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Abstract. Splicing, as a binary word/language operation, was inspired
by the DNA recombination under the action of restriction enzymes and
ligases, and was first introduced by Tom Head in 1987. Splicing systems as
generative mechanisms were defined as consisting of an initial starting set
of words called an axiom set, and a set of splicing rules—each encoding a
splicing operation—, as their computational engine to iteratively generate
new strings starting from the axiom set. Since finite splicing systems
(splicing systems with a finite axiom set and a finite set of splicing rules)
generate a subclass of the family of regular languages, descriptional
complexity questions about splicing systems can be answered in terms of
the size of the minimal deterministic finite automata that recognize their
languages. In this paper we focus on a particular type of splicing systems,
called simple splicing systems, where the splicing rules are of a particular
form. We prove a tight state complexity bound of 2n−1 for (semi-)simple
splicing systems with a regular initial language with state complexity
n ≥ 3. We also show that the state complexity of a (semi-)simple splicing
system with a finite initial language is at most 2n−2 +1, and that whether
this bound is reachable or not depends on the size of the alphabet and
the number of splicing rules.

1 Introduction

In [10] Head described a language-theoretic operation, called splicing, which
models DNA recombination, a cut-and-paste operation on DNA double-stranded
molecules, under the action of restriction enzymes and ligases. A splicing system
is a formal language model which consists of a set of initial words, I (represent-
ing double-stranded DNA strings), and a set of splicing rules R (representing
restriction enzymes). The most commonly used definition for a splicing rule is
a quadruplet of words r = (u1, v1;u2, v2). This rule splices two words x1u1v1y1
and x2u2v2y2: the words are cut between the factors u1, v1, respectively u2, v2,
and the prefix (the left segment) of the first word is recombined by catenation
with the suffix (the right segment) of the second word; see Figure 1 and also [16].
The words u1v1 and u2v2 are the restriction sites in the rule r. A splicing sys-
tem generates a language which contains every word that can be obtained by
successively applying rules to axioms and the intermediately produced words.
The most natural variant of splicing systems, often referred to as finite splicing
systems, is to consider a finite set of axioms and a finite set of rules.
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Several different types of splicing systems have been proposed in the literature,
and Bonizzoni et al. [1] showed that the classes of languages they generate are
related. Shortly after the introduction of splicing in formal language theory,
Culik II and Harju [4] proved that finite splicing systems can only generate
regular languages; see also [11, 15]. Gatterdam [7] gave (aa)∗ as an example of a
regular language which cannot be generated by a finite splicing system; thus, the
class of languages generated by finite splicing systems is strictly included in the
class of regular languages.

x1 u1 v1 y1

x2 u2 v2 y2

=⇒ x1 u1 v2 y2

Fig. 1. Splicing of the words x1u1v1y1 and x2u2v2y2 by the rule r = (u1, v1;u2, v2).

Descriptional complexity considers the complexity of a language in terms of
the size of a computational device (in this case splicing system) that generates or
recognizes it. For instance, Mateescu et al. [14] consider a number of descriptional
complexity measures for simple splicing systems, such as the number of rules,
the number of words in the initial language, the maximum length of a word
in the initial language, and the sum of the lengths of all words in the initial
language. Loos et al. [13] consider the descriptional complexity of finite splicing
systems by using the number of rules, the length of the rules, and the size of the
initial language as complexity measures. Păun [16] proposed using the radius,
the largest ui in a rule, as a descriptional complexity measure.

As the class of languages generated by splicing systems forms a subclass of the
family of regular languages, their descriptional complexity can also be considered
in terms of the finite automata that recognize them. For example, Loos et al. [13]
gave a bound on the number of states required for a nondeterministic finite
automaton to recognize the language generated by an equivalent finite splicing
system.

We focus our attention on simple splicing systems, that is, splicing systems
where the rules (u1, v1;u2, v2) are of a particular form: u1 = u2 = a, are singleton
letters, and v1 = v2 = ε are the empty word. The descriptional complexity
of simple splicing systems was considered by Mateescu et al. [14] in terms of
the size of a right linear grammar that generates a simple splicing language.
Here we consider the descriptional complexity of simple splicing systems in
terms of deterministic state complexity [6]. In other words, we measure the
descriptional complexity of a simple splicing system in terms of the size of the
minimal deterministic finite automaton that recognizes the language generated
by the splicing system.

In this paper, we prove tight state complexity bounds for simple and semi-
simple splicing systems with regular and finite initial languages. In Section 2, we
fix notation and definitions for simple splicing systems. We consider the state
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complexity of simple splicing systems with regular and finite initial languages in
Section 3. In Section 4, we give tight state complexity bounds for semi-simple
splicing systems with finite initial languages. We consider the state complexity
of the crossover operation related to simple splicing systems in Section 5.

2 Preliminaries

Let Σ be a finite alphabet. We denote by Σ∗ the set of all finite words over Σ,
including the empty word, which we denote by ε. We denote the length of a word
w by |w| = n. If w = xyz for x, y, z ∈ Σ∗, we say that x is a prefix of w, y is a
factor of w, and z is a suffix of w.

A deterministic finite automaton (DFA) is a tuple A = (Q,Σ, δ, q0, F ) where
Q is a finite set of states, Σ is an alphabet, δ is a function δ : Q×Σ → Q, s ∈ Q
is the initial state, and F ⊂ Q is a set of final states. We extend the transition
function δ to a function Q×Σ∗ → Q in the usual way. A DFA A is complete if
δ is defined for all q ∈ Q and a ∈ Σ. We will make use of the notation q

w−→ q′

for δ(q, w) = q′, where w ∈ Σ∗ and q, q′ ∈ Q. A state q ∈ Q is called a sink state
if δ(q, a) = q for all a ∈ Σ and q 6∈ F .

