a singleton solution twu to the equation (p. 9)

twu ' L � R is decidable for regular languages L and R.

Proof. Similar to the preceding proof, and using the fact that the minimal length
of a singleton solution to the equation is equal to or smaller than the number of
states of any deterministic finite automaton that recognizes R. [\

Proposition 25. The NFA B1 recognizes the language Lm ' Ln. (p. 11)

Proof. First, we show that Lm ' Ln � LpB1q. Let w P Lm ' Ln and write
w � αaβ for a symbol a P Σ and words α, β P Σ� such that for some words
γ1, γ2 P Σ

�, we have αaγ1 P Lm and γ2aβ P Ln. Since αa is a prefix of a word
in Lm, let p � δmpsm, αaq P δ

1ps1, αaq. However, since aβ is a suffix of a word of
Ln, there exists a state q P Qn such that δnpq, aq � r and by the definition of δ1,
we have r P δ1ps1, αaq. From here, we observe that we must have δnpr, βq P Fn
and therefore δ1pr, βq P F 1 and w is accepted by B1.

Next, we show that LpB1q � Lm ' Ln and consider a word w P LpB1q. By
definition, must exist a path on w from s1 � sm to a state in Fn and we can
divide the path into two parts. The first part consists of transitions among states
of Am and the latter part consists of transitions among states of Qn. Observe
that the only way for a transition from a state p P Qm to a state q P Qn to be
defined is if for some symbol a P Σ, δmpp, aq is not a transition to a sink state
and that δnpr, aq � q for some r P Qn. Thus, we can write w � xay for words
x, y P Σ�, where a P Σ is the symbol on which the path transitions from states
of Am to states of An. Then this implies that xa is a prefix of some word in Lm
and ay is a suffix of some word in Ln. Therefore, w P Lm ' Ln by definition and
thus, we have shown that B1 recognizes Lm ' Ln. [\

Proposition 26. The DFA A1 recognizes the language Lm ' Ln. (p. 11)

Proof. First, to show that Lm ' Ln � LpA1q, consider a word w P Lm ' Ln.
Then w � αaβ for some symbol a P Σ and words α, β P Σ� where for some
γ1, γ2 P Σ

�, we have αaγ1 P Lm and γ2aβ P Ln. Observe that since αa is a prefix
of a word in Lm, the state δmpsm, αaq is not the sink state. Similarly, since aβ



20 S.K. Enaganti et al.

is the suffix of a word in Ln, there exists at least one state in Qn that has an
incoming transition on the symbol a.

If β � λ, then a P suffpLnq and δ1ps1, αaq P F 1 and therefore, w P LpA1q.
So suppose β � σβ1 for some symbol σ P Σ and β1 P Σ�. We assume that
δmpsm, αaσq is the sink state, since otherwise, we can write w � α1σβ1 where α1 �
αa and repeat the same process. Then reading σ takes us from pδmpsm, αaq, P q to
the state pqH, P

1q, where qH denotes the sink state of Am and P 1 �
�
pPP δnpp, aq.

Since β is the suffix of a word in Ln, there exists a state p P P such that
δnpp, βq P Fn. Thus, reading the rest of β takes us to a state pqH, P

2q with
P 2 X Fn � H and therefore, w is recognized by A1.

To show that LpA1q � Lm ' Ln, we consider a word w recognized by A1. That
is, upon reading w, the machine A1 reaches a final state pq1, P 1q with P 1XFn � H.
First, suppose that q1 is not the sink state of Am. We can write w � w1a for a
symbol a P Σ and a word w1 P Σ�. Since q1 is not the sink state of Am, the word
w is a prefix of some word in Lm and we have w1aγ1 P Lm for some γ1 P Σ

�. By
the definition of the transition function, a is a suffix of a word in Ln and we have
γ2a P Ln for some γ2 P Σ

�. Thus, w P w1aγ1 ' γ2a and therefore w P Lm ' Ln.
Now, suppose that q1 is the sink state of Am. Let w � αabβ such that αab is

the shortest prefix of w that enters the sink state q1 of Am. Then αa is a prefix
of a word in Lm so we have αaγ1 P Lm for some γ1 P Σ

�. Reading αa takes us
to the state δ1ps1, αaq � pq, P q such that q is some state of Am which is not the
sink state and P �

�
pPQn

δnpp, aq.
We claim that abβ is a suffix of a word in Ln. To see this, we observe that

since reading b from pq, P q takes A1 to the state pq1, P 2q, where q1 is the sink state
of Am, any transitions from P 2 no longer depend solely on the input symbol.
Therefore, there must exist a path in An from a state r P P to a final state of
An on the word abβ. We can write β1 � bβ and thus there exists a word γ2 such
that γ2aβ

1 P Ln. Therefore, w P αaγ1 ' γ2aβ
1 and w P Lm ' Ln as desired.

Thus, we have shown that LpA1q � Lm ' Ln. [\

Theorem 27. Let Lm and Ln be regular languages defined over a unary alphabet(p. 11)

such that Lm is recognized by an m-state DFA and Ln is recognized by an n-state
DFA. Then the state complexity of Lm ' Ln is either m� n� 1 if both Lm and
Ln are finite, or 1 otherwise. Furthermore, this bound is reachable.

Proof. Recall that by Proposition 2, Lm ' Ln � pLmpa
�q�1qappa�q�1lLnq. If

either Lm or Ln are infinitely large, then we have Lm ' Ln � a�, in which case
the state complexity of Lm ' Ln is 1. If both Lm and Ln are finite, then it is
easy to see that the state complexity of Lm ' Ln is m� n� 1. [\

Lemma 28. The DFA A1 requires at most pm � 1q � pk � 1q � 2n � 1 states,(p. 11)

where k � |Σ| ¤ 2n.

