
Consensus String Problem for Multiple Regular
Languages

Yo-Sub Han1, Sang-Ki Ko2, Timothy Ng3, and Kai Salomaa3

1 Department of Computer Science, Yonsei University
50, Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea

emmous@yonsei.ac.kr
2 Department of Computer Science, University of Liverpool

Liverpool L69 3BX, UK
sangkiko@liverpool.ac.uk

3 School of Computing, Queen’s University
Kingston, Ontario K7L 3N6, Canada

{ng,ksalomaa}@queensu.ca

Abstract. The consensus string (or center string, closest string) of a
set S of strings is defined as a string which is within a radius r from all
strings in S. It is well-known that the consensus string problem for a
finite set of equal-length strings is NP-complete. We study the consensus
string problem for multiple regular languages. We define the consensus
string of languages L1, . . . , Lk to be within distance at most r to some
string in each of the languages L1, . . . , Lk. We also study the complexity
of some parameterized variants of the consensus string problem. For a
constant k, we give a polynomial time algorithm for the consensus string
problem for k regular languages using additive weighted finite automata.
We show that the consensus string problem for multiple regular languages
becomes intractable when k is not fixed. We also examine the case when
the length of the consensus string is given as part of input.

Keywords: consensus string problem, computational complexity, regular
languages, edit-distance

1 Introduction

In bioinformatics, the multiple sequence alignment is a process of finding an
optimal alignment from its multiple reads to find a correct biological sequence [10,
21]. See Fig. 1 for example. Moreover, it is a very important task to find the
consensus sequence for detecting data commonalities from a set of strings in many
practical applications such as coding theory [5, 7], data compression [8], and so
forth.

There have been several definitions of a consensus string for a set of strings.
Frances and Litman defined the consensus string based on the concept of the
radius [7]. The radius of a string w with respect to a set S of strings is the smallest
number r such that the distance between w and any string in S is bounded by r.

2 Yo-Sub Han, Sang-Ki Ko, Timothy Ng, and Kai Salomaa

Read 1 G A T A C G T C A - A G T C

Read 2 G A G A C G A C A - A G T C

Read 3 G G G A C G T C A A A G - C

Sequence G A G A C G T C A - A G T C

Fig. 1. The correct biological sequence can be estimated as the consensus sequence
derived from the multiple sequence alignment from its reads

It is known that the consensus string problem based on radius is NP-complete
even when the strings are given over the binary alphabet [7]. Sim and Park
considered a different consensus string problem where they try to minimize the
sum of distances between w and all strings in S, which is the consensus error.
They showed that the consensus string problem based on the consensus error is
NP-complete when the penalty matrix is a metric [25].

Amir et al. [1] examined the consensus string problem by considering both
distance sum and radius, where the distance sum is the sum of distances from the
strings in the given set to the consensus string and the radius is the largest distance
from the set to the consensus string. They presented efficient polynomial time
algorithms for the set of three strings. Amir et al. [2] studied the consensus string
problem for other string metrics such as the swap metric and the reversal metric
and showed that the problem is NP-hard for the swap metric and APX-hard for
the reversal metric.

Since there is no polynomial-time solution for the consensus string problem
unless P=NP, many researchers studied approximation algorithms and fixed-
parameter tractability [10, 16]. Stojanovic et al. [26] proposed a linear-time
algorithm when the radius is one. Gramm et al. [9, 10] designed the first fixed-
parameter algorithm whose time complexity is O(kl + krr+1) where k is the
number of strings, l is the length of strings, and r is the radius, which yields
a linear-time algorithm for a constant r. For more details on fixed-parameter
tractability of the consensus string problem, we refer the reader to [10, 16, 21].

We consider the consensus string problem for multiple regular languages, that
is, to compute the consensus string which is within a given radius to the given
regular languages. We use the Levenshtein distance (edit-distance) as a distance
function for strings instead of the Hamming distance since the regular languages
may be infinite and thus containing strings of unequal length.4

Given k regular languages given by NFAs or DFAs (nondeterministic or
deterministic finite-state automata) and a radius r, we define the consensus string
problem which decides the existence of a consensus string of radius r. We show
that the problem is PSPACE-complete in general, and also when the radius r
is fixed. We also establish that the problem becomes polynomial-time decidable
when k is fixed using additive weighted finite automata. Lastly, we study a special
case when the length l of the consensus string is given as input.