Each letter a ∈ Σ defines a transformation of the state set Q. Let δa : Q→ Q
be the transformation on Q induced by a, defined by δa(q) = δ(q, a). We extend
this definition to words by composing the transformations δw = δa1 ◦δa2 ◦ · · ·◦δan
for w = a1a2 · · · an. We denote by im δa the image of δa, defined im δa = {δ(p, a) |
p ∈ Q}.

The language recognized or accepted by A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F}.
A state q is called reachable if there exists a string w ∈ Σ∗ such that δ(q0, w) = q.
Two states p and q of A are said to be equivalent if δ(p, w) ∈ F if and only if
δ(q, w) ∈ F for every word w ∈ Σ∗. A DFA A is minimal if each state q ∈ Q
is reachable from the initial state and no two states are equivalent. The state
complexity of a regular language L is the number of states of the minimal
complete DFA recognizing L [6].

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, I, F )
where Q is a finite set of states, Σ is an alphabet, δ is a function δ : Q×Σ → 2Q,
I ⊆ Q is a set of initial states, and F is a set of final states. The language
recognized by an NFA A is L(A) = {w ∈ Σ∗ |

⋃
q∈I δ(q, w) ∩ F 6= ∅}. As with

DFAs, transitions of A can be viewed as transformations on the state set. Let
δa : Q→ 2Q be the transformation on Q induced by a, defined by δa(q) = δ(q, a).
The image of δa is defined by im δa = {δ(p, a) | p ∈ Q}. We make use of the

notation P
w−→ P ′ for P ′ =

⋃
q∈P δ(q, w), where w ∈ Σ∗ and P, P ′ ⊆ Q.

2.1 Simple Splicing Systems

In this paper we will use the notation of Păun [16], even though simple splicing sys-
tems can be defined using any of the three definitions of splicing. The splicing oper-
ation is defined via sets of quadruples r = (α1, α2;α3, α4) with α1, α2, α3, α4 ∈ Σ∗
called splicing rules. For two strings x = x1α1α2x2 and y = y1α3α4y2, applying
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the rule r = (α1, α2;α3, α4) produces a string z = x1α1α4y2, which we denote
by (x, y) `r z.

A splicing scheme is a pair σ = (Σ,R) where Σ is an alphabet and R is a
set of splicing rules. For a splicing scheme σ = (Σ,R) and a language L ⊆ Σ∗,
we denote by σ(L) the language

σ(L) = L ∪ {z ∈ Σ∗ | (x, y) `r z, where x, y ∈ L, r ∈ R}.

Then we define σ0(L) = L and σi+1(L) = σ(σi(L)) for i ≥ 0 and

σ∗(L) = lim
i→∞

σi(L) =
⋃
i≥0

σi(L).

For a splicing scheme σ = (Σ,R) and an initial language L ⊆ Σ∗, we say the
triple H = (Σ,R, L) is a splicing system. The language generated by H is defined
by L(H) = σ∗(L).

Mateescu et al. [14] define a restricted class of splicing systems called simple
splicing systems. A simple splicing system is a triple H = (Σ,M, I), where Σ is
an alphabet, M ⊆ Σ is a set of markers, and I is a finite initial language over
Σ. For a ∈ M , we have (x, y) `a z if and only if x = x1ax2, y = y1ay2, and
z = x1ay2 for some x1, x2, y1, y2 ∈ Σ∗.

In other words, a simple splicing system is a system in which the set of
rules is M = {(a, ε; a, ε) | a ∈M} and the initial language I is finite. Since the
rules are determined solely by our choice of M ⊆ Σ, the set M is used in the
definition of the simple splicing system rather than the set of rules M. Based
on these properties, one can deduce that the class of languages generated by
simple splicing systems is subregular [4, 15]. Mateescu et al. [14] show that these
languages form a proper subclass of the extended star-free languages.

In this paper, we will relax the condition that the initial language of a simple
splicing system must be a finite language. We will consider also simple splicing
systems with regular initial languages. By [16], it is clear that such a splicing
system will also produce a regular language. In the following, we will use the
convention that I denotes a finite language and L denotes an infinite language.

3 State Complexity of Simple Splicing

In this section, we will give tight state complexity bounds for simple splicing
systems with regular and finite initial languages. First, we will define an NFA
that recognizes the language of a given simple splicing system. The construction
follows a more general construction due to Loos et al. [13] for finite splicing
systems. This construction is a simplification of a construction by Pixton [15],
which itself is a simplification of the original proof of regularity of finite splicing
due to Culik and Harju [4].

Proposition 1. Let H = (Σ,M,L) be a simple splicing system with a regular
initial language L and let L be recognized by a DFA with n states. Then there
exists an NFA A′H with n states such that L(A′H) = L(H).
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Proof. Let H = (Σ,M,L) and let A = (Q,Σ, δ, q0, F ) be a DFA for L. We will
define the NFA AH = (Q′, Σ, δ′, q0, F ), where Q′ = Q∪QM with QM = {pa, p′a |
a ∈M} and the transition function δ′ is defined

– δ′(q, a) = {δ(q, a)} if q ∈ Q and a ∈ Σ,

– δ′(q, ε) = {pa} if q ∈ Q, a ∈M , and δ(q, a) is not the sink state,

– δ′(pa, a) = {p′a} if pa ∈ QM ,

– δ′(p′a, ε) = im δa if p′a ∈ QM and a ∈M

First, we describe the construction of [13]. Let M = {(a, ε; a, ε) | a ∈ M}
be the set of rules for H. For each rule (α1, α2;α3, α4) ∈ M, add new states
and transitions corresponding to α1α4 and α3α2. That is, if α1 = a1 · · · ai,
α2 = b1 · · · bj , α3 = c1 · · · ck, and α4 = d1 · · · d`, then add states and transitions

corresponding to a path r0
a1−→ r1

a2−→ · · · d`−→ ri+` for α1α4 and a path s0
c1−→

s1
c2−→ · · · bj−→ sj+k corresponding to α3α2. Now consider each path q

α1α2−−−→ q′

in A such that q is reachable from the initial state q0 and a final state of A
is reachable from q′. We add an ε-transition from q to r0 and from sj+k to q′.

