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Abstract. The prefix distance between two words x and y is defined as
the number of symbols in x and y that do not belong to their longest
common prefix. The relative prefix distance from a language L1 to a
language L2, if finite, is the smallest integer k such that for every word
in L1, there is a word in L2 with prefix distance at most k. We study the
prefix distance between regular, visibly pushdown, deterministic context-
free, and context-free languages. We show how to compute the distance
between regular languages and determine whether the distance is bounded.
For deterministic context-free languages and visibly pushdown languages,
we show that the relative prefix distance to and from regular languages
is decidable.

1 Introduction

Distances on words are typically defined to compare the similarity between two
words. The prefix distance between two words x and y is defined as the number
of symbols in x and y that do not belong to their longest common prefix. In
some sense, the prefix distance measures the distance of objects arranged in a
hierarchical structure [19]. The edit distance, which counts the minimum number
of insertions, deletions, and substitutions required to transform one word into
another, is more commonly used for string comparisons. However, the prefix
distance is often simpler to compute than the edit distance and may suffice for
certain applications, such as defect measurement [12] and intrusion detection [5].
Beyond string comparisons, the prefix distance also has interesting topological
properties and is used to characterize the subsequentiality of functions [2].

These distance measures can be extended to sets of words, or languages.
The standard topological definition for a distance over words when extended to
languages takes the minimum of the distances between a word in each language
and has been well studied [11, 10, 13, 14, 17]. Choffrut and Pighizzini [8] consider
an alternate definition for distance between languages, called the relative or
Hausdorff distance. The relative distance from one language to another is defined
as the supremum over all words in the first language of the distance to the second
language and is non-symmetric. A symmetric distance can be attained by simply
taking the minimum of the relative distance in each direction.

Choffrut and Pighizzini study the distance between languages from the point
of view of relations on words. They study various distances on subclasses of
deterministic rational relations, showing that questions about distances are
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decidable for recognizable relations and undecidable for deterministic rational
relations with respect to the prefix, suffix, and subword distances.

The relative distance has applications in verification, as a generalization
of the language inclusion problem. For instance, Benedikt et al. [3, 4] consider
the one-sided relative edit distance to measure the cost of repairing regular
specifications. They give an algorithm for deciding when the distance between
regular languages is bounded and give complexity results for computing the
edit distance between regular languages. Chatterjee et al. [7] consider the same
problems for a context-free language and a language belonging to a subclass of
the context-free languages.

In this paper, we study the relative prefix distance between various classes of
languages. We show that the relative prefix distance between DFAs (deterministic
finite automata) can be computed in polynomial time while computing the relative
prefix and suffix distance between NFAs (nondeterministic finite automata) is
PSPACE-complete. We also consider the computational problem of computing
the relative prefix distance between more general classes of languages. For a
fixed value k, deciding whether the relative prefix distance from a context-free
language to a DFA (respectively, an NFA) language is at most k can be done
in polynomial time (respectively, is EXPTIME-complete). On the other hand,
computing the relative prefix distance from a regular language to a context-free
language is undecidable. We show that the prefix distance neighbourhood of a
DCFL (deterministic context-free language) is deterministic and this yields an
algorithm to compute the relative prefix distance from a regular language to a
DCFL. Finally, we show that computing the relative prefix distance from one
visibly pushdown language to another is EXPTIME-complete while computing
the relative prefix distance from a DCFL to a visibly pushdown language, or vice
versa, is undecidable.

2 Preliminaries

Here we briefly recall some definitions and notation used in the paper. For all
unexplained notions on finite automata and regular languages the reader may
consult the textbook by Shallit [18] or the survey by Yu [20]. A survey of distances
is given by Deza and Deza [9].

In the following, Σ is always a finite alphabet, the set of words of Σ is denoted
Σ∗, and ε denotes the empty word. The reversal of a word w ∈ Σ∗ is denoted by
xR. The length of a word w is denoted by |w|. The cardinality of a finite set S is
denoted |S| and the power set of S is 2S . A word w ∈ Σ∗ is a subword or factor
of x if and only if there exist words u, v ∈ Σ∗ such that x = uwv. If u = ε, then
w is a prefix of x. If v = ε, then w is a suffix of x.

