
January 19, 2016 15:22 WSPC/INSTRUCTION FILE neighbourhoods

State Complexity of Neighbourhoods and Approximate Pattern

Matching∗

Timothy Ng and David Rappaport and Kai Salomaa

School of Computing, Queen’s University
Kingston, Ontario K7L 3N6, Canada

{ng, daver, ksalomaa}@cs.queensu.ca

Received (Day Month Year)

Accepted (Day Month Year)
Communicated by (xxxxxxxxxx)

The neighbourhood of a language L with respect to an additive distance consists of all
strings that have distance at most the given radius from some string of L. We show that

the worst case deterministic state complexity of a radius r neighbourhood of a language

recognized by an n state nondeterministic finite automaton A is (r+ 2)n−1. In the case
where A is deterministic we get the same lower bound for the state complexity of the

neighbourhood if we use an additive quasi-distance. The lower bound constructions use

an alphabet of size linear in n. We show that the worst case state complexity of the set
of strings that contain a substring within distance r from a string recognized by A is

(r + 2)n−2 + 1.

Keywords: regular languages, state complexity, lower bounds, additive distance

1. Introduction

The similarity of strings is often defined using the edit distance [12, 17], also known

as the Levenshtein distance [15]. The edit distance is particularly useful for error-

correction and error-detection applications [1, 8, 9, 10, 11, 13]. A useful property is

that the edit distance is additive with respect to concatenation of strings in the

sense defined by Calude et al. [5].

If the distance of any two distinct strings of a language L is greater than r,

the language L can detect up to r errors [10, 12, 14] (assuming the errors have

unit weight). Alternatively we can consider what the shortest distance is between

strings in languages L1 and L2, that is, what is the smallest number errors that

transform a string of L1 into a string of L2. Calude at al. [5] showed that the

neighbourhood of a regular language with respect to an additive distance is always

regular. Additive quasi-distances preserve regularity as well [5]. This gives rise to the

question how large is the deterministic finite automaton (DFA) needed to recognize

∗A preliminary version of this paper appeared in the Proceedings of the 19th International Con-
ference Developments in Language Theory, Liverpool, UK, July 27–30, 2015.

1

January 19, 2016 15:22 WSPC/INSTRUCTION FILE neighbourhoods

2

the neigbourhood of a regular language. Informally, determining the optimal size

of the DFA for the neighbourhood gives the state complexity of error detection.

Note that since complementation does not change the size of a DFA, the size of the

minimal DFA for the neighbourhood of L of radius r equals to the state complexity

of the set of strings that have distance at least r + 1 from any string in L.

Povarov [18] showed that the Hamming neighbourhood of radius one of an n-

state DFA language can be recognized by a DFA of size n · 2n−1 + 1 and also

gave a lower bound 3
8n · 2

n − 2n−4 + n for its state complexity using languages

defined over a binary alphabet. Using a weighted finite automaton construction

the third author and Schofield [19] gave an upper bound of (r + 2)n − 1 for the

neighbourhood of radius r of an n-state DFA-language. No good lower bounds are

known for neighbourhoods of radius at least two. Shamkin [21] has given a lower

bound 2b
n
2−rc for the state complexity of radius r Hamming neighbourhoods of an

n state finite language defined over a ternary alphabet. For a fixed number of states

the lower bound is proportional to 2−r and quite far from the known upper bound.

The string matching problem consists of finding occurrences of a particular

string in a text [3]. El-Mabrouk [7] considers the problem of pattern matching with

r mismatches from a descriptional complexity point of view. Given a pattern P of

length m and a text T , the problem is to determine whether T contains substrings

of length m having characters differing from P in at most r positions, that is,

substrings having Hamming distance at most r from P . For a pattern P = am

consisting of occurrences of only one character, the state complexity was shown to

be
(
m+1
r+1

)
[7].

The state complexity of Σ∗LΣ∗ was considered by Brzozowski, Jirásková, and

Li [4] and was shown to have a tight bound of 2n−2 + 1. A DFA recognizing Σ∗LΣ∗

can be viewed to solve the exact string matching problem. In the terminology of

Brzozowski et al. [4], Σ∗LΣ∗ is a two-sided ideal and the descriptional complexity

of related subregular language families was studied recently by Bordihn et al. [2].

This paper studies the descriptional complexity of neighbourhoods and of ap-

proximate string matching. As our main result we give a lower bound (r + 2)n − 1

for the size of a DFA recognizing the radius r neighbourhood of an n-state regular

language. The lower bound matches the previously known upper bound [19]. The

bound can be reached either using a neighbourhood of an n-state DFA language

with respect to an additive quasi-distance or using a neighbourhood of an n state

NFA (nondeterministic finite automaton) language using an additive distance.

The lower bound constructions use an alphabet of size linear in n. A further

limitation is that the (quasi-)distance associates different values to different edit

operations. The precise state complexity of the edit distance with unit error costs

remains open.

We also show that if L is recognized by an n-state NFA the set of strings that

contain a substring within distance r from a string in L with respect to an additive

(quasi-)distance is recognized by a DFA of size (r + 2)n−2 + 1 and that this bound

cannot be improved in the worst case. When r is zero the result coincides with the

January 19, 2016 15:22 WSPC/INSTRUCTION FILE neighbourhoods

3

state complexity of two-sided ideals [4].

2. Preliminaries

Here we briefly recall some definitions and notation used in the paper. For all un-

explained notions on finite automata and regular languages the reader may consult

the textbook by Shallit [20] or the survey by Yu [22]. A survey of distances is given

by Deza and Deza [6] and the notion of quasi-distance is from Calude et al. [5].