Similarly, for each path t
α3α4−−−→ t′, add ε-transitions from t to s0 and from ri+`

to t′.

Now, since H is a simple splicing system, this construction can be simplified
further. Since every rule of H is of the form (a, ε; a, ε), we only need to add states

and transitions for pa
a−→ p′a for each rule. Then add ε-transitions from states q

of A to pa if q has an outgoing transition on a to a non-sink state of A. From
each state p′a, add ε-transitions to each state of A with an incoming transition
on a. Recall that im δa is the image of the transformation of δ induced by a, and
therefore it is the set of states of A with an incoming transition on a.

pa p′a

...
...

aε

ε

ε

ε

...
...

a

a

a

a

Fig. 2. New states and transitions for a ∈M (left), after ε-removal (right)

Finally, we can simplify this NFA by removing ε-transitions in the usual way
to obtain an NFA A′H = (Q,Σ, δ′, q0, F ), where

δ′(q, a) =


{δ(q, a)} if δ(q, a) is the sink state,

{δ(q, a)} if a 6∈M ,

im δa if a ∈M .
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Figure 2 illustrates the new states and transitions added for a ∈M before and
after ε-removal. Observe that by removing the ε-transitions, we also remove the
states that were initially added earlier in the construction of AH . Thus, the state
set of A′H is exactly the state set of the DFA A recognizing L. ut

Given a splicing system H = (Σ,M,L), one can obtain a DFA that recognizes
L(H) by performing the subset construction on A′H . As shown in Proposition 1,
if L is recognized by a DFA with n states, then A′H also has n states. By applying
the subset construction and observing that the empty set is not reachable from
any subset of Q in A′H , this gives an upper bound of 2n − 1 states for a DFA
equivalent to A′H .

We will now show that there exists a family of regular languages Ln with
state complexity n such that a simple splicing system H = (Σ,M,Ln) with one
marker requires 2n − 1 states for an equivalent DFA to recognize it.

Proposition 2. For |Σ| ≥ 3 and n ≥ 3, there exists a simple splicing system
with a regular initial language H = (Σ,M,Ln) with |M | = 1 where Ln is a
regular language with state complexity n such that the minimal DFA for L(H)
requires at least 2n − 1 states.

Proposition 2 is proved via the family of languages Ln accepted by DFAs An,
shown in Figure 3, with M = {c}.

0start 1 2 · · · n− 2 n− 1

b, c b, c b, c
b, c c

a a a a a

a, b

Fig. 3. The DFA An

Together, Propositions 1 and 2 give the following result.

Theorem 3. For a simple splicing system with a regular initial language H =
(Σ,M,Ln) where M ⊆ Σ and Ln ⊆ Σ∗ has state complexity n, the state com-
plexity of L(H) is at most 2n − 1 and this bound can be reached in the worst
case.

We will now consider simple splicing systems with a finite initial language.
We will show that the upper bound of Proposition 1 is not reachable in this case.

Proposition 4. Let H = (Σ,M, I) be a simple splicing system with a finite
initial language, where I is a finite language recognized by a DFA A with n states.
Then a DFA recognizing L(H) requires at most 2n−2 + 1 states.
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We will show that this bound is reachable. We note that the lower bound
witness used in the following lemma is defined over an alphabet with size ex-
ponential in the number of states of the DFA recognizing the initial language.

Lemma 5. There exists a simple splicing system with a finite initial language
H = (Σ,M, In) where In is a finite language with state complexity n such that a
DFA recognizing L(H) requires 2n−2 + 1 states.

Together, Proposition 4 and Lemma 5 give the following result.

Theorem 6. For a simple splicing system with a finite initial language H =
(Σ,M, In) where M ⊆ Σ and In ⊆ Σ∗ has state complexity n, the state complexity
of L(H) is at most 2n−2 + 1 and this bound can be reached in the worst case.

The bound of Lemma 5 is reached by a witness defined over an alphabet size
of 2n−3 + 1. An obvious question is whether this bound can be reached via a
smaller alphabet. We will consider in the following the state complexity of simple
splicing systems with a finite initial language for small, fixed alphabets. We begin
with a general observation on the transition function of a DFA recognizing the
language of a simple splicing system.

Lemma 7. Let H = (Σ,M,L) be a simple splicing system with a regular initial
language and let AH be an NFA recognizing L(H). If a ∈ M and δ′ is the
transition function of AH , then | im δ′a| = 2.

First, we will consider simple splicing systems with a finite initial language
defined over a unary alphabet.

Proposition 8. Let H = ({a},M, I) be a simple splicing system where M is
nonempty and I is a finite language containing a word of length at least 2. Then
the minimal DFA recognizing L(H) has exactly two states.

Next, we consider simple splicing systems with a finite initial language defined
over a binary alphabet. We will show that the small size of the alphabet restricts
the number of transformations that can be performed on the state set and that
the upper bound on the number of states falls far below the upper bound of
Proposition 4 as a result.