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, q0, F )
where Q is a finite set of states, Σ is an alphabet, δ is a transition function
δ : Q × Σ → 2Q, q0 ∈ Q is a set of initial states, and F ⊆ Q is a set of final
states. A word w ∈ Σ∗ is accepted by A if for some q0 ∈ Q0, δ(q0, w)∩F 6= ∅ and
the language recognized by A consists of all words accepted by A. An NFA is a
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deterministic finite automaton (DFA) if for all q ∈ Q and a ∈ Σ, δ(q, a) either
consists of one state or is undefined.

A pushdown automaton (PDA) is a tuple P = (Q,Σ, Γ, δ, q0, F ) where Q is
a finite set of states, Σ is an alphabet, Γ is a stack alphabet, δ is a transition
function δ : Q×Σ ∪{ε}×Γ → 2Q×Γ

∗
, q0 ∈ Q is an initial state, and F ⊆ Q is a

set of final states. For a transition (q′, β) ∈ δ(q, a, α), the PDA pops the symbol
α from the top of the stack and pushes the symbols β onto the stack.

A configuration of a PDA is a triple (q, w, π) where q ∈ Q is the current state,
w ∈ Σ∗ is the remaining input, and π ∈ Γ ∗ is the contents of the stack. For a
transition (q′, β) ∈ δ(q, a, α), we write (q, aw, απ) ` (q′, w, βπ). We denote by
`∗ a sequence of transitions between the two configurations. Then a word w is
accepted by a PDA if (q0, w, ε) `∗ (qf , ε, π) for qf ∈ F and π ∈ Γ ∗.

A PDA is a deterministic pushdown automaton (DPDA) if the transition
function satisfies |δ(q, a, α)| ≤ 1 for all q ∈ Q, a ∈ Σ ∪ {ε}, and α ∈ Γ , and that
for all q ∈ Q and α ∈ Γ , if δ(q, ε, α) 6= ∅, then δ(q, a, α) = ∅ for all a ∈ Σ. It
is well known that the class of deterministic context-free languages is a proper
subclass of the context-free languages.

A visibly pushdown automaton is a tuple V = (Q,Σ, Γ, δ, q0, F ) as in a
pushdown automaton, with the additional constraint that the alphabet Σ and
transition function δ are partitioned into three sets

– call actions Σc with the transition function δc : Q×Σc → 2Q×Σ ,
– return actions Σr with the transition function δr : Q×Σr × Γ → 2Q,
– internal actions Σi with the transition function δi : Q×Σi → 2Q.

The stack operations of a VPA are determined entirely by the input symbols.
Specifically, upon reading a call action, the VPA must push to the stack and
upon reading a return action, the VPA must pop from the stack. It is well known
that the class of languages accepted by VPAs, the visibly pushdown languages, is
a proper subclass of the deterministic context-free languages [1].

A finite state transducer, or transducer, is a tuple T = (Q,Σ,∆, δ, q0, F ),
where Q is a finite set of states, Σ and ∆ are finite alphabets, δ ⊆ Q×Σ∗×∆∗×Q
is a finite set of transitions, q0 ∈ Q is an initial state, and F ⊆ Q is a set of
accepting states. An accepting computation of T is a sequence of elements of δ

(q0, x1, y1, q1)(q1, x2, y2, q2) · · · (qn−1, xn, yn, qn)

where qn ∈ F . We say the transducer maps the input string x = x1 · · ·xn to the
output string y = y1 · · · yn, which we denote by x→T y. The set {(x, y) | x→T y}
is the relation realized by T . We define the transduction realized by T by

T (x) = {y ∈ ∆∗ | x→T y}.

2.1 Distances

A function d : Σ∗ ×Σ∗ → N ∪ {0} is a distance if it satisfies for all x, y ∈ Σ∗

1. d(x, y) = 0 if and only if x = y,
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2. d(x, y) = d(y, x),
3. d(x, z) ≤ d(x, y) + d(y, z) for z ∈ Σ∗.

A distance between words can be extended to a distance between a word w ∈ Σ∗
and a language L ⊆ Σ∗ by

d(w,L) = min{d(w,w′) | w′ ∈ L}.

We define the relative distance [8] from a language L1 to language L2 to be

d(L1|L2) = sup{d(w1, L2) | w1 ∈ L1}.

In other words, d(L1|L2) is the value of the maximum distance from any word in
L1 to the language L2. Note that under this definition, d(L1|L2) is not symmetric
and can be unbounded.