We denote by Σ a finite alphabet, Σ∗ the set of words over Σ, and ε the empty

word. A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, q0, F)

where Q is a finite set of states, Σ is an alphabet, δ is a multi-valued transition

function δ : Q × Σ → 2Q, q0 ∈ Q is the initial state, and F ⊆ Q is a set of final

states. We extend the transition function δ to Q × Σ∗ → 2Q in the usual way. A

word w ∈ Σ∗ is accepted by A if δ(q0, w) ∩ F 6= ∅ and the language recognized by

A consists of all strings accepted by A. The automaton A is a deterministic finite

automaton (DFA) if, for all q ∈ Q and a ∈ Σ, δ(q, a) either consists of one state

or is undefined. The definition allows the possibility of undefined transitions and,

unless otherwise mentioned, we allow a DFA to be incomplete. A DFA A is said to

be complete if δ(q, a) is defined for all q ∈ Q and a ∈ Σ.

The minimal DFA for a regular language L is unique. For a given regular lan-

guage L, the number of states of the minimal incomplete and minimal complete

DFA recognizing L differ by at most one. The state complexity of L, denoted by

sc(L), is the size of the minimal DFA recognizing L. Note that we measure state

complexity using incomplete DFAs.

Two states p and q of a DFA A are equivalent (or indistinguishable) if δ(p, w) ∈ F
if and only if δ(q, w) ∈ F for every string w ∈ Σ∗. A DFA A is minimal if each

state q ∈ Q is reachable from the initial state and no two states are equivalent.

The (right) Kleene congruence of a language L ⊆ Σ∗ is the relation ≡L⊆ Σ∗ × Σ∗

defined by setting

x ≡L y iff [(∀z ∈ Σ∗) xz ∈ L⇔ yz ∈ L].

The language L is regular if and only if the index of ≡L is finite and, in this case,

the index of ≡L is equal to the size of the minimal complete DFA for L [20].

2.1. Neighbourhoods of regular languages

A function d : Σ∗ × Σ∗ → [0,∞) is a distance if it satisfies for all x, y, z ∈ Σ∗

the conditions d(x, y) = 0 if and only if x = y, d(x, y) = d(y, x), and d(x, z) ≤
d(x, y)+d(y, z). The function d is a quasi-distance [5] if it satisfies conditions 2 and

3 and d(x, y) = 0 if x = y; that is, a quasi-distance between two distinct elements

can be zero. In the following, unless otherwise mentioned, we consider only integral

(quasi-)distances; that is, d is always a function Σ∗ × Σ∗ → N0.

The neighbourhood of a language L of radius r is the set

E(L, d, r) = {x ∈ Σ∗ | (∃w ∈ L)d(x,w) ≤ r}.

January 19, 2016 15:22 WSPC/INSTRUCTION FILE neighbourhoods

4

A distance d is finite if for all nonnegative integers r the neighbourhood of radius

r of any string with respect to d is finite. A distance d is additive [5] if for every

factorization of a string w = w1w2 and radius r ≥ 0,

E(w, d, r) =
⋃

r1+r2=r

E(w1, d, r1) · E(w2, d, r2).

A neighbourhood of a regular language with respect to an additive quasi-distance

is regular [5].

We will use the NFA construction for a neighbourhood of a regular language due

to Povarov [18]. Informally, the construction makes r+ 1 copies of an NFA A, with

each copy corresponding to a cumulative error ranging from 0 to r. A transition

from a level i to a level i′ > i occurs when there is a transition that does not exist in

A. There are r+ 1 such copies of A to allow for at most r errors. Strictly speaking,

[18] deals with the Hamming distance but exactly the same construction works for

any additive quasi-distance. We state the upper bound of [18] for quasi-distances

and briefly recall also the proof because it will be used later in our lower bounds

constructions.

Proposition 1 ([18]) If A is an NFA with n states and d is an additive quasi-

distance, then E(L(A), d, r) has an NFA of size n · (r + 1).

Proof. Consider an NFA A = (Q,Σ, δ, q0, FA). The neighbourhood E(L(A), d, r)

is recognized by an NFA

B = (Q× {0, 1, . . . , r},Σ, γ, (q0, 0), FA × {0, 1, . . . , r}),

where the transitions of γ are defined by setting for q ∈ Q, 0 ≤ i ≤ r and b ∈ Σ:

γ((q, i), b) = { (p, i+ d(b, c)) | c ∈ Σ, p ∈ δ(q, c), i+ d(b, c) ≤ r }.

The first component of the state of B simulates a computation of A on some string

that possibly differs from the actual input string, and the second component keeps

track of the “cumulative error”. The computation accepts when the first component

reaches a final state of A and the cumulative error is at most r.

To conclude this section, we derive an upper bound for the deterministic state

complexity of the neighbourhood of a regular language with respect to an addi-

tive quasi-distance. Similar bounds are implied by the weighted finite automaton

constructions in [16, 19], but the construction given in [19] deals only with neigh-

bourhoods of a regular language with respect to a distance (as opposed to a quasi-

distance). For completeness we give here a direct construction based on the NFA

construction of Proposition 1. Before stating the bound in Proposition 3 we need

the following lemma.

Lemma 2. Let d be a quasi-distance, r ∈ N and let A be an NFA with set of

states {1, . . . , n}. Let D be the NFA with set of states {1, . . . , n} × {0, . . . , r} given

by Proposition 1. Let C be the DFA constructed from D using the standard subset

January 19, 2016 15:22 WSPC/INSTRUCTION FILE neighbourhoods

5

construction. If (i, j) and (i, j+k), (1 ≤ i ≤ n, 0 ≤ j and j+k ≤ r) belong to a set

X with k ≥ 1, then the sets X and X \ {(i, j + k)} are indistinguishable as states

of C.