Proposition 9. Let H = ({a, b},M, I) be a simple splicing system where I is a
finite language with state complexity n. Then the minimal DFA recognizing L(H)
has at most 2n− 3 states and this bound is reachable in the worst case.

We will now consider the state complexity of simple splicing systems with
a finite initial language defined over a ternary alphabet. We will show that the
upper bound of 2n−2 + 1 from Proposition 4 cannot be reached with an alphabet
of size 3.

Proposition 10. Let H = ({a, b, c},M, I) be a simple splicing system where I
is a finite language with state complexity n. Then the minimal DFA recognizing

L(H) has at most 2
n
2 + 1 states if n is even and 3 · 2n−3

2 + 1 states if n is odd.
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We note that the upper bound of the previous lemma is similar to the state
complexity of the reversal operation on finite languages [2]. We will use this result
as inspiration for a family of lower bound witnesses in the following lemma.

Lemma 11. There exists a family of finite languages In ⊆ {a, b, c}∗, for n ≥ 4,
recognized by a DFA with n states such that the minimal DFA for a simple
splicing system H = ({a, b, c},M, In) requires at least 2

n
2 + 1 states if n is even

and 3 · 2n−3
2 + 1 states if n is odd.

The family of witness languages In used to prove Lemma 11 is accepted by DFAs
An, shown in Figure 4, with M = {c}.

0start 1 · · ·
⌊
n
2

⌋
− 1

⌊
n
2

⌋
· · · n− 2 n− 1

a, b, c a, b, c a, b, c

a

a, b a, b a, b, c

b, c

c

a, b, c

Fig. 4. The ternary witness DFA An

Together, Proposition 10 and Lemma 11 give us the following theorem.

Theorem 12. For a simple splicing system with a finite initial language H =
(Σ,M, In) where |Σ| = 3, M ⊆ Σ, and In ⊆ Σ∗ has state complexity n, the state

complexity of L(H) is at most 2
n
2 + 1 states if n is even and 3 · 2n−3

2 + 1 states
if n is odd and this bound can be reached in the worst case.

4 State Complexity of Semi-simple Splicing

In this section, we will give tight state complexity bounds for semi-simple splicing
systems with regular and finite initial languages. In particular, we will show that
the upper bound is reachable for semi-simple splicing systems with a finite initial
language defined over a fixed alphabet.

Goode and Pixton [9] generalize simple splicing systems by defining semi-
simple splicing systems. A splicing system is semi-simple if every rule is of the
form (a, ε; b, ε) for a, b ∈ Σ. Again, rather than explicitly define a set of rules M,
we refer instead to the set M (2) ⊆ Σ ×Σ of pairs of symbols, which determines
the set of rules. As with simple splicing systems, one can conclude that the class
of languages generated by semi-simple splicing systems is subregular [4, 15].
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In the following, we will give a construction for an NFA that recognizes the
language generated by a semi-simple splicing system. As with the NFA for simple
splicing systems from Proposition 1, the construction will follow the more general
construction for finite splicing systems of Loos et al. [13].

Proposition 13. Let H = (Σ,M (2), L) be a semi-simple splicing system with a
regular initial language. Then there exists an NFA B′H with n states such that
L(B′H) = L(H).

It is clear from Proposition 13 that for a given regular language L, the
language of a semi-simple splicing system H = (Σ,M (2), L) can require 2n − 1
states in the worst case. Since a simple splicing system is also a semi-simple
splicing system, the lower bound witness from Proposition 2 holds. Therefore, we
can focus on the more interesting case of semi-simple splicing systems with finite
initial languages. First, we observe that even with semi-simple splicing rules,
the upper bound on the number of states for a DFA recognizing a semi-simple
splicing system with a finite initial language remains the same.

Proposition 14. Let H = (Σ,M (2), I) be a semi-simple splicing system with a
finite initial language where I is a finite language recognized by a DFA A with n
states. Then a DFA recognizing L(H) requires at most 2n−2 + 1 states.

The proof of this fact is identical to the proof of Proposition 4.
Recall from Lemma 5, that the lower bound witness for simple splicing systems

with a finite initial language was defined over an alphabet with size exponential
in the state complexity of the initial language. We will show in the following
lemma that for semi-simple splicing systems with a finite initial language, a lower
bound witness defined over an alphabet of size 3 exists.

Lemma 15. Let n ≥ 4. Then there exists a semi-simple splicing system with a
finite initial language H = (Σ,M (2), In) where |Σ| = 3 and In is a finite language
with state complexity n such that L(H) is recognized by a DFA that requires at
least 2n−2 + 1 states.

The family of witness languages In of Lemma 15 is accepted by DFAs An, shown
in Figure 5, with Σ = {a, b, c} and M (2) = {(a, c)}.

0start 1 · · · n− 3 n− 2 n− 1

c

c

a, b, c a, b a, b a, b a, b, c

a, b, c

Fig. 5. The ternary witness DFA An

From Proposition 14 and Lemma 15, we have the following result.
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Theorem 16. For a semi-simple splicing system with a finite initial language
H = (Σ,M (2), In) where M ⊆ Σ and In ⊆ Σ∗ has state complexity n, the state
complexity of L(H) is at most 2n−2 + 1 and this bound can be reached in the
worst case.

5 State Complexity of the Crossover Operation

In this section, we will give tight state complexity bounds for the crossover
operation [3], which can be thought of as a single step of semi-simple splicing.
Mateescu et al. [14] gave an algebraic characterization of the class of languages
generated by simple splicing systems based on the crossover operation therein. A
similar such characterization for the class of languages generated by semi-simple
splicing systems is given by Ceterchi [3].