The prefix distance of x and y counts the number of symbols which do not
belong to the longest common prefix of x and y. It is defined by

dp(x, y) = |x|+ |y| − 2 · max
z∈Σ∗

{|z| | x, y ∈ zΣ∗}.

The suffix distance and subword distance can be similarly defined by considering
the number of symbols of x and y which do not belong to the longest common
suffix (subword, respectively) of x and y.

The neighbourhood of a language L of radius k with respect to a distance d
is the set of all words v ∈ Σ∗ such that d(u, v) ≤ k for some u ∈ L [6]. More
formally,

E(L, d, k) = {w ∈ Σ∗ | d(w,L) ≤ k}.

It has been shown that the neighbourhoods of a regular language with respect to
the prefix, suffix, and subword distances are regular [16].

3 Relative Prefix Distance Between Regular Languages

Choffrut and Pighizzini [8] showed that the main questions about the almost-
reflexivity of a recognizable relation is decidable. Here, we show that these
questions are computable in polynomial time if the languages are given as DFAs
and that they are PSPACE-complete for NFAs.

Since the relative distance can be unbounded, we would like to characterize
when, for two given languages, the distance is finite. In the following result, we
show that the distance is either bounded by a function of the state complexity of
the languages, or it is unbounded. First, we establish a simple lemma.

Lemma 1. Let A1 and A2 be two NFAs recognizing L1 and L2 with n1 and n2
states respectively. Suppose u ∈ L1, v ∈ L2 and let p be the longest word satisfying
u = pu′, v = pv′. Then there exists a word pw ∈ L2 such that |w| < n2 − 1.

Proof. This follows directly from the Pumping Lemma [18]. ut
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Theorem 2. Let L1, L2 be regular languages recognized by NFAs A1 and A2

with n1 and n2 states, respectively. Suppose dp(L1|L2) is bounded. Then,

dp(L1|L2) ≤ n1 + n2 − 2

Proof. Let u ∈ L1 and v ∈ L2 such that

k = dp(u, v) = dp(u, L2) = dp(L1, L2) <∞

and suppose k > n1 + n2 − 2. We write u = pu′ and v = pv′, with p be being
the longest common prefix of u and v. Since dp(u, v) = minw∈L2

{dp(u,w)}, by
Lemma 1, we have |v′| ≤ n2 − 1, which implies that |u′| > n1 − 1.

By the Pumping Lemma [18], we can write u′ = xyz where |yz| < n1 − 1,
|y| > 0 and pxyiz ∈ L1 for any i ∈ N. Consider a word u2 = pxy2z ∈ L1 and let
v2 ∈ L2 be a word such that dp(u2, v2) = dp(u2, L2). That is, v2 is the word in
L2 which is closest to u2. By our assumption, we have dp(u2, v2) ≤ k. Now let q
be the longest word such that u2 = qu′2 and v2 = qv′2.

First, suppose that |q| ≤ |pxy|. Let ` = |pxy| − |q|. Then,

k ≤ dp(u, v2) = `+ |z|+ |v′2| < `+ |y|+ |z|+ |v′2| = dp(u2, v2) = k

which is a contradiction. Next, suppose that |q| > |pxy|. Recall that u = pxyz
and let q′ be such that v2 = pxyq′v′2. By Lemma 1, let w be such that |w| < n2−1
and pxyw ∈ L2. Then we have

k ≤ dp(u, pxyw) = |z|+ |w| ≤ n1 − 1 + n2 − 1 < k

which again is a contradiction. Therefore, k ≤ n1 + n2 − 2. ut

Example 3. We will show that this bound is reachable. Let Σ = {a, b} and let
L1 = Σ∗aΣn1−2 and L2 = Σ∗bΣn2−2. Note that L1 can be recognized by an
NFA with n1 states and L2 can be recognized by an NFA with n2 states. We
observe that for any word in w ∈ L1, we have dp(w,L2) ≤ n1 + n2 − 2.

If the distance is bounded, then it is possible construct a neighbourhood of
finite radius with respect to the given distance.

Lemma 4. Let L1 and L2 be languages. Then dp(L1|L2) ≤ k if and only if
L1 ⊆ E(L2, dp, k).