Proof. Consider a word w = uv that reaches both (i, j) and (i, j+k) on the prefix

u. If there is a computation on the suffix v that takes the machine from (i, j + k)

to an accepting state (f, l), then there also exists an accepting computation from

(i, j) to an accepting state (f, l − k). Thus, any string that in C has an accepting

computation originating from X also has an accepting computation originating from

X \ {(i, j + k)}. The converse naturally holds since X \ {(i, j + k)} ⊆ X.

For the next construction recall that we consider only integral (quasi-)distances.

Proposition 3. For an n-state NFA A and an additive quasi-distance d, the neigh-

bourhood E(L(A), d, r), r ∈ N can be recognized by a DFA with (r + 2)n − 1 states.

Proof. Let the set of states of A be {1, . . . , n}. Let D be the NFA with set of

states {1, . . . , n} × {0, . . . , r} recognizing E(L(A), d, r) constructed as in the proof

of Proposition 1 (due to [18]) and let C be the DFA obtained from D using the

subset construction. By Lemma 2, we can identify equivalent states in C to obtain

a DFA C ′ where all states are of the form {(i1, j1), . . . , (iz, jz)} where 1 ≤ i1 <

i2 ≤ · · · < iz ≤ n and j1, . . . , jz ∈ {0, . . . , r}, that is, the state sets of C ′ need to

keep, for each 1 ≤ i ≤ n, only the least value j ∈ {0, . . . , r} such that (i, j) is in the

corresponding set of states of C. Thus, in a state of C ′, for each 1 ≤ i ≤ n, we can

encode possibilities for the second component as 0, 1, . . . , r, r + 1—the value r + 1

corresponding to the case that i does not belong to the set as a first component.

Furthermore, the set {(1, r + 1), (2, r + 1), . . . , (n, r + 1)} is the dead state and can

be omitted from C ′.

3. State Complexity of Additive Neighbourhoods

As the main result of this section we give a tight lower bound for the state complexity

of a neighbourhood of a regular language given by a DFA (respectively, by an NFA)

with respect to an additive quasi-distance (respectively, an additive distance).

For n ∈ N we consider an alphabet

Σn = {a1, . . . , an−1, b1, . . . , bn, c1, . . . , cn−1}. (1)

For r ∈ N, we define a quasi-distance dr : Σ∗n × Σ∗n → N0 by the conditions:

• dr(ai, aj) = r + 1 for i 6= j

• dr(bi, bj) = 1 for i 6= j

• dr(ai, bj) = dr(ci, bj) = r + 1 for all 1 ≤ i, j ≤ n
• dr(ai, ci) = 0 for 1 ≤ i ≤ n− 1

• dr(ci, cj) = r + 1 for all 1 ≤ i, j ≤ n

January 19, 2016 15:22 WSPC/INSTRUCTION FILE neighbourhoods

6

1start 2 · · · n− 1 n
a1 a2 an−2 an−1

c1, a2, . . . , an−1

b2, b3, . . . , bn

c2, a3, . . . , an−1

b1, b3, . . . , bn
cn−1, bn−2, bn

bn−1

Fig. 1. The DFA An

• dr(ai, cj) = r + 1 for all i 6= j

• dr(σ, ε) = r + 1 for all σ ∈ Σ.

Note that the value dr(σ, ε) denotes the cost of the deletion and insertion operations

and that the listed substitution, insertion, and deletion operations on elements of

Σn define a unique additive quasi-distance of Σ∗n [5].

Lemma 4. The function dr is an additive quasi-distance.

Proof. Clearly the function dr satisfies the triangle-inequality. We verify that dr
is additive.

Let r0 ≥ 0 and consider the neighbourhood E(w1w2, dr, r0) of a word w = w1w2.

If x ∈ E(w, dr, r0), then dr(x,w) ≤ r0. We can consider the substitution of some

symbol with another symbol or the empty string ε as an edit operation with the

cost defined by dr. We may perform edit operations in any order. Thus, we can

factor x into two parts x1x2 in such a way that we obtain w1 from x1 with the cost

of the operations summing to d(w1, x1) and do the same to obtain w2 from x2 with

cost d(w2, x2). We then have dr(x1, w1) + dr(x2, w2) = dr(x,w) ≤ r0 and thus,

x ∈
⋃

r1+r2=r0

E(w1, dr, r1) · E(w2, dr, r2).

Conversely, if we have x1 ∈ E(w1, dr, r1) and x2 ∈ E(w2, dr, r2) with r1 + r2 = r0,

then dr(x1, w1) + dr(x2, w2) ≤ dr(x,w) and x ∈ E(w, dr, r0).

We define the following family of incomplete DFAs. Let An = (Qn,Σn, δ, 1, {n})
be a DFA with n states where Qn = {1, . . . , n} and Σn is as in (1). The transition

function δ is defined by setting

• δ(i, ai) = i+ 1 for 1 ≤ i ≤ n− 1

• δ(i, aj) = i for 1 ≤ i ≤ n− 2 and i+ 1 ≤ j ≤ n− 1

• δ(i, bj) = i for 1 ≤ i ≤ n− 1 and j = i− 1 or i+ 1 ≤ j ≤ n
• δ(i, ci) = i for 1 ≤ i ≤ n− 1

All transitions not listed are undefined. The DFA An is depicted in Figure 1.