For M = M1×M2 ⊆ Σ×Σ, define the operation �M on two strings u, v ∈ Σ+

by

u �M v =

{
u′av′ if u = u′a, v = bv′ for (a, b) ∈M , u′, v′ ∈ Σ∗,
undefined otherwise.

Then for two languages L1, L2 ⊆ Σ∗, we have

L1 �M L2 = {x �M y | x ∈ L1, y ∈ L2}.

The operation �M is a variant of the Latin product defined in [8]. Based on
�M , we define the crossover operation ]M for M ⊆ Σ × Σ and two languages
L1, L2 ⊆ Σ∗ by

L1]ML2 = pref(L1) �M suff(L2),

where pref(L1) is the set of prefixes of words in L1 and suff(L2) is the set of
suffixes of words in L2. From this definition, the operation ]M can be viewed as
a combination of operations under each of which the regular languages are closed.
Therefore, it is easy to see that the regular languages are closed under ]M .

Note that by restricting M to pairs (a, a) for a ∈ Σ, we get an operation that
can be thought of as a single step of simple splicing. The operation ]M , when
restricted to pairs of the form (a, a) has some similarities to many operations
that have been studied in the literature, such as the chop operation [12] and the
word blending operation [5]. In fact, word blending can be seen as a special case
of the crossover operation, taking M = {(a, a) | a ∈ Σ}.

We will now give a DFA construction for the crossover of two regular languages.

Proposition 17. Let A and B be two DFAs defined over Σ with m and n
states, respectively. Then for any M ⊆ Σ ×Σ, there exists a DFA C such that
L(C) = L(A)]ML(B) and C has at most m · 2n states.

Proof. Let A = (QA, Σ, δA, sA, FA) and B = (QB , Σ, δB , sB , FB) be two DFAs.
We will construct a DFA C = (QC , Σ, δC , sC , FC) that recognizes A]MB for
some M ⊆ Σ ×Σ, defined by
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– QC = QA × 2QB ,
– sC = 〈sA, ∅〉,
– FC = {〈q, P 〉 ∈ QA × 2QB | P ∩ FB 6= ∅},

and the transition function δC is defined for q ∈ QA, P ⊆ QB, and a ∈ Σ by
δC(〈q, P 〉, a) = 〈q′, P ′〉, where q′ = δA(q, a) and

P ′ =

{
im(δB)b if (a, b) ∈M and q′ is not a sink state,⋃
p∈P δB(p, a) otherwise.

Informally, the machine traces a computation of A and computations of B.
For each pair (a, b) ∈M , whenever a transition on a occurs in A, all states of B
with incoming transitions on b are added to the computation.

It is clear from the definition of C that L(C) = L(A)]ML(B) and it has at
most m · 2n states. ut

We will show that the bound of Proposition 17 is reachable, even when M is
restricted to pairs of the form (a, a).

Lemma 18. There exist languages Am and Bn over Σ with |Σ| ≥ 4 recognized
by DFAs with m and n states, respectively, and a subset M ⊆ Σ ×Σ such that
the minimal DFA for L(Am)]ML(Bn) requires at least m · 2n states.

The families of witness languages of Lemma 18 are accepted by DFAs Am and
Bn, shown in Figure 6, with M = {(d, d)}.

0start 1 · · · m− 3 m− 2 m− 1

b, c, d b, c, d
b, c, d b, c a, b, c, d

a a a a d

a

0start 1 2 · · · n− 2 n− 1

a, c, d a, c, d a, c, d
a, c, d a, d

b b b b b

b, c

Fig. 6. The DFAs Am (above) and Bn (below)

Together, Proposition 17 and Lemma 18 give us the following theorem.
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Theorem 19. For regular languages Lm and Ln, with m,n ≥ 3, defined over an
alphabet Σ, with |Σ| ≥ 4, and a subset M ⊆ Σ ×Σ, if Lm has state complexity
m and Ln has state complexity n, then Lm]MLn has state complexity at most
m · 2n and this bound can be reached in the worst case.

6 Conclusion

We have given tight bounds for the state complexity of simple and semi-simple
splicing systems and the associated crossover operation. In almost all cases, the
exponential upper bound was easily reached via splicing systems defined over a
fixed-size alphabet with one rule. The exception is with simple splicing systems
with a finite initial language, where a natural open problem to consider is the
worst-case state complexity when the initial languages are defined over alphabets
of size between 3 and 2n−3.
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A Appendix

Here we include proofs that were omitted in the paper due to the limitation on
the number of pages.

Proposition 2. For |Σ| ≥ 3 and n ≥ 3, there exists a simple splicing system (p. 6)

with a regular initial language H = (Σ,M,Ln) with |M | = 1 where Ln is a
regular language with state complexity n such that the minimal DFA for L(H)
requires at least 2n − 1 states.

Proof. Let An = (Qn, Σ, δn, 0, Fn) be the DFA that recognizes Ln, with Qn =
{0, . . . , n− 1}, Fn = {0} and the transition function is defined

– δ(i, a) = i+ 1 mod n for all 0 ≤ i ≤ n− 1,
– δ(i, b) = i for 0 ≤ i ≤ n− 2, δ(n− 1, b) = 0,
– δ(i, c) = i for 0 ≤ i ≤ n− 1.

The DFA An is shown in Figure 3.
Now consider the simple splicing system H = (Σ, {c}, Ln). That is, H is the

simple splicing system over Σ = {a, b, c} with Ln as the initial language and the
set of markers is M = {c}.