Theorem 5. Let A1 and A2 be DFAs. Then it is decidable in polynomial time
whether dp(L(A1)|L(A2)) is bounded.

Proof. By Theorem 2, we know that dp(L(A1)|L(A2)) ≤ n1 + n2 − 2 if it is
bounded. Otherwise, it is unbounded. Therefore, it is enough to check

L(A1) ⊆ E(L(A2), dp, n1 + n2 − 2).

It is known that the size of a DFA for E(L(A2), dp, n1 + n2 − 2) is at most
n2(n2−1)

2 + n1 + n2 − 1 states, which is polynomial in n2 and can be constructed
in polynomial time [16]. Then since the inclusion problem for DFAs is decidable
in polynomial time, checking the above inclusion can also be done in polynomial
time. ut
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Theorem 6. Let A1 and A2 be DFAs. Then dp(L(A1)|L(A2)) is computable in
polynomial time.

We will now show that the same questions are PSPACE-complete when we are
given nondeterministic finite automata. First, we will make use of the following
observation.

Lemma 7. Consider languages L1 and L2 over an alphabet Σ. Let # be a symbol
not in Σ and k ∈ N. Then

dp(L1#k|L2) ≤ k iff L1 ⊆ L2.

Theorem 8. Let k ∈ N be fixed. For given NFAs A1 and A2, deciding whether
or not dp(L(A1)|L(A2)) ≤ k is PSPACE-complete.

Proof. First, we note that given an n-state NFA A, we can construct an NFA A′

for E(L(A), dp, k) with at most n+ k states [16]. To see that the problem is in
PSPACE, we note that the problem is equivalent to deciding

L(A1) ⊆ E(L(A2), dp, k).

To see that the problem is PSPACE-hard, we reduce from NFA universality.
Suppose we are given an NFA A. Then by Lemma 7, L(A) = Σ∗ if and only if
dp(Σ

∗#k|L(A)) ≤ k. ut

Corollary 9. Let A1 and A2 be NFAs. Then the problem of deciding whether
dp(L(A1)|L(A2)) is bounded is PSPACE-complete.

We can derive some results for the suffix distance as well, by using its symmetry
with the prefix distance. One might assume that this means the complexity of
questions regarding the relative suffix distance follow straightforwardly from our
results on the relative prefix distance. However, computing the neighbourhood
with respect to the suffix distance is much more difficult than for the prefix
distance. First, as a corollary of the bound from Theorem 2, we get:

Corollary 10. Let L1, L2 be regular languages recognized by NFAs A1 and A2

with n1 and n2 states, respectively. Then either ds(L1|L2) ≤ n1 + n2 − 2 or
ds(L1|L2) is unbounded.

Proposition 11. Let A1 and A2 be DFAs with n1 and n2 states, respectively.
Then deciding whether ds(L(A1)|L(A2)) is bounded is in PSPACE.

Proof. We can construct an NFA for the language E(L(A2), ds, n1 + n2 − 2)
that has at most n2 + (n1 + n2 − 2) states. Thus, we can decide the inclusion
L1 ⊆ E(L2, ds, n1 + n2 − 2) in PSPACE. ut

We note that the current best known DFA construction for E(L(A2), ds, n1+n2−2)
has at most n1 + 2n2 states, and is therefore not known to be polynomial in n2
[15].

Corollary 12. Let A1 and A2 be NFAs. Then the problem of deciding whether
ds(L(A1)|L(A2)) is bounded is PSPACE-complete.
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4 Relative Prefix Distance and Context-free Languages

Here, we consider the relative distance on non-regular languages. The dis-
tance from one context-free language to another is undecidable by Choffrut
and Pighizzini [8]. Thus, we consider the distance between context-free languages
and regular languages. First, we define the following useful finite-state transducer.

Let Pk = (Qk, Σ,Σ, δk, I, Fk) be a finite state transducer, shown in Figure 1,
with Qk = {0, . . . , k}, I = {0}, Fk = Qk, and transitions

– (0, a, a, 0) for all a ∈ Σ,
– (i, a, ε, i+ 1) for all a ∈ Σ and 0 ≤ i ≤ k − 1,
– (i, ε, a, i+ 1) for all a ∈ Σ and 0 ≤ i ≤ k − 1,
– (i, a, b, i+ 2) for all a, b ∈ Σ with a 6= b and 0 ≤ i ≤ k − 2.