The quasi-distance dr identifies the symbols ai and ci, 1 ≤ i ≤ n. By using

two different symbols that have distance zero in our quasi-distance allows us to

January 19, 2016 15:22 WSPC/INSTRUCTION FILE neighbourhoods

7

define An to be deterministic. By identifying ai and ci we can later modify the

construction to give a lower bound for the neighbourhood of a language recognized

by an NFA with respect to a distance (see Lemma 7).

To establish a lower bound for the state complexity of the neighbourhood

E(L(An), dr, r) we define a set S of strings that are all pairwise inequivalent with

respect to the Kleene congruence of the neighbourhood. First we construct an NFA

Bn,r for E(L(An), dr, r) and the inequivalence of the strings in S is verified using

properties of Bn,r.

Suppose we have a DFA A = (Q,Σ, δ, q0, F). Using Proposition 1 (due to [18]),

an NFA B = (Q′,Σ, δ′, q′0, F
′) which recognizes the neighbourhood of radius r of

L(A) with respect to a quasi-distance d is defined by setting Q′ = Q × {0, . . . , r},
q′0 = (q0, 0), F ′ = F × {0, . . . , r} and the transitions of δ′ for q ∈ Q, 0 ≤ k ≤ r and

a ∈ Σ are defined as

δ′((q, k), a) = (δ(q, a), k) ∪
⋃

b∈(Σ∪{ε})\{a}

{(δ(q, b), k + d(a, b)) | k + d(a, b) ≤ r}.

Now as described above we construct the NFA

Bn,r = (Q′n,Σn, δ
′, q′0, F

′), (2)

shown in Figure 2, which recognizes the neighbourhood of L(An) of radius r with

respect to the quasi-distance dr, where Q′n = Qn × {0, 1, . . . , r}, q′0 = (q0, 0), F ′ =

F × {0, 1, . . . , r} and the transition function δ′ is defined by

• δ′((q, j), aq) = {(q, j), (q + 1, j)} for 1 ≤ q ≤ n− 1,

• δ′((q, j), aq′) = {(q, j)} for all 1 ≤ q ≤ n− 1 and q ≤ q′ ≤ n− 1,

• δ′((q, j), bi) = {(q, j + 1)} for 1 ≤ q ≤ n and i = 1, . . . , q − 2, q,

• δ′((q, j), bi) = {(q, j)} for 1 ≤ q ≤ n and i = q − 1, q + 1, . . . , n,

• δ′((q, j), cq) = {(q, j), (q + 1, j)} for 1 ≤ q ≤ n− 1.

All transitions not listed above are undefined. Note that since in the distance dr the

cost of inserting/deleting a symbol is r+ 1 and Bn,r recognizes a neighbourhood of

radius r there are no error transitions (which are depicted as vertical transitions in

Figure 2) corresponding to insertion/deletion. For the same reason the only error

transitions for substitution correspond to substituting bi with bj , i 6= j. The distance

between ai and ci is zero (no error), and all other substitutions have cost r + 1.

For 0 ≤ ki ≤ r + 1, 1 ≤ i ≤ n, we define the string

w(k1, . . . , kn) = a1b
k1
1 a2b

k2
2 · · · an−1b

kn−1

n−1 b
kn
n . (3)

The next lemma establishes a technical property of the computations of the NFA

Bn,r on the strings w(k1, . . . , kn). The property is then used to establish that the

strings are pairwise inequivalent with respect to the language recognized by Bn,r.

Lemma 5. If ki ≤ r, then there exists a computation Ci of the NFA Bn,r which

reaches the state (i, ki) at the end of the input w(k1, . . . , kn), 1 ≤ i ≤ n. There is no

January 19, 2016 15:22 WSPC/INSTRUCTION FILE neighbourhoods

8

(1, 0)start (2, 0) · · · (n− 1, 0) (n, 0)

.

.

.
.
.
.

.

.

.
.
.
.

(1, r) (2, r) · · · (n− 1, r) (n, r)

a1

c1

a2

c2

an−2

cn−2

an−1

cn−1

a1, a2, . . . , an−1

b2, b3, . . . , bn
c1, c2, . . . , cn−1

a2, a3, . . . , an−1

b1, b3, . . . , bn
c2, c3, . . . , cn−1

an−1, cn−1, bn−2, bn

bn−1

b1 b2 b1, . . . , bn−3, bn−1
b1, . . . , bn−2, bn

b1 b2
b1, . . . , bn−3, bn−1 b1, . . . , bn−2, bn

a1

c1

a2

c2

an−2

cn−2

an−1

cn−1

a1, a2, . . . , an−1

b2, b3, . . . , bn
c1, c2, . . . , cn−1

a2, a3, . . . , an−1

b1, b3, . . . , bn
c2, c3, . . . , cn−1 an−1, cn−1, bn−2, bn

bn−1

Fig. 2. The NFA Bn,r

computation of Bn,r on w(k1, . . . , kn) that reaches a state (i, k′i) with k′i < ki. Fur-

thermore, if ki = r+ 1, no computation of Bn,r reaches at the end of w(k1, . . . , kn)

a state where the first component is i.

Proof. We verify that a computation Ci can reach state (i, ki), ki ≤ r. First con-

sider the case i < n. For j = 1, . . . , i − 1, aj takes state (j, 0) to (j + 1, 0) and

the next kj symbols bj are read using the self-loop in state (j + 1, 0). In this way

the computation reaches state (i, 0) where we read ai using the self-loop and then

reading the ki symbols bi the computation reaches (i, ki). In state (i, ki) the re-

maining suffix ai+1b
ki+1

i+1 · · · an−1b
kn−1

n−1 b
kn
n is consumed using the self-loops. Second,

in the case i = n similarly as above the computation after symbol an−1 reaches

state (n, 0), the symbols bn−1 are read using self-loops and reading the kn symbols

bn takes us to state (n, kn).