4 The Hamming distance is only for strings of equal length

Consensus String Problem for Multiple Regular Languages 3

2 Preliminaries

In the following Σ is always a finite alphabet, Σ∗ is the set of strings over Σ,
and ε is the empty string. The length of a string w is |w|. When there is no
danger of confusion, a singleton set {w} is denoted simply as w. The set of
non-negative integers is N0. For n ∈ N0, bin(n) ∈ {0, 1}∗ is the string giving the
binary representation of n.

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, q0, F)
where Q is a finite set of states, Σ is an alphabet, δ is a multi-valued transition
function δ : Q×Σ → 2Q, q0 ∈ Q is the initial state, and F ⊆ Q is a set of final
states. We extend the transition function δ to a function Q×Σ∗ → 2Q in the
usual way. A string w ∈ Σ∗ is accepted by A if δ(q0, w)∩F 6= ∅ and the language
recognized by A consists of all strings accepted by A. The automaton A is a
deterministic finite automaton (DFA) if, for all q ∈ Q and a ∈ Σ∗, δ(q, a) either
consists of one state or is undefined.

The reader can find more details on finite automata and regular languages in
the text by Shallit [24] or the survey by Yu [27].

2.1 Distance measures and neighbourhoods

Intuitively, a distance measure on strings is a numerical description of how far
apart two strings are. We view a distance on strings as a function from Σ∗ ×Σ∗
to the nonnegative rationals that has value zero only for two identical strings, is
symmetric, and satisfies the triangle inequality [6]. For our purposes it is sufficient
to consider integral distances [20] where the values are integers. We define that a
function d : Σ∗ ×Σ∗ → N0 is a distance if it satisfies, for all x, y, z ∈ Σ∗,

(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, z) ≤ d(x, y) + d(y, z).

The neighbourhood of radius r of a language L is the set

E(L, d, r) = {x ∈ Σ∗ : (∃y ∈ L) d(x, y) ≤ r}.

A distance d is said to be finite if the neighbourhood of any given radius of an
individual string with respect to d is finite. A distance d is additive [3] if for every
factorization w = w1w2 and radius r ≥ 0,

E(w, d, r) =
⋃

r1+r2=r

E(w1, d, r1) · E(w2, d, r2).

Additive distances preserve regularity in the sense that the neighbourhood of a
regular language is always regular [3].

The Levenshtein distance [15], a.k.a. the edit-distance de [22, 11, 13, 4] is an
example of an additive distance. By the elementary edit operations on strings
we mean an operation that replaces an alphabet symbol by another alphabet

4 Yo-Sub Han, Sang-Ki Ko, Timothy Ng, and Kai Salomaa

symbol (substitution), a deletion of an alphabet symbol or an insertion of an
alphabet symbol into a string. The edit-distance between strings s1 and s2 is the
smallest number of elementary edit operations that transform s1 into s2. More
generally, we can associate a non-negative cost to each elementary edit operation
and then define the edit-distance between s1 and s2 as the smallest cost of all
sequences of elementary edit operations that transform string s1 into string s2.

Unless otherwise mentioned, in the following we assume that elementary
edit operations are all associated a unit cost. Our results would not change
significantly if we use more general costs for the elementary edit operations.

We recall a result on the nondeterministic state complexity of edit-distance
neighbourhoods. The result is originally due to Povarov [23] who states it for
the Hamming distance neighbourhoods. However, exactly the same construction
works for a general edit-distance where the costs of elementary edit operations
are non-negative integers [20]. We add to the statement of the result a time
bound needed for the construction.

Proposition 1 ([20, 23]). Let A be an NFA with n states and r ∈ N. The
neighbourhood of L(A) of radius r with respect to the edit-distance de can be
recognized by an NFA B with n · (r+ 1) states. The NFA B can be constructed in
time that depends polynomially on n and r.