0start

1

2

3

4

· · ·

· · ·

σ/σ

σ/ε, ε/σ

σ/ε, ε/σ

σ/ε, ε/σ

σ/ε, ε/σ

σ/ε, ε/σ

σ/σ′

σ/σ′

σ/σ′

σ/σ′

σ/σ′

Fig. 1. The transducer Pk with σ, σ′ ∈ Σ

Lemma 13. Let w ∈ Σ∗. Then Pk(w) = E(w, dp, k).

It is not difficult to see that for a language L, we have Pk(L) = E(L, dp, k).
A similar transducer Sk with respect to the suffix distance can be defined by
replacing the transition (0, a, a, 0) for all a ∈ Σ with (k, a, a, k) for all a ∈ Σ∗.
We make use of the fact that context-free languages are closed under rational
transductions to get the following result.

Proposition 14. Let L be a context-free language. Then for every k ≥ 0, the
neighbourhood E(L, dp, k) is context-free.

Proposition 15. Let k ∈ N be fixed. Given a regular language L1 and a context-
free language L2, determining whether or not dp(L1|L2) ≤ k is undecidable.

On the other hand, computing the relative distance from a context-free
language to a regular language becomes decidable, and when the regular language
is given by a DFA, this problem can even be decided in polynomial time. First,
we will state the following useful fact from Chatterjee et al. [7].
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Proposition 16 ([7]). Given a PDA P and an NFA A, the inclusion L(P ) ⊆
L(A) can be decided in EXPTIME. Given a deterministic PDA P and an NFA
A, it is EXPTIME-hard to decide whether or not L(P ) ⊆ L(A).

Proposition 17. Let k ∈ N be fixed.

1. Given an NFA A and a PDA P , deciding whether or not dp(L(P )|L(A)) ≤ k
is EXPTIME-complete.

2. Given a DFA B and a PDA P , it can be decided in polynomial time whether
or not dp(L(P )|L(B)) ≤ k.

It is clear that by symmetry, we would attain the same results for the suffix
distance between a context-free language and a regular language. However, if we
consider the distance between a DCFL and a regular language, we get different
results for the prefix and suffix distance. First, we show that the neighbourhood
of a DCFL with respect to the suffix distance need not be a DCFL.

Lemma 18. There exist a deterministic context-free language L and integer k
for which E(L, ds, k) is not a deterministic context-free language.

This lemma, together with Proposition 15, leads to some fairly straightforward
results.

Proposition 19. Let k ∈ N be fixed. Given a DPDA P and an NFA A,

1. deciding whether or not ds(L(A)|L(P )) ≤ k is undecidable.
2. deciding whether or not ds(L(P )|L(A)) ≤ k is EXPTIME-complete.

Differing from the case of the suffix distance, we show that neighbourhoods
of DCFLs with respect to the prefix distance are also DCFLs.

Theorem 20. Let L be a deterministic context-free language. Then for every
k ≥ 0, the neighbourhood E(L, dp, k) is a deterministic context-free language.

Proof. Given a DPDA A recognizing L, we will construct a DPDA A′ that
recognizes the neighbourhood E(L, dp, k). We need to determine whether the
input word w has prefix distance at most k from some word in L. We can simulate
a computation of w on A and based on the current state and the top k symbols
of the pushdown stack, we can determine the length of a path to or from a closest
final state of A. If such a path of length less than k exists, then w has a prefix
distance of less than k from some word in L. This requires that we know what
the top k symbols of the pushdown stack are, so we simulate the top of the stack
via the finite state memory and store the rest of the stack on the pushdown stack
as normal.

Let L be recognized by a DPDA A = (Q,Σ, Γ, δ, q0, F ). Then for each state
q ∈ Q and string of stack symbols π ∈ Γ≤k, we define the following function
ϕA,k : Q× Γ≤k → N,

ϕA(q, π) = min
w∈Σ∗

({|w| | (q, w, π) `∗ (q′, ε, π′)} ∪ {k + 1})
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for some q′ ∈ F and π′ ∈ Γ ∗. The function ϕA,k(q, π) gives the length of a
shortest word w such that for any word x that reaches the state q with π on
the top of the stack, we have xw ∈ L if |w| ≤ k. Based on this function, we
can construct a DPDA A′ = (Q′, Σ, Γ, δ′, q′0, F

′) that recognizes the language
E(L, dp, k).