To verify the second part of the lemma we first observe the following. The only

transitions of Bn,r which move from a state (i, j) to a state of the form (i+ 1, j′),

0 ≤ j ≤ r, are on symbols ai and ci. Note that since the distance dr associates cost

r+1 to insertions and deletions, as well as to replacing ai or ci by any other symbol,

the NFA Bn,r does not have error transitions that change the first component of a

state. Since dr(ai, ci) = 0, we can treat them as the same letter and for convenience,

January 19, 2016 15:22 WSPC/INSTRUCTION FILE neighbourhoods

9

we refer only to ai. Thus, the only way to reach a state (q, j) for any j ≤ r, is by

taking transitions ((i, j), ai, (i+ 1, j)) on each occurrence of ai in w(k1, . . . , kn) for

i < q. Otherwise, the computation remains in some state (i′, j) for i′ < q.

Now we show that there is no computation of w(k1, . . . , kn) that can reach a

state (j, k′j) with k′j < kj . As discussed above, the only way for the computation to

end in a state (j, i), 0 ≤ i ≤ r, is by reaching the state (j, 0) when consuming the

prefix a1b
k1
1 · · · aj−1b

kj−1

j−1 and then reading aj using a self-loop. There is no other

way to reach a state (j, i) for any i, since exiting the states with second components

zero (corresponding to the original DFA) requires reading some aj′ with a self-loop,

after which there is no transition which can be taken to move to a state (j′+1, i). If

in the state (j, 0) the symbol aj is not read with a self-loop then the first component

becomes j+1 and we cannot reach a state (j, i) with the remaining suffix. Thus, from

(j, 0) the NFA is forced to read the following kj symbols bj with error transitions,

ending in the kj-th level in the state (j, kj).

Exactly the same argument verifies that in the case kj = r+ 1, no computation

can end in a state where the first component is j. As above it is seen that to do this

we must in the state (j, 0) read the symbol aj with a self-loop and after attempting

to read the following r + 1 symbols bj with an error transition the computation

becomes undefined.

With the previous lemma we can now establish a lower bound for the state

complexity of the neighbourhoods of L(An) with respect to the quasi-distance dr.

Lemma 6. Let An be the DFA as in Figure 1. The strings w(k1, . . . , kn), 0 ≤ ki ≤
r+ 1, 1 ≤ i ≤ n, are all pairwise inequivalent with respect to the Kleene congruence

of E(L(An), dr, r).

Proof. We consider two distinct strings w(k1, . . . , kn) and w(k′1, . . . , k
′
n) with 0 ≤

ki, k
′
i ≤ r + 1 for i = 1, . . . , n. There exists an index j such that kj 6= k′j and

without loss of generality, we have kj < k′j . To distinguish the strings w(k1, . . . , kn)

and w(k′1, . . . , k
′
n) consider the word z = b

r−kj

j aj+1 · · · an−1. The string z is well-

defined since kj < k′j ≤ r + 1 and so r − kj ≥ 0.

Let Bn,r be the NFA constructed for E(L(A), dr, r) as in (2). We claim that

w(k1, . . . , kn)·z ∈ L(Bn,r) but w(k′1, . . . , k
′
n)·z 6∈ L(Bn,r). We note that by Lemma 5,

Bn,r has a computation on w(k1, . . . , kn) that ends in state (j, kj). Note that kj ≤ r.
When continuing the computation on the string z, by reading the r − kj symbols

bj ’s, the machine is taken to the state (j, r). Then, reading the suffix aj+1 · · · an−1

takes the machine to the accepting state (n, r).

To show w(k′1, . . . , k
′
n) · z 6∈ L(Bn,r), we consider from which states of Bn,r an

accepting state, that is, a state with first component n is reachable on the string z.

We recall that in Bn,r the transitions on bj cannot change the first component of the

state. (According to the definition of Bn,r the reason for this is that dr associates

cost r + 1 to insertion/deletion or to subsitute a symbol ai, ci by bj .)

January 19, 2016 15:22 WSPC/INSTRUCTION FILE neighbourhoods

10

Thus, for Bn,r to reach an accepting state (with first component n) on the

string w(k′1, . . . , k
′
n) · z, a computation must reach a state of the form (j, `j) on

the prefix w(k′1, . . . , k
′
n). By Lemma 5, this is possible only if `j ≥ k′j . From state

(j, `j), `j ≥ k′j , reading the substring b
r−kj

j takes the machine to an undefined

state, as it is not possible to make r − kj error transitions on bj in a state where

the second component is `j > kj . This means that Bn,r cannot accept the string

w(k′1, . . . , k
′
n) · z.

Thus, each string w(k1, . . . , kn), 0 ≤ i ≤ r + 1, 1 ≤ i ≤ n, defines a distinct

equivalence class of ≡E(L(A),dr,r).

As a corollary of the proof of Lemma 6 we get also a lower bound for the state

complexity of the neighbourhood of an NFA-language with respect to an additive

distance.

Lemma 7. For n, r ∈ N there exists an additive distance d′r and an NFA A′n over

an alphabet Σ′n of size 2n− 1 such that

sc(E(L(A′n), d′r, r)) ≥ (r + 2)n − 1.

Proof. Choose Σ′n = {a1, . . . , an−1, b1, . . . , bn} and d′r is the restriction of dr to the

alphabet Σ′n (where dr is the quasi-distance of Lemma 4). The function d′r does not

assign distance zero to any pair of distinct elements.