2.2 Additive weighted finite automata

An additive weighted finite automaton model has been used by Ng et al. [19] to
recognize the neighbourhood of an NFA language. Since we need to recognize
an intersection of neighbourhoods we extend the model to a multi-component
weighted finite automaton where the states are k-tuples and transition weights
are k-tuples of integers. The original definition allows real weights but integer
weights will be sufficient for our purposes.

Definition 2. An additive k-component weighted finite automaton (additive
k-WFA) is a 6-tuple A = (Q,Σ, γ, ω, q0, F) where Q = P1 × · · · × Pk, k ∈ N,
and each Pi is a finite set of states, Σ is an alphabet, γ : Q× (Σ ∪ {ε})→ 2Q is
the transition function, ω : Q× (Σ ∪ {ε})×Q→ Nk0 is a partial weight function
where ω(q1, a, q2) is defined if and only if q2 ∈ γ(q1, a), (a ∈ Σ ∪ {ε}), q0 ∈ Q is
the initial state, and F ⊆ Q is the set of accepting states.

Strictly speaking, the transitions of γ are also determined by the domain of the
partial function ω. By a transition of an additive k-WFA A on symbol a ∈ Σ we
mean a triple (q1, a, q2) such that q2 ∈ γ(q1, a), q1, q2 ∈ Q. A computation path
α of the additive k-WFA A along a string w = a1a2 · · · am, ai ∈ Σ, i = 1, . . . ,m,
from state s1 to s2 is a sequence of transitions that spells out the string w,

α = (q0, a1, q1)(q1, a2, q2) · · · (qm−1, am, qm), (1)

where s1 = q0, s2 = qm, and qi ∈ γ(qi−1, ai), 1 ≤ i ≤ m.

Consensus String Problem for Multiple Regular Languages 5

In the following, we use componentwise notation for addition and inequal-
ity for k-tuples in Nk0 . Let (x1, . . . , xk), (y1, . . . , yk) ∈ Nk0 . Then, (x1, . . . , xk) +
(y1, . . . , yk) = (x1 + y1, . . . , xk + yk), and (x1, . . . , xk) ≤ (y1, . . . , yk) if and only
if xi ≤ yi, i = 1, . . . , k.

The weight of the computation path α as in Equation (1) is

ω(α) =

m∑
i=1

ω(qi−1, ai, qi) ∈ Nk0 .

We let Θ(s1, w, s2) denote the set of all computation paths along a string w
from state s1 to state s2. The language recognized by the additive k-WFA A within
the weight bound r ≥ 0 is the set of strings for which there exists a computation
path that is accepted by A and each component of the weight is at most r.
Formally, we define

L(A, r) = {w ∈ Σ∗ : (∃f ∈ F)(∃α ∈ Θ(q0, w, f)) ω(α) ≤ (r, . . . , r)}.

3 Consensus String for Multiple Regular Languages

We define that the consensus string of languages L1, . . . , Lk is a string that is
within a given edit-distance r from a string in each of the languages.

Definition 3 (Consensus string of multiple languages). Let Li ⊆ Σ∗, 1 ≤
i ≤ k be k languages over an alphabet Σ. Then, a string w is a radius r consensus
of the languages L1, L2, . . . , Lk, if min{de(w,wi) | wi ∈ Li} ≤ r for all 1 ≤ i ≤ k.

The following lemma is an immediate consequence of the definition.

Lemma 4. Let r, k ∈ N. Languages L1, . . . , Lk have a radius r consensus string
if and only if

⋂k
i=1E(Li, de, r) 6= ∅.

We will consider the algorithmic problem of determining the existence of
a consensus string of radius r for given k regular languages. We consider also
uniform variants of the problem where the values k and/or r will be given as
part of the input. The terminology for talking about different variants of the
problem is defined next.

Definition 5 (consensus string problem for regular languages). Let k, r ∈
N0 be fixed. The (k, r)-consensus string problem for NFAs (respectively, for given
DFAs) is the problem of determining, for given NFAs (respectively, for DFAs)
A1, . . . , Ak

whether or not L(A1), . . . , L(Ak) have a radius r consensus string. (2)

For a fixed r ∈ N0, the (∗, r)-consensus string problem for NFAs is the problem
of determining whether Equation (2) holds for given k ∈ N and NFAs A1, . . . , Ak.
For a fixed k ∈ N, the (k, ∗)-consensus string problem for NFAs asks whether
Equation (2) holds for given r ∈ N and NFAs A1, . . . , Ak, and the (∗, ∗)-consensus
problem for NFAs is the same problem where both k and r are part of the input.