Let Q′ = Q× Γ≤k × {0, . . . , k + 1} ∪ {p1, . . . , pk}. We set the initial state to
be q′0 = (q0, ε, ϕA(q0, ε)). The set of final states is defined

F ′ = Q× Γ≤k × {0, . . . , k} ∪ {p1, . . . , pk}.

We describe the transition function of A′ by first describing the operation of
the stack. We keep track of the top k symbols of the stack “in memory” in the
states and store the rest of the stack as normal. Consider a state q, a symbol
a ∈ Σ, and let (q′, β) = δ(q, a, α), where α is the top of the pushdown stack of A
and β = β1 · · ·β|β| is the symbols to be pushed onto the pushdown stack of A.
Let π = γ1 · · · γ|π| be the top of the pushdown stack with |π| ≤ k to be kept in
memory.

Consider the state (q, π, i) in A′ with γ1 = α. First, we consider β = ε to
demonstrate a pop action. First, we consider when |π| ≤ k. This occurs when the
size of the in-memory portion of the stack has at most k elements and therefore,
the size of the entire stack has at most k elements. In this case, the stack of
A′ is empty and the stack operations are performed only on the in-memory
portion of the stack. Thus, for a transition δ(q, a, α) in A, we have the transition
δ′((q, π, i), a, ε) = ((q′, γ2 · · · γ|π|, j), ε).

If |π| > k and the stack contains m > k symbols, then the top k symbols of
the stack of A are stored as π and the rest of the m − k stack symbols are on
the pushdown stack of A′. In this case, A′ will pop the topmost symbol α′ on its
stack to append to the end of π and remove the first symbol γ1 of π to simulate a
pop from the top of the in-memory portion of the stack. Formally, the transition
is δ′((q, π, i), a, α′) = (q′, γ2 · · · γkα′, j), ε), where α′ is the top of the pushdown
stack of A′.

Now, for β 6= ε, we demonstrate the push action. Let π′ = β · γ2 · · · γ|π|. First
we consider when |π′| ≤ k. In this case, γ1 is popped as above and now we need
to push the symbols onto the stack. Since the size of the stack is less than k, we
store the entire contents in memory and we have δ′((q, π, i), a, ε) = ((q′, π′, j), ε).
If |π′| > k, then we keep the first k symbols in memory and push the rest onto
the stack. Let π′ = η1 · · · η|π′|. Then we have the transition δ′((q, π, i), a, α′) =
((q′, η1 · · · ηk, j), ηk+1 · · · η|π′|α′), where α′ is the top of the pushdown stack of A′.

To see that this is all deterministic, we recall that each transition of A is
uniquely determined by the current state q, input symbol a, and the top of
the stack α. Each of the above transitions of A′ is still uniquely determined by
the same items, noting that α is γ1, the first symbol of π and that the stack
additional stack manipulations are determined by π, which is part of the state,
and α′, the top of the pushdown stack of A′.

Now, we consider the step counter in the third component of a state of A′.
The counter either increments by one for each input symbol that is read, or takes
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on the value ϕA(q, π) if it is smaller than the number of steps. Formally, for a
transition δ′((q, π, i), a, α) = ((q′, π′, j), β) of A′, we define j by

j = min(i+ 1, ϕA(q′, π′)).

Finally, we consider transitions that were undefined in A. We define a chain
of k new states pi, 1 ≤ i ≤ k. For each pi and 1 ≤ i ≤ k − 1, reading any symbol
will transition to state pi+1 and there are no outgoing transitions from pk. If on
a state (q, π, j) with the top symbol of the pushdown stack α we ever read an
input symbol a such that the transition δ(q, a, α) is undefined, then based on the
step counter component j, the machine A′ enters the chain of k states at pj+1.

Now we show that a word w ∈ Σ∗ reaches a state (q, π, i) if and only if there
exists some word x ∈ L such that dp(w, x) = i if i ≤ k. First suppose that w
reaches (q, π, i). Then this means w reaches the state q on the original machine.
One of three cases is possible.

1. If i ≤ k and ϕA(q, π) = i, then there exists some suffix x′ of length i such
that wx′ ∈ L(A). This gives us dp(w, x) = dp(w,wx

′) = |x′| = i.
2. If i ≤ k and ϕA(q, π) < i, then on some prefix p of w, the first case applied.