Consider the NFA A′n obtained by following the construction of Proposition 1.
From A′n, we can apply the subset construction to get an equivalent DFA. Since
the empty set is not reachable, there can only be at most 2n−1 reachable subsets
in an equivalent minimal DFA.

We will show that every nonempty subset of Qn is reachable by showing that
every nonempty subset of Qn can be reached from Qn. To do this, we first show
that the sole subset of Qn of size n, Qn, is reachable from the initial state, which
it is via the word c. Next, we will show that we can reach a subset of size k − 1
from a subset of size k > 1. Suppose that we can reach a subset S ⊆ Qn of size k
and we wish to reach the subset S \ {t} for some t ∈ Qn. There are two cases.

If t+ 1 ∈ S, then we have

S
an−1−tbat+1

−−−−−−−−→ S \ {t}.

The same argument holds for t = n− 1 and 0 ∈ S.
On the other hand, if t + 1 6∈ S, then we must first reach state S′ =

δ′(S, an−1−t). Observe that t
an−1−t

−−−−−→ n − 1 and thus n − 1 ∈ S′. From S′,
we want to reach the state S′ \ {n− 1}. Let s = minS′. Then

S′
b(an−1b)s−1as−1

−−−−−−−−−−−→ S′ \ {n− 1} ∪ {s− 1} an−1−(s−1)bas−−−−−−−−−→ S′ \ {n− 1}.

Finally, we shift every element of S′ back to its original position in S by

S′ \ {n− 1} at+1

−−−→ S \ {t}

and we have reached S \ {t} as desired. Thus, we have shown that we can reach
each subset of Qn of size k − 1 from a subset of Qn of size k.



14 Lila Kari and Timothy Ng

To see that each of these states is pairwise distinguishable, suppose we have
two subsets S and S′ with S 6= S′. Then without loss of generality, there is a
state t ∈ S such that t 6∈ S′ and these two states are distinguishable on the word
an−t.

Thus, we have shown that a DFA recognizing L(H) requires at least 2n − 1
states. ut

Proposition 4. Let H = (Σ,M, I) be a simple splicing system with a finite(p. 6)

initial language, where I is a finite language recognized by a DFA A with n states.
Then a DFA recognizing L(H) requires at most 2n−2 + 1 states.

Proof. Let A = (Q,Σ, δ, q0, F ) and let AH be the DFA recognizing L(H) obtained
via the construction from Proposition 1. We will show that not all 2n − 1 non-
empty subsets of Q are reachable in AH . First, since I is a finite language, its
DFA A is acyclic. Therefore, q0, the initial state of A, has no incoming transitions
and thus the only reachable subset containing q0 is {q0}. Secondly, since I is
finite, A must contain a sink state, which we will call q∅. Note that for any subset
P ⊆ Q, we have that P and P ∪ {q∅} are indistinguishable and can be merged
together. This gives us a total of 2n−2 − 1 + 2 states. ut

Lemma 5. There exists a simple splicing system with a finite initial language(p. 7)

H = (Σ,M, In) where In is a finite language with state complexity n such that a
DFA recognizing L(H) requires 2n−2 + 1 states.

Proof. We can construct the DFA An = (Qn, Σn, δn, 0, Fn) recognizing In, where
Qn = {0, . . . , n− 1}, Σn = {b} ∪ Γn where Γn = {aS | S ⊆ {2, . . . , n− 2}}, and
Fn = {n− 2}. Then we define δn by

– δn(i, aS) = min{j ∈ S | i < j ≤ n− 2} for 1 ≤ i ≤ n− 2,
– δn(0, aS) = 1,
– δn(i, b) = i+ 1 for 0 ≤ i ≤ n− 2,
– δn(n− 2, a) = n− 1 for all a ∈ Σ,
– δn(n− 1, a) = n− 1 for all a ∈ Σ.

Then we consider the simple splicing system H = {Σn, Γn, In}. Let A′n be the
NFA recognizing L(H) obtained via the construction from Proposition 1 and
consider the DFA that results from applying the subset construction.

It is clear that by the definition of An that we can reach any subset S ∪ {1}
with S ⊆ {1, . . . , n− 2} via the symbol aS . Then from each of these states, we
can reach a state T = {i1, . . . , ik} with 2 ≤ i1 < · · · < ik ≤ n − 2}. If i1 = 2,
then we let T ′ = {i2 − 1, . . . , ik − 1} and the subset T is reachable via the word
aT ′b. If i1 > 2, then the subset T is reachable via the word aT ′∪{i1−1}b.

To show that each of these states is pairwise distinguishable, first we note
that {0} is distinguishable from every other state by bn−2. Now suppose that
we have two subsets S, S′ ⊆ {1, . . . , n − 2} such that S 6= S′. Without loss of
generality, there is a state t ∈ S such that t 6∈ S′. Then these two states can be
distinguished by the word bn−2−t. This gives us 2n−2 − 1 states.
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For the last two states, we see that {0} is reached on the word ε and it is
clearly distinguishable from every other state. The sink state {n− 1} is reachable
via the word bn−1 and is distinguishable since it is the sole sink state of the
machine. Thus, in total A′n requires 2n−2 + 1 states. ut

Lemma 7. Let H = (Σ,M,L) be a simple splicing system with a regular initial (p. 7)

language and let AH be an NFA recognizing L(H). If a ∈ M and δ′ is the
transition function of AH , then | im δ′a| ≤ 2.