The (∗, r)- (respectively, (k, ∗)-, (∗, ∗)-) consensus string problem for DFAs is
defined analogously by restricting the input automata to be DFAs.

6 Yo-Sub Han, Sang-Ki Ko, Timothy Ng, and Kai Salomaa

3.1 The (∗, r)-consensus string problem for NFAs

Using Proposition 1 it is easy to see that the (k, r)-consensus string problem
for NFAs can be solved in polynomial time. In Section 3.2, more generally, we
show that the (k, ∗)-consensus string problem for NFAs has a polynomial time
algorithm. On the other hand, the (∗, 0)-consensus string problem for DFAs is
the standard DFA intersection emptiness problem and is known to be PSPACE-
complete [12, 14]. Below we show that, for any r ∈ N, the (∗, r)-consensus string
problem is PSPACE-complete.

Lemma 6. For r ∈ N, the (∗, r)-consensus string problem for DFAs is PSPACE-
complete.

Proof. For given k and DFAs A1, . . . , Ak, by Proposition 1, we can construct
in polynomial space NFAs Bi recognizing the neighbourhood E(L(Ai), de, r),
i = 1, . . . , k, since r is a constant. Then, the intersection emptiness of the NFAs
Bi can be decided in polynomial space.

For the hardness result, we reduce the DFA intersection emptiness problem
to the (∗, r)-consensus string problem for DFAs. Let C1, . . . , Ck be DFAs over an
alphabet Σ. We construct DFAs D1, . . . , Dk such that D1, . . . , Dk have a radius
r consensus string if and only if

⋂k
i=1 L(Ci) 6= ∅.

Let h : Σ∗ → Σ∗ be a morphism defined by the condition h(σ) = σ2r+1

for all σ ∈ Σ. Let Di, 1 ≤ i ≤ k, be a DFA for the language h(L(Ci)). If⋂k
i=1 L(Ci) = ∅, L(D1), . . . , L(Dk) cannot have a radius r consensus because

a block of 2r + 1 symbols cannot be converted to a different block in r edit
steps. Conversely, if w ∈

⋂k
i=1 L(Ci), then h(w) is a radius 0 consensus string for

L(D1), . . . , L(Dk). ut

The first part of the proof works equally well for NFAs and we have

Corollary 7. For r ∈ N, the (∗, r)-consensus string problem for NFAs is PSPACE-
complete.

The proof of Lemma 6 explicitly constructs NFAs for the neighbourhoods
E(L(Ai), de, r). In the case where the radius r is part of the input this construction
cannot be completed in polynomial space and the proof does not imply that the
(∗, ∗)-consensus string problem is in PSPACE. In section 3.2, we give a different
PSPACE algorithm for the (∗, ∗)-consensus string problem.

It is known that the intersection emptiness for unary NFAs or DFAs is NP-
complete [12] and this implies, as in the proof of Lemma 6, that for all r ∈ N,
the (∗, r)-consensus string problem for unary DFAs is NP-hard.

Theorem 8. For r ∈ N, the (∗, r)-consensus string problem for unary NFAs is
NP-complete.

Proof. We first show that the (∗, r)-consensus string problem for unary NFAs
over Σ = {0} is in NP. Suppose that we have k unary NFAs from A1 to Ak and
Ai, 1 ≤ i ≤ k has mi states. If there is a radius r consensus string for unary

Consensus String Problem for Multiple Regular Languages 7

NFAs A1, . . . Ak, then the intersection of the neighbourhood ∩ki=1E(L(Ai), de, r)
is not empty. Since we can construct the neighbourhood E(L(Ai), de, r) of unary
NFA Ai with mi + r states, we have an upper bound m on the number of states
of ∩ki=1E(L(Ai), de, r) as follows: m =

∏k
i=1(mi + r).