The NFA A′n is obtained from the DFA An in Figure 1 by replacing all ci-

transitions by ai-transitions, 1 ≤ i ≤ n − 1. Thus, A′n is nondeterministic. An

NFA B′n,r for the neighbourhood E(L(A′n), d′r, r) is obtained from the NFA Bn,r

in (2) simply by omitting all transitions on ci, 1 ≤ i ≤ n− 1. Note that in Bn,r the

transitions on ci exactly coincide with the transitions on ai, 1 ≤ i ≤ n−1, reflecting

the situation that dr(ai, ci) = 0.

The strings w(k1, . . . , kn) (as in (3)) did not involve any symbols ci, and the

proof of Lemma 6 remains the same, word for word, just by replacing Bn,r with

B′n,r. There are in total (r+ 2)n strings w(k1, . . . , kn), 0 ≤ ki ≤ r+ 1, i = 1, . . . , n,

and the string w(r+1, . . . , r+1) corresponds to the dead state which can be omitted.

Now putting together Lemma 6, Lemma 7, and Proposition 3, we have:

Theorem 8. If d is an additive quasi-distance, A is an NFA with n states and

r ∈ N, then

sc(E(L(A), d, r) ≤ (r + 2)n − 1.

There exists an additive quasi-distance dr and a DFA A with n states over an

alphabet of size 3n− 2 such that sc(E(L(A), dr, r) = (r + 2)n − 1.

There exists an additive distance d′r and an NFA A′ with n states over an al-

phabet of size 2n− 1 such that sc(E(L(A′), d′r, r) = (r + 2)n − 1.

January 19, 2016 15:22 WSPC/INSTRUCTION FILE neighbourhoods

11

The lower bound construction has the trade-off of either using a DFA and a

quasi-distance or an NFA and a distance, respectively. It would be interesting to

know whether or not the general upper bound can be improved for neighbourhoods

of an n state DFA language defined by an additive distance.

4. State Complexity of Pattern Matching

We consider an extension of the pattern matching problem with mismatches in the

sense of El-Mabrouk [7]. For a given finite automaton A and an additive quasi-

distance d we construct a DFA for the language Σ∗E(L(A), d, r)Σ∗, that is, the set

of strings that contain a substring within distance r from a string of L(A). The

construction gives an upper bound for the pattern matching problem and using a

modification of the constructions in the previous section we show that the upper

bound is optimal.

Lemma 9. Let A = (Q,Σ, δ, q0, FA) be an n-state NFA with k ≥ 1 final states and

d is an additive quasi-distance. Then the language

L1 = Σ∗E(L(A), d, r)Σ∗

can be recognized by a DFA B with (r + 2)n−1−k + 1 states.

Proof. Let Q = {q0, q1, . . . , qn−1}. If q0 ∈ FA, then L1 = Σ∗ and there is nothing

to prove. Thus, in the following we can assume that F = {qn−k, qn−k+1, . . . , qn−1},
1 ≤ k ≤ n− 1. Furthermore, without loss of generality we assume that

(∀w ∈ Σ∗) δ(q0, w) ∩ FA 6= ∅ implies d(ε, w) > r. (4)

If the above condition does not hold, ε ∈ E(L(A), d, r) and there is nothing to

prove.

The DFA B recognizing L1 operates as follows. Roughly speaking, B is looking

for a substring of the input that belongs to E(L(A), d, r). For this purpose, for

all non-final states qz of A, the deterministic computation of B keeps track of the

smallest cumulative error between a string that takes q0 to qz and any suffix of

the input processed thus far. Note that for the initial state q0 this value is always

zero and, hence, the states of P store the cumulative error only for the nonfinal

states q1, . . . , qn−k−1. When B has found a substring belonging to E(L(A), d, r) the

computation goes to the final state pf and after that accepts an arbitrary suffix.

Next we give the definition of B and after that include a brief correctness argument.

Define B = (P,Σ, γ, p0, FB) with set of states

P = {(i1, . . . , in−k−1) | 0 ≤ ij ≤ r + 1, j = 1, . . . , n− k − 1} ∪ {pf},

the initial state is p0 = (h1, . . . , hn−k+1) where

hz = inf{d(ε, w) | qz ∈ δ(q0, w)}, 1 ≤ z ≤ n− k − 1,

January 19, 2016 15:22 WSPC/INSTRUCTION FILE neighbourhoods

12

and the set of final states is defined as FB = {pf}. Note that by (4) we know that

ε 6∈ L1. Next we define the transitions of B. First, γ(pf , b) = pf for all b ∈ Σ. For

p = (i1, . . . , in−k−1) ∈ P , 0 ≤ iz ≤ r + 1, z = 1, . . . , n− k − 1, and b ∈ Σ we define

(i) γ(p, b) = pf if (∃1 ≤ z ≤ n − k − 1)(∃w ∈ Σ∗) δ(qz, w) ∩ FA 6= ∅ and iz +

d(b, w) ≤ r;
(ii) and if the conditions in (i) do not hold, then γ(p, b) = (j1, . . . , jn−k−1), where,

for x = 1, . . . , n− k − 1,

jx = inf[{iz + d(b, w) | qx ∈ δ(qz, w), 1 ≤ z ≤ n− k − 1}
∪ {d(b, w) | qx ∈ δ(q0, w)}].

In a state of the form (i1, . . . , in−k−1) ∈ P , the component iz, 1 ≤ z ≤ n−k−1,

keeps track of the smallest distance d(usuf , w) where usuf is a suffix of the input

processed up to that point and w is a string that in A takes the initial state q0 to

state qz. The smallest error between the suffix ε and a string that in A reaches q0

is always zero and this value is not stored in the state of B. If the computation has

found a substring in E(L(A), d, r), the state of B will be pf .