Proof. Let A = (Q,Σ, δ, q0, F ) be the NFA recognizing L. Let a ∈M and consider
a state q ∈ Q. By definition of A′H , if δ(q, a) = {n− 1}, then δ′(q, a) = {n− 1}.
Otherwise δ′(q, a) = im δa. Since these are the only two possibilities, we have
| im δ′a| ≤ 2. ut

Proposition 8. Let H = ({a},M, I) be a simple splicing system where I is a (p. 7)

finite language containing a word of length at least 2. Then the minimal DFA
recognizing L(H) has exactly two states.

Proof. Since the alphabet is {a}, if M is nonempty, we have M = {a} (otherwise,
if M = ∅, then L(H) = I). If I does not contain a word of length at least 2, then
either I = {ε} or I = {a}. Then, it is clear that for any finite language I with
w ∈ I such that |w| ≥ 2, we have L(H) = a+. Thus, a DFA recognizing L(H)
has exactly two states. ut

Proposition 9. Let H = ({a, b},M, I) be a simple splicing system where I is a (p. 7)

finite language with state complexity n. Then the minimal DFA recognizing L(H)
has at most 2n− 3 states and this bound is reachable in the worst case.

Proof. Recall from Lemma 7 that the action of a symbol c ∈M has an image of
size 2, containing im δc ⊆ {1, . . . , n− 2} and {n− 1}. In order to maximize the
number of states of AH , we must have a 6∈M and b ∈M . Furthermore, δa must
be the action i 7→ i+ 1 for 0 ≤ i ≤ n− 2. Then there are n subsets of size 1 and
up to n− 3 subsets of size | im δb| ≥ 2. This gives at most 2n− 3 states.

We will show that this bound is reachable. Let An = (Qn, {a, b}, δn, 0, {n−2})
be a DFA, with Qn = {0, . . . , n− 1} and δn is defined by

– δn(i, a) = i+ 1 for 0 ≤ i ≤ n− 2,
– δn(0, b) = 1, δn(1, b) = 2, δn(i, b) = n− 1 for 2 ≤ i ≤ n− 2,
– δn(n− 1, d) = n− 1 for all d ∈ {a, b}.

The DFA An is shown in Figure 7.
Now, we consider the splicing system H = ({a, b}, {b}, L(An)) and let A′n be

the DFA obtained by the construction from Proposition 1. We claim that the
reachable states of Q′n are either of the form {i} for i ∈ Qn or {i, i + 1}, for
i ∈ {1, . . . , n− 3}. We will show that each of these states is reachable.

To reach states of the form {i} for 1 ≤ i ≤ n − 1, we have {0} ai−→ {i}.
The state {1, 2} is reached from the initial state via the word b. Then from
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0start

1

2 · · · n− 3

n− 2

n− 1

b

b

a, b

a, b

a a

a

a, b

a, b

Fig. 7. The binary witness DFA An

the state {1, 2}, we can reach states of the form {i, i + 1} for 2 ≤ i ≤ n − 3

by {1, 2} ai−1

−−−→ {i, i+ 1}. To see that these states are pairwise distinguishable,
consider two subsets S and S′ of Qn with S 6= S′. Then there is some t ∈ S such
that t 6∈ S′. Then the two states are distinguished on the word an−2−t.

Thus A′n has n − 3 + n = 2n − 3 states that are reachable and pairwise
distinguishable. ut

Proposition 10. Let H = ({a, b, c},M, I) be a simple splicing system where I(p. 7)

is a finite language with state complexity n. Then the minimal DFA recognizing

L(H) has at most 2
n
2 + 1 states if n is even and 3 · 2n−3

2 + 1 states if n is odd.

Proof. Let A = (Q, {a, b, c}, δ, 0, F ) be the minimal DFA that recognizes I and
let AH be the DFA obtained by the construction from Proposition 1. We claim
that in order to maximize the number of states of AH , we must have c ∈ M
and a, b 6∈ M . Recall from Lemma 7 that if c ∈ M , then | im δ′c| = 2. Observe
that if M = {b, c}, then δa must be the action i 7→ i + 1, which gives at most
3(n− 2) + 1 states. Thus, it must be the case that both a, b 6∈M .

Consider the sets of states that are reached via words in c·(Σ\M)∗ = c·{a, b}∗.
Consider one such word cw where w ∈ {a, b}∗. We say a state q ∈ Q is in level i
with respect to c if q ∈ im δ′cw and |w| = i. For example, every state in the set
im δc is in level 0 with respect to c.

Recall that a DFA for a finite language is acyclic and its states are ordered.
Since I is finite, there is at least one state of A that is in level i and is not
in level i + 1. That is, at each step of the computation of a word cw, where
w ∈ {a, b}∗, when reading symbols in {a, b}, there is at least one state that
becomes unreachable because the original DFA A is acyclic. However, we can
“reset” the set of reachable subsets by reading a symbol in M , in this case c, and
we “reset” our computation to the set of states im δc.

This gives a bound on the number of subsets of states that are reachable in
AH . On level i with respect to c, there are at most 2n−2−i reachable subsets of
states. However, the number of subsets is also bound by the number of words
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that can reach each subset. Thus, there are at most |Σ \M |i subsets of states
which are reachable. The number of reachable subsets is thus bounded by

n−3∑
i=0

min{2n−2−i, |Σ \M |i} =

t−1∑
i=0

|Σ \M |i + 2n−2−t,

where t = min{i ∈ N | 2n−2−i ≤ |Σ \M |i}. For |Σ| = 3 and |M | = 1, this gives
us t = n−2

2 if n is even and t = n−1
2 if n is odd. Thus, for n even, there are at

most
n−2
2 −1∑
i=0

2i + 2n−2−
n−2
2 + 2 = 2

n−2
2 − 1 + 2

n−2
2 + 2 = 2

n
2 + 1

states in A′ and for n odd, there are at most

n−1
2 −1∑
i=0

2i + 2n−2−
n−1
2 + 2 = 2

n−1
2 − 1 + 2

n−3
2 + 2 = 3 · 2

n−3
2 + 1

states in A′. ut

Lemma 11. There exists a family of finite languages In ⊆ {a, b, c}∗, for n ≥ 4, (p. 8)

recognized by a DFA with n states such that the minimal DFA for a simple
splicing system H = ({a, b, c},M, In) requires at least 2

n
2 + 1 states if n is even

and 3 · 2n−3
2 + 1 states if n is odd.