This implies that if there is a radius r consensus string for unary NFAs
A1, . . . Ak, then there exists a consensus string whose length is bounded by
m. Hence, we can nondeterministically guess a string w = 0n, n ≤ m which
is a radius r consensus string of unary NFAs. We can test whether or not
w ∈ E(L(Ai), de, r), 1 ≤ i ≤ k in time bounded by a polynomial in |bin(n)| by
successively squaring and multiplying matrices for the transition function. Since
|bin(n)| ≤ |bin(m)| ∈ O(logm), we can verify that the unary string w is a radius
r consensus string of unary NFAs in time bounded by a polynomial in the size of
NFAs.

For the hardness, we reduce the intersection emptiness of unary NFAs to the
(∗, r)-consensus string problem for unary NFAs as in the proof of Lemma 6. ut

Finally, we note that since the emptiness problem for two context-free lan-
guages is undecidable, similarly as in Lemma 6, it follows that for all k ≥ 2 and
r ≥ 0 the (k, r)-consensus problem for context-free languages is undecidable.

Corollary 9. For all k ≥ 2 and r ≥ 0 the (k, r)-consensus problem for context-
free languages is undecidable.

3.2 The (k, ∗)-consensus string problem for NFAs

In this section we consider the consensus string problem where the number of
NFAs is fixed. Proposition 1 yields “small” NFAs for radius r neighbourhoods
of regular languages. However, the NFAs are still too big to yield a polynomial
time algorithm if the size of the input is counted to be the length of the binary
representation of r. On the other hand, if the distance r is given in unary, then
the above approach yields polynomial time algorithm and we consider this case
first.

By the (k, ∗unary)-consensus string problem, we mean a variant of the (k, ∗)-
consensus string problem for NFAs where the radius r is given in unary notation,

Lemma 10. For k ∈ N, the (k, ∗unary)-consensus string problem for NFAs can
be decided in polynomial time.

Proof. Consider NFAs Ai with mi states, i = 1, . . . , k. By Proposition 1, the
neighbourhood E(L(Ai), de, r) has an NFA Bi with mi · (r+ 1) states, 1 ≤ i ≤ k,
and Bi can be constructed in time that depends polynomially on mi and r. An
NFA C for

⋂k
i=1 L(Bi) can be obtained from the NFAs Bi, 1 ≤ i ≤ k, using

the standard cross-product construction and emptiness of L(C) can be tested in
polynomial time. The claim follows by Lemma 4. ut

Note that if the radius r is given in binary the proof of Lemma 10 does
not yield a polynomial time algorithm because the NFAs Bi are too large to

8 Yo-Sub Han, Sang-Ki Ko, Timothy Ng, and Kai Salomaa

write down. Next we extend the polynomial time algorithm of the standard
(k, ∗)-consensus string problem for NFAs. Given NFAs A1, . . . , Ak and r, we

again, roughly speaking, need to decide non-emptiness of
⋂k
i=1E(L(Ai), de, r).

However, instead of NFAs (with a number of states that depends exponentially
on the size of the representation of r) we use a weighted finite automaton where
the number of states is independent of r.

We obtain a construction for the weighted finite automaton by modifying the
proof of the following lemma from [19].

Lemma 11 ([19]). Let N = (Q,Σ, δ, q0, F) be an NFA with n states, d an
additive quasi-distance, and R ≥ 0 is a constant. There exists an additive WFA
A with n states such that for any 0 ≤ r ≤ R,

L(A, r) = E(L(N), d, r)

Furthermore, the WFA A can be constructed in time O(n3).

Note that Lemma 11 assumes that the radius is a constant and for this reason
we have to be a little careful to check that the construction can be done in
time that depends polynomially on the length of the binary representation of
r. Furthermore, Lemma 11 deals only with one component WFAs (the case
k = 1) but changing the construction for k components is straightforward. On the
other hand, the construction for Lemma 11 allows the use of a general additive
quasi-distance, and we are dealing with the simpler case of edit-distance where a
neighbourhood of a string is always finite.