Proof. First, observe that in order to maximize the number of reachable states
of A1, the DFA Am must contain a state that cannot reach an accepting state.
Otherwise, if every state of Am can reach an accepting state, then by definition
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of A1, we have LpAmq ' LpAnq � prefpLpAmqq. One can construct a DFA for
prefpLpAmqq by modifying Am so that every state of Am is a final state. In this
case, A1 would then require at most m states. Thus, we assume that Am contains
a sink state qH which cannot reach an accepting state.

Consider the transition function δ1 on a state pq, P q, where q � qH. Then
for each symbol a P Σ, there is only one possible reachable set of states P in
An. This gives us up to pm � 1q � k reachable states. However, we claim that
in order for two states pq, P q and pq, P 1q with P � P 1 to be distinguishable, q
must contain a transition to qH. Otherwise, for every symbol a P Σ, we have
δ1ppq, P q, aq � δ1ppq, P 1q, aq by definition. Thus, since every state must contain
at least one transition to qH and Am is deterministic, A1 has only at most
pm� 1q � pk � 1q reachable states of this form.

Next, consider that there are up to 2n reachable states pqH, P q as derived
from the subset construction.

Finally, we note that the initial state s1 � psm,Hq does not belong to
any of the above sets. Adding all of these states together, we have at most
pm� 1q � pk � 1q � 2n � 1 reachable states. [\

Lemma 29. Let k ¥ 3 and m,n ¥ 2. There exist families of DFAs Am with m (p. 11)

states and Bn with n states defined over an alphabet with k letters such that a
DFA recognizing Am ' Bn requires at least pm� 1q � pk � 1q � 2n � 1 states.

Proof. Let Σ � ta1, . . . , ak�2, b, cu. We will define the DFAs Am and Bn over Σ.
Let Am � pPm, Σ, δm, sm, Fmq where Qm � t0, . . . ,m � 1u, sm � 0, and

Fm � tm� 2u. We define the transition function δm by

– δmpp, aiq � p for all 0 ¤ p ¤ m� 2 and 1 ¤ i ¤ k � 2,
– δmpp, bq � p� 1 for 0 ¤ p ¤ m� 2,
– δmpm� 1, σq � m� 1 for all σ P Σ.

The DFA Am is shown in Figure 3.
Let Bn � pQn, Σ, ηn, sn, Fnq where Qn � t0, . . . , n � 1u, sn � 0, and Fn �

tn� 1u. We will define the transition function ηn by

– ηnpq, bq � q � 1 mod n for 0 ¤ q ¤ n� 1,
– ηnpq, cq � q for 0 ¤ q ¤ n� 1.

For transitions on symbols ai with 1 ¤ i ¤ k�2, we define an enumeration of the
subsets of Qn and let Qnris be the ith subset of Qn. Any arbitrary enumeration
of subsets of Qn suffices for this proof subject to the condition that

1. for 0 ¤ i ¤ k � 2, each i corresponds to a particular subset of Qn and
2. we reserve Qnr0s � Qn and Qnr1s � t0, 1, . . . , n� 2u.

That is, Qnris � Qnrjs iff i � j for 0 ¤ i, j ¤ k� 2. Also note that while we have
defined Qnr0s, there is no symbol a0. We will show later that, by our definitions,
the role of a0 will be played by b. If k ¡ 2n, then this property cannot hold but
it is clear that we can enumerate all 2n subsets of Qn.
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Then we define transitions on ai P Σ by

ηpq, aiq �

#
q if q P Qnris,

q �minpq�j mod nqPQnris j mod n if q R Qnris.

In other words, for each state q P Qn, the transition on the symbol ai goes to the
“next” state that is in Qnris. If q P Qnris, then that q itself is the “next” state.

0start 1 2 � � � m� 2 m� 1

a1, . . . , ak a1, . . . , ak a1, . . . , ak

a1, . . . , ak a1, . . . , ak, b, c

b b b b b, c

c
c

c

Fig. 3. The DFA Am.

We will show that A1 contains pm � 1q � pk � 1q � 2n � 1 reachable and
distinguishable states.

First, to show that the states are reachable, we note that s1 � psm,Hq is
clearly reachable as the initial state. Then, we observe that for 1 ¤ i ¤ k� 2, the
state pq,Qnrisq with q P Qmztm�1u is reachable on the word bqai and pq,Qnr0sq
is reachable on the word bq. Since the only symbol not used here is c, this gives
us pm� 1q � pk � 1q states.

Now we consider states of the form pm� 1, P q where P � Qn. Observe that
pm�1, Qnq can be reached on the word bm�1. Then, we note that for an arbitrary
set T � Qn and element t P T , we can reach the state pm� 1, T zttuq from the
state pm� 1, T q on the word bn�ta1b

t. By repeating this process, we can reach
any state pq, P q for any arbitrary subset P � Qn. Thus, we have an additional 2n

reachable states of the form pm�1, P q, giving us a total of pm�1q�pk�1q�2n�1
reachable states.

Next, we will show that these states are pairwise distinguishable. Consider
two states pq, P q and pq1, P 1q. First, we fix P � P 1 and assume without loss
of generality that q   q1. Then the two states are distinguished by the word
bm�1�qan1 .

Now, we consider when P � P 1. In this case, reading c takes the state pq, P q
to pm� 1, P q and pq1, P 1q to pm� 1, P 1q. Then without loss of generality, there
exists an element t P P and t R P 1. Then these states are distinguished by the
word bn�t.

Thus, we have shown that all pm� 1q � pk � 1q � 2n � 1 states are reachable
and pairwise distinguishable. [\