We show that in computations of B in a state of the form (i1, . . . , in−k−1) ∈ P ,

the component iz, 1 ≤ z ≤ n− k − 1, is the smallest distance d(usuf , w) between a

suffix of the input processed so far and a string w that takes the initial state q0 of

A to the state qz.

The initial state p0 is chosen so that the above condition is satisfied at the begin-

ning of the computation. Note that, by (4), we can assume that ε 6∈ E(L(A), d, r).

Now consider a string ub, u ∈ Σ∗, b ∈ Σ, and inductively assume that the state of

B satisfies the claimed condition after processing the prefix u.

If B has reached the final state pf after processing u, the rest of the computation

remains in state pf and we are done. Assume then that the state of B after process-

ing u is (i1, . . . , in−k−1). By the inductive assumption, iz is the smallest cumulative

error between a suffix of u and any string that in A takes the initial state to qz,

1 ≤ z ≤ n−k− 1. This means that, according to (i), the transition on b goes to the

final state pf if the smallest cumulative error between a suffix of ub and a string of

L(A) is at most r. Note that, again by (4), we know that the suffix cannot be ε.

On the other hand, if a string satisfying these conditions does not exist, the

rules (ii) change the tuple (i1, . . . , in−k−1) to a tuple (j1, . . . , jn−k−1) where jx is

the smallest value of iz + d(b, w) where the string w takes in the NFA A the state

qz to qx, 0 ≤ z ≤ n − k − 1. Corresponding to q0 the value i0 is zero because the

pattern in E(L(A), d, r) to be matched can begin at any position. Thus the rule

(ii) updates the tuple of values correctly to record the smallest cumulative error

between a suffix of ub and a string that in A takes the initial state, respectively, to

q1, . . . , qn−k−1.

By modifying the construction used in the proof of Lemma 7 (and Lemma 6)

we give a lower bound that matches the upper bound from Lemma 9.

January 19, 2016 15:22 WSPC/INSTRUCTION FILE neighbourhoods

13

Lemma 10. For n, r ∈ N, there exist an additive distance d and an NFA A with

n states defined over an alphabet Σ of size 2n − 1 such that the minimal DFA for

Σ∗E(L(A), d, r)Σ∗ must have at least (r + 2)n−2 + 1 states.

Proof. Choose Σn = {a1, . . . , an−1, b1, . . . , bn} and let A′n and d′r be as in the proof

of Lemma 7. Let B′n,r be the NFA constructed for E(L(A′n), d′r, r) in the proof of

Lemma 7.a For 0 ≤ ki ≤ r + 1, i = 1, 2, . . . , n− 2, define

u(k1, k2, . . . , kn−2) = a1b
k1
1 a2b

k2
2 · · · an−2b

kn−2

n−2 .

Using the notations of (3) we have u(k1, . . . , kn−2) ·an−1 = w(k1, k2, . . . , kn−2, 0, 0).

We claim that the strings u(k1, . . . , kn−2) are all pairwise inequivalent with

respect to the Kleene congruence of Σ∗nE(L(A′n), d′r, r)Σ
∗
n. Consider two strings

u(k1, . . . , kn−2) and u(k′1, . . . , k
′
n−2) where for some 1 ≤ j ≤ n− 2, kj < k′j .

Choose z = b
r−kj

j aj+1 · · · an−1. As in the proof of Lemma 5 it is observed that

B′n,r has a computation on u(k1, . . . , kn−2) that reaches state (j, kj), and a com-

putation started from state (j, kj) on input z can reach the accepting state (n, r).

Thus, u(k1, . . . , kn−2) · z ∈ L(B′n,r) = E(L(A′n), d′r, r). We claim that

u(k′1, . . . , k
′
n−2) · z 6∈ Σ∗nE(L(A′n), d′r, r)Σ

∗
n. (5)

Note that the string u(k′1, . . . , k
′
n−2) · z contains exactly one occurrence of both a1

and an−1 and these are, respectively, the first and the last symbol of the string.

Since the distance d′r associates cost r+1 to any operation that substitutes, deletes

or inserts a symbol ai, if the negation of (5) holds then the only possibility is that

u(k′1, . . . , k
′
n−2) · z must be in E(L(A′n), d′r, r). This, in turn, is possible only if the

computation of B′n,r on the prefix u(k′1, . . . , k
′
n−2) ends in a state of the form (j, x),

0 ≤ x ≤ r. Now Lemma 5 implies that the second component x must be at least

k′j and it follows that the computation on the suffix z cannot end in an accepting

state. (Lemma 5 uses Bn,r but the same argument applies here because Bn,r equals

B′n,r when we omit the ci-transitions.)

Finally we note that none of the strings u(k1, . . . , kn−2), 0 ≤ ki ≤ r + 1, is in

Σ∗nE(L(A′n), d′r, r)Σ
∗
n and hence they are not equivalent with a1a2 · · · an−1 which

then gives the one additional equivalence class.

Combining the previous lemmas we can state the main result of this section.

Theorem 11. Let d be an additive quasi-distance on Σ∗. For any n-state NFA A

and r ∈ N we have

sc(Σ∗ · E(L(A), d, r) · Σ∗) ≤ (r + 2)n−2 + 1.

For given n, r ∈ N there exists an additive distance dr and an n-state NFA A defined

over an alphabet of size 2n− 1 such that sc(Σ∗E(L(A), dr, r)Σ
∗ = (r + 2)n−2 + 1.

aB′n,r is obtained from the NFA of Fig. 2 by omitting all the transitions on ci’s.

January 19, 2016 15:22 WSPC/INSTRUCTION FILE neighbourhoods

14

Proof. The upper bound of Lemma 9 is maximized by an NFA with one final state

as (r + 2)n−2 + 1. The lower bound follows by Lemma 10.