Lemma 12. Let k ∈ N be fixed. Let Bi = (Si, Σ, δi, si,0, Fi), i = 1, . . . , k be an

NFA with mi states and r ∈ N. There exists an additive k-WFA A with
∏k
i=1mi

states such that

L(A, r) =

k⋂
i=1

E(L(Bi), de, r) (3)

Furthermore, the additive k-WFA A can be constructed in time that depends
polynomially on the sizes of the NFAs Bi, 1 ≤ i ≤ k, and |bin(r)|.

Proof. We define an additive k-WFA A = (Q,Σ, γ, ω, q0, F), where Q = S1 ×
· · · × Sk, q0 = (s1,0, . . . , sk,0), F = F1 × · · · ×Fk and the transitions of γ and the
weight function are defined as follows.

The transition function γ is defined by setting, for (s1, . . . , sk) ∈ Q, b ∈
Σ ∪ {ε},

γ((s1, . . . , sk), b) =
{(s′1, . . . , s′k) : (∃x ∈ Σ∗) s′i ∈ δi(si, x), 1 ≤ i ≤ k, and de(b, x) ≤ r}. (4)

That is, for each two states of A we add a transition on b ∈ Σ ∪ {ε} if there is a
string x ∈ Σ∗ within edit-distance at most r from the symbol b that in the NFAs
Bi transform the components of the first state to the components of the second
state. The transition (s, b, s′), s = (s1, . . . , sk), s′ = (s′1, . . . , s

′
k), in A has weight

ω((s, b, s′)) = min
x∈Σ∗

{de(b, x) : s′i ∈ δ(si, x), i = 1, . . . , k}. (5)

Consensus String Problem for Multiple Regular Languages 9

The correctness of the construction (i.e., that equation (3) holds) is verified
as in [19] and we only need to check that the construction, for non-constant r,
can be done in time that is polynomial in the mi’s and |bin(r)| (whereas in [19]
the radius was treated as a constant).

For si, s
′
i ∈ Si and b ∈ Σ ∪ {ε}, to check whether there exists a string x such

that s′i ∈ δi(si, x) and de(x, b) ≤ r we determine whether the shortest path in Bi
from si to s′i has length at most r, or length at most r + 1 if b ∈ Σ and the path
contains an occurrence of b. This can be done in time that depends polynomially
on mi and |bin(r)|. Then, the transitions of γ (4) can be computed by repeating
this procedure (Πk

i=1mi)
2 times.

For each two tuples s = (s1, . . . , sk) and s′ = (s′1, . . . , s
′
k) that will have a

γ-transition on b ∈ Σ ∪ {ε}, the process finds the string x which transforms
components of s into components of s′ in the NFAs Bi and minimizes the distance
de(b, x), and this allows us to compute also the weights in (5). Note that although
the length of x may be superpolynomial in |bin(r)|, the length is upper bounded
by the values mi which are the sizes of the input NFAs. ut

We need one more technical lemma.

Lemma 13. Let k ∈ N be a constant. Given an additive k-WFA A = (Q,Σ, γ, ω, q0, F)
with n states and r ∈ N, we can decide in time that is polynomial in n and in
|bin(r)| whether or not L(A, r) = ∅.

Proof. We use a polynomial time graph reachability algorithm to check whether
a final state of A is reachable from the initial state, and the computation keeps
track of the smallest cumulative weight of the path traversed up to that point.
Recall that each state of A is a k-tuple of states.

In stage one, the algorithm marks the states of A reachable from q0 =
(q0,1, . . . , q0,k) in a single transition. Each of these states q = (q1, . . . , qk) is
marked by a k-tuple (w1, . . . , wk), where wi is the smallest weight of a transition
that reaches qi from q0,i. The marking process is then repeated n− 1 times as
follows.

Suppose states p1, . . . , pr are marked at the ith stage (i ≤ n − 2) where
the cumulative weight of pi is wi. In stage i + 1 the algorithm marks states
p′1, . . . , p

′
s reachable from a state among p1, . . . , pr with a single transition. Each

state p′i = (p′i,1, . . . , p
′
i,k) will have a weight tuple w′i = (w′i,1, . . . , w

′
i,k) where for

1 ≤ ` ≤ k, we have

wi,` = min({wj,` + ω(pj,`, b, p
′
i,`) | 1 ≤ j ≤ r, b ∈ Σ ∪ {ε}} ∪ {r + 1}).