That is, for w = pw′, there exists a word x = px′ and dp(p, x) = |x′| = i−|w′|.
This implies that dp(w, x) = |x′|+ |w′| = i.

3. If i > k, then i = k + 1 and neither of the two cases above apply. Then there
is no word x such that dp(w, x) ≤ k.

From the above, we observe that if w didn’t reach a state in the original DPDA
A, then, on some prefix p with w = pw′, reading p takes A′ to the state (q, π, i).
Then reading w′ takes the machine to a state p|w′|+i if i+ |w′| ≤ k.

Since all states except for states of the form (q, π, k + 1) are accepting states,
we have L(A′) = E(L(A), dp, k) and A′ has O(nk|Γ |k) states. ut

Recall from Proposition 15 that the relative prefix distance from a regular
language to a context-free language is undecidable. We get contrasting results
for DCFLs using the construction from Theorem 20 and the fact that DCFLs
are closed under complement.

Proposition 21. Let k ∈ N be fixed.

1. Given an NFA A and a DPDA P , it can be decided in polynomial time
whether or not dp(L(A)|L(P )) ≤ k.

2. Given a DFA B and a DPDA P , it can be decided in polynomial time whether
or not dp(L(B)|L(P )) ≤ k.

Now, we consider the class of visibly pushdown languages. The class of VPLs
is known to be a proper subclass of DCFLs. First, we show that the relative
prefix distance between a DCFL and VPL is undecidable.

Proposition 22. Let k ∈ N be fixed. Given a visibly pushdown automaton A
and a deterministic pushdown automaton P ,
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1. determining whether or not dp(L(A)|L(P )) ≤ k is undecidable.
2. determining whether or not dp(L(P )|L(A)) ≤ k is undecidable.

Unlike DCFLs, the VPLs are closed under typical language operations and the
standard questions involving VPLs are decidable. This will allow us to consider
the problem of deciding whether the prefix distance from a VPL to another VPL
is within k. First, we will show that the prefix neighbourhood of a VPL is also a
VPL.

Theorem 23. Let L be a visibly pushdown language. Then E(L, dp, k) is a visibly
pushdown language for all k ≥ 0.

Proof. Let A be a visibly pushdown automaton that recognizes L. We will modify
the construction of the prefix neighbourhood DPDA defined in the proof of
Theorem 20 to construct a VPA A′ that recognizes E(L, dp, k). To preserve the
visibly pushdown property, we must push and pop from the stack as dictated by
call and return symbols. This is only an issue when the stack of A has size less
than k. In the DCFL construction, we simply ignored the stack, but we cannot
do this for a VPA.

To solve this, we add a new symbol 4 to the stack alphabet. Let q ∈ Q,
a ∈ Σc, and let (q′, β) = δc(q, a). Consider the state (q, π, i) with π = γ1 · · · γ|π|
and |π| < k. On this transition, the VPA A must push β onto the stack. In the
VPA A′, we add β to the top of the stack in memory and push a dummy symbol
4 onto the stack. Then our transition in A′ is δ′c((q, π, i), a) = ((q′, βπ, j),4).

Now let a ∈ Σr be a return action and consider the transition δr(q, a, α) = q′

of A. The VPA A must pop α from the stack, but if |π| < k, the stack of
A′ contains only 4s. Then the corresponding pop action on A′ is to pop a
4 off of the stack, use γ1 to determine the transition, and remove γ1 from
the in-memory portion of the stack. Then our corresponding transition in A′ is
δ′r((q, γ2 · · · γ|π|, i), a,4) = q′. Since a 4 is only pushed onto the stack whenever a
call action is read and popped whenever a return action is read, we are guaranteed
to have exactly as many 4s as there are symbols in the in-memory portion of
the stack.

Once the in-memory portion of the stack reaches k symbols, the VPA behaves
exactly like the DPDA that was constructed in Theorem 20 until the stack size
becomes less than k again. Furthermore, since the construction preserves the
determinism of the DCFL, if the VPA A is deterministic, then the VPA A′ that
is constructed via this process will also be deterministic. ut

Proposition 24. Let k ∈ N be fixed. For given VPAs A1 and A2, deciding
dp(L(A1)|L(A2)) ≤ k is EXPTIME-complete.
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