Finally we can note that similarly as in Theorem 8, in the lower bound result

of Lemma 10 we could select A to be a DFA if we allow dr to be a quasi-distance.

Corollary 12. For given n, r ∈ N there exists an additive quasi-distance d′r
and an n-state DFA A defined over an alphabet of size 3n − 2 such that

sc(Σ∗E(L(A), d′r, r)Σ
∗ = (r + 2)n−2 + 1.

Recall that Brzozowski et al. [4] have shown that, for an n-state DFA language

L, the worst case state complexity of the two-sided ideal Σ∗LΣ∗ is 2n−2 + 1. This

corresponds to the case of having error radius zero (r = 0) in Corollary 12. Differing

from here, Brzozowski et al. [4] defines state complexity (which they call quotient

complexity) in terms of the size of the minimal complete DFA. However, the lower

bound with r = 0 coincides with the result of Corollary 12 because, for a nonempty

language L, the minimal DFA for Σ∗LΣ∗ does not have a dead state. Lemma 10

and Corollary 12 require a linear size alphabet whereas the tight lower bound for

the error free case is obtained with a three letter alphabet [4].

5. Conclusion

We have given a tight lower bound construction for the state complexity of a neigh-

bourhood of a regular language. The construction uses a variable alphabet of size

linear in the number of states of the NFA. The main open problem for further work

is to develop lower bounds for neighbourhoods of languages over a fixed alphabet.

For radius one Hamming neighbourhoods an improved upper bound and a good

lower bound using a binary alphabet were given by Povarov [18].

Our lower bound for the approximate pattern matching problem was obtained by

modifying the lower bound construction for neighbourhoods of a regular language.

This was, roughly speaking, made possible by the choice of the distance function

and the language definition where the strings must contain the symbols a1, . . . , an−1

in this particular order. Similar constructions will be more challenging if restricted

to a fixed alphabet.

References

[1] Benedikt, M., Puppis, G., Riveros, C.: Bounded repairability of word languages. J.
Comput. System Sciences 79 (2013) 1302–1321

[2] Bordihn, H., Holzer, M., Kutrib, M.: Determination of finite automata accepting
subregular languages. Theoretical Computer Science 410 (2009) 3209–3249

[3] Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of ACM
20 (1977) 762–772

[4] Brzozowski, J., Jirásková, G., Li, B.: Quotient Complexity of Ideal Languages. In:
Latin American Theoretical Informatics Symposium. (2010) 208–221

January 19, 2016 15:22 WSPC/INSTRUCTION FILE neighbourhoods

15

[5] Calude, C.S., Salomaa, K., Yu, S.: Additive Distances and Quasi-Distances Between
Words. Journal of Universal Computer Science 8(2) (2002) 141–152

[6] Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer-Verlag, Berlin-Heidelberg
(2009)

[7] El-Mabrouk, N.: On the size of minimal automata for approximate string matching.
Technical report, Institut Gaspard Monge, Université de Marne la Vallée, Paris (1997)

[8] Han, Y.-S., Ko, S.-K., Salomaa, K.: The edit distance between a regular language and
a context-free language. International Journal of Foundations of Computer Science
24 (2013) 1067–1082

[9] Kari, L., Konstantinidis, S.: Descriptional complexity of error/edit systems. Journal
of Automata, Languages, and Combinatorics 9 (2004) 293–309

[10] Kari, L., Konstantinidis, S., Kopecki, S., Yang, M.: An efficient algorithm for com-
puting the edit distance of a regular language via input-altering transducers. CoRR
abs/1406.1041 (2014)

[11] Konstantinidis, S.: Transducers and the properties of error detection, error-correction,
and finite-delay decodability. Journal of Universal Computer Science 8 (2002) 278–291

[12] Konstantinidis, S.: Computing the edit distance of a regular language. Information
and Computation 205 (2007) 1307–1316

[13] Konstantinidis, S., Silva, P.: Maximal error-detecting capabilities of formal languages.
J. Automata, Languages, and Combinatorics 13 (2008) 55–71

[14] Konstantinidis, S., Silva, P.: Computing maximal error-detecting capabilities and
distances of regular languages. Fundamenta Informaticae 101 (2010) 257–270

[15] Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and rever-
sals. Soviet Physics Doklady 10(8) (1966) 707–710

[16] Ng, T., Rappaport, D., Salomaa, K.: Quasi-Distances and Weighted Finite Automata.
In: Descriptional Complexity of Formal Systems, DCFS’15, Waterloo, Ontario, June
25–27, 2015, Lect. Notes Comput. Sci. 9118 (2015) (to appear)

[17] Pighizzini, G.: How hard is computing the edit distance? Information and Computa-
tion 165 (2001) 1–13

[18] Povarov, G.: Descriptive Complexity of the Hamming Neighborhood of a Regular
Language. In: Language and Automata Theory and Applications. (2007) 509–520

[19] Salomaa, K., Schofield, P.: State Complexity of Additive Weighted Finite Automata.
International Journal of Foundations of Computer Science 18(06) (December 2007)
1407–1416

[20] Shallit, J.: A Second Course in Formal Languages and Automata Theory, Cambridge
University Press (2009)

[21] Shamkin, S.: Descriptional complexity of Hamming neighbourhoods of finite lan-
guages (in Russian). M.Sc. thesis, Ural Federal University, Ekaterinburg, Russia
(2011)

[22] Yu, S.: Regular languages, in: Handbook of Formal Languages, Vol. I, (G. Rozenberg,
A. Salomaa, Eds.), Springer, 1997, pp. 41–110