Note that weight r + 1 is used as an error value indicating that the computation
path has failed.

If at some point a final state is marked with a weight where each component
is at most r, the algorithm answers “yes”. The algorithm is correct because
L(A, r) 6= ∅ if and only if A has a computation of weight at most r leading to
a final state on a string of length at most n − 1. The number of steps of the
marking algorithm is upper bounded by O(kn2) (when the size of the alphabet

10 Yo-Sub Han, Sang-Ki Ko, Timothy Ng, and Kai Salomaa

Σ is viewed as a constant). The individual weight additions can be done in time
linear in |bin(r)|. ut

Now we present a polynomial time algorithm for the (k, ∗)-consensus string
problem.

Theorem 14. For k ∈ N0, the (k, ∗)-consensus string problem for NFAs can be
solved in polynomial time.

As a corollary we extend the result of Lemma 6 for the (∗, ∗)-consensus string
problem.

Corollary 15. The (∗, ∗)-consensus string problem for NFAs (or DFAs) is
PSPACE-complete.

3.3 Finding a consensus string of given length

Interestingly, if we are given the length l ∈ N0 of a consensus string in unary,
then the computational complexity of the problem becomes NP-complete. We use
a reduction from the classical consensus string problem which is already proven
to be NP-complete. First, we give the definition of the classical consensus string
problem. Note that the distance function dH denotes the Hamming distance.

Definition 16. Let S ⊆ Σl be a finite set of strings of length l. Then, a string w
is a radius r consensus of S, if dH(w, s) ≤ r for all s ∈ S.

Then, given `, r ∈ N and a set S ⊆ Σl, it is NP-complete to decide whether or
not there exists a radius r consensus of S [7]. The problem remains NP-complete
even when |Σ| = 2.

However, because we are considering the edit-distance for our variant of the
consensus string problem, first we need to reduce the Hamming distance to
the edit-distance. Manthey and Reischuk [17] have shown that it is possible to
reduce the Hamming distance to the edit-distance when only binary strings are
considered. Here we first show that we can reduce the Hamming distance to the
edit-distance in a much simpler way by introducing one more character.

Lemma 17. Let w,w′ be a strings of length l over Σ and h : Σ∗ → (Σ ∪
{$})∗, $ /∈ Σ be a morphism defined by h(σ) = $lσ for all σ ∈ Σ. Then,
dH(w,w′) = de(h(w), h(w′)).

The next lemma shows that the consensus string problem for multiple NFAs
is NP-complete when the length ` of the consensus string is given in unary. The
lemma is proved by a reduction from the classical consensus string problem and
by relying on Lemma 17.

Lemma 18. The consensus string problem for NFAs (or DFAs) is NP-complete
if the length l of consensus string is given in unary.

Consensus String Problem for Multiple Regular Languages 11

We also mention that the problem is still NP-complete if context-free languages
are considered instead of regular languages since the edit-distance between a
string and a context-free language described by a context-free grammar (CFG)
can be computed in polynomial time [18].

Corollary 19. The consensus string problem for context-free languages is NP-
complete if the length l of consensus string is given in unary.

However, the problem becomes PSPACE-complete if the length ` is given in
binary.

Theorem 20. The consensus string problem for NFAs (or DFAs) is PSPACE-
complete if the length l of consensus string is given in binary.

We also establish that the fixed-length consensus problem, where the length l
of the consensus string is fixed, can be decided in polynomial time.

Corollary 21. The fixed-length consensus string problem for NFAs (or DFAs)
can be decided in O(n log n) time, where n is the size of NFAs (or DFAs).

As a final note, we state that the fixed-length consensus string problem for
context-free languages given by CFGs can be also decided in polynomial time.

Corollary 22. The fixed-length consensus string problem for CFGs can be de-
cided in O(n log n) time, where n is the size of CFGs.

References

1. A. Amir, G. M. Landau, J. C. Na, H. Park, K. Park, and J. S. Sim. Efficient
algorithms for consensus string problems minimizing both distance sum and radius.
Theoretical Computer Science, 412(39):5239–5246, 2011.

2. A. Amir, H. Paryenty, and L. Roditty. On the hardness of the consensus string
problem. Information Processing Letters, 113(10–11):371–374, 2013.

3. C. S. Calude, K. Salomaa, and S. Yu. Additive distances and quasi-distances
between words. Journal of Universal Computer Science, 8(2):141–152, 2002.

4. C. Choffrut and G. Pighizzini. Distances between languages and reflexivity of
relations. Theoretical Compututer Science, 286(1):117–138, 2002.

5. G. D. Cohen, I. S. Honkala, S. N. Litsyn, and P. Solé. Long packing and covering
codes. IEEE Transactions on Information Theory, 43(5):1617–1619, 2006.

6. M. M. Deza and E. Deza. Encyclopedia of Distances. Springer Berlin Heidelberg,
2009.

7. M. Frances and A. Litman. On covering problems of codes. Theory of Computing
Systems, 30(2):113–119, 1997.

8. R. L. Graham and N. J. A. Sloane. On the covering radius of codes. IEEE
Transactions on Information Theory, 31(3):385–401, 2006.

9. J. Gramm, R. Niedermeier, and P. Rossmanith. Exact solutions for closest string
and related problems. In Proceedings of the 12th International Symposium on
Algorithms and Computation, pages 441–453. 2001.

12 Yo-Sub Han, Sang-Ki Ko, Timothy Ng, and Kai Salomaa

10. J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-parameter algorithms for
closest string and related problems. Algorithmica, 37:25–42, 2003.

11. Y.-S. Han, S.-K. Ko, and K. Salomaa. The edit-distance between a regular language
and a context-free language. International Journal of Foundations of Computer
Science, 24(7):1067–1082, 2013.

12. M. Holzer and M. Kutrib. Descriptional and computational complexity of finite
automata—a survey. Information and Computation, 209(3):456–470, 2011.

13. S. Konstantinidis. Computing the edit distance of a regular language. Information
and Computation, 205(9):1307–1316, 2007.

14. D. Kozen. Lower bounds for natural proof systems. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, pages 254–266, 1977.

15. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

16. B. Ma and X. Sun. More efficient algorithms for closest string and substring
problems. SIAM Journal on Computing, 39(4):1432–1443, 2010.

17. B. Manthey and R. Reischuk. The intractability of computing the Hamming
distance. Theoretical Computer Science, 337(1–3):331–346, 2005.

18. G. Myers. Approximately matching context-free languages. Information Processing
Letters, 54:85–92, 1995.

19. T. Ng, D. Rappaport, and K. Salomaa. Quasi-distances and weighted finite automata.
In Proceedings of the 17th International Workshop on Descriptional Complexity of
Formal Systems, pages 209–219, 2015.

20. T. Ng, D. Rappaport, and K. Salomaa. State complexity of neighbourhoods and
approximate pattern matching. In Proceedings of the 19th International Conference
on Developments in Language Theory, pages 389–400, 2015.

21. L. Palopoli, Z.-Z. Chen, B. Ma, and L. Wang. A three-string approach to the closest
string problem. Journal of Computer and System Sciences, 78(1):164–178, 2012.

22. G. Pighizzini. How hard is computing the edit distance? Information and Compu-
tation, 165(1):1–13, 2001.

23. G. Povarov. Descriptive complexity of the Hamming neighborhood of a regular
language. In Proceedings of the 1st International Conference on Language and
Automata Theory and Applications, pages 509–520, 2007.

24. J. Shallit. A Second Course in Formal Languages and Automata Theory. Cambridge
University Press, New York, NY, USA, 1st edition, 2008.

25. J. S. Sim and K. Park. The consensus string problem for a metric is NP-complete.
Journal of Discrete Algorithms, 1(1):111–117, 2003.

26. N. Stojanovic, P. Berman, D. Gumucio, R. Hardison, and W. Miller. A linear-time
algorithm for the 1-mismatch problem. In Proceedings of the 5th International
Workshop on Algorithms and Data Structures, pages 126–135. 1997.

27. S. Yu. Handbook of formal languages, vol. 1. chapter Regular Languages, pages
41–110. 1997.