Proof. Let In be recognized by the DFA An = (Qn, {a, b, c}, δn, 0, {n− 2}), with
Qn = {0, . . . , n− 1} and where δn is defined by

– δn(i, a) = i+ 1 for 0 ≤ i ≤ n− 2,
– δn(i, b) = i+ 1 for 0 ≤ i ≤

⌊
n
2

⌋
− 2 and

⌊
n
2

⌋
≤ i ≤ n− 2,

– δn(
⌊
n
2

⌋
− 1, b) = n− 1,

– δn(i, c) = i+ 1 for 0 ≤ i ≤
⌊
n
2

⌋
− 2,

– δn(i, c) = n− 1 for
⌊
n
2

⌋
− 1 ≤ i ≤ n− 1,

– δn(n− 1, d) = n− 1 for all d ∈ Σ.

The DFA An is shown in Figure 4.
We obtain a DFA A′n recognizing L(H) by performing the construction from

Proposition 1 on the DFA An and applying the subset construction to the resultant
NFA. We will consider the number of reachable and pairwise distinguishable
states of A′n.

First, we consider the reachable states of A′n. Let Si ⊆ {1, . . . , n− 2} for 1 ≤
i ≤

⌊
n
2

⌋
−1. We will show that states of the form Si = {i+1, i+2, . . . ,

⌊
n
2

⌋
−1}∪Pi,

where Pi ⊆ {
⌊
n
2

⌋
, . . . ,

⌊
n
2

⌋
+ i} are reachable on words uv where u ∈ Σ∗ and

v ∈ c{a, b}i.
For i = 0, we have uv = uc on which the subset im δc = {1, . . . ,

⌊
n
2

⌋
− 1} is

reached. Now consider i > 0 and let Pi = {j1, j2, . . . , jk} ⊆ {
⌊
n
2

⌋
, . . . ,

⌊
n
2

⌋
−1+i}
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for k ≤ i. The state Si = {i + 1, . . . ,
⌊
n
2

⌋
− 1} ∪ Pi is reachable on the word

uv = uca1a2 · · · ai, where for 1 ≤ j ≤ i,

aj =

{
a if

⌊
n
2

⌋
− 1 + j ∈ Pi

b otherwise.

Then for each i, there are 2i reachable states for 0 ≤ i ≤
⌊
n−2
2

⌋
. If n is even, this

gives us 2
n−2
2 +1 − 1 states that can be reached. Together with the initial and

sink states, this gives a total of 2
n
2 + 1 states. If n is odd this gives a total of

3 · 2n−3
2 + 1 states that can be reached.

To show that each of these states is pairwise distinguishable, consider two
states S, T ⊆ {1, . . . , n− 2}. If S 6= T , then there exists some element q ∈ S such
that q 6∈ T and S and T are distinguishable on the word an−2−q. Finally, it is
clear that {0} and {n− 1} are distinguishable from any state S ⊆ {1, . . . , n− 2}.

Thus, we have shown that A′n has 2
n
2 +1 reachable and pairwise distinguishable

states if n is even and 3 · 2n−3
2 + 1 reachable and pairwise distinguishable states

if n is odd. ut

Proposition 13. Let H = (Σ,M (2), L) be a semi-simple splicing system with a(p. 9)

regular initial language. Then there exists an NFA B′H with n states such that
L(B′H) = L(H).

Proof. Let H = (Σ,M (2), L) and let A = (Q,Σ, δ, q0, F ) be a DFA for L. We
will define the NFA BH = (Q′, Σ, δ′, q0, F ), where Q′ = Q ∪ QM with QM =
{pa, pb | (a, b) ∈M (2)} and the transition function δ′ is defined

– δ′(q, a) = {δ(q, a)} if q ∈ Q and a ∈ Σ,
– δ′(q, ε) = {pa} if q ∈ Q, a ∈M , and δ(q, a) is not the sink state,
– δ′(pa, a) = {pb} if pa ∈ QM and (a, b) ∈M (2),
– δ′(pb, ε) = im δb if pb ∈ QM and (a, b) ∈M (2) for some a ∈ Σ.

We will describe the construction briefly, as it is similar to the construction
described in Proposition 1. Recall that each marker (a, b) in M (2) corresponds
to a splicing rule (a, ε; b, ε). For each such rule, add states pa and pb and add a

transition pa
a−→ pb. For every state q ∈ Q with outgoing transitions on a, add

ε-transitions to pa and add ε-transitions from pb to all states with incoming
transitions on b. Recall that im δb is the image of the transformation of δ induced
by b, and therefore it is the set of states of A with an incoming transition on b.

We can now simplify this NFA by removing ε-transitions in the usual way to
obtain an NFA B′H = (Q,Σ, δ′, q0, F ), where

δ′(q, a) =

{
{δ(q, a)} ∪ im δb if (a, b) ∈M (2),

{δ(q, a)} otherwise.

Similar to the construction for NFAs recognizing the language of simple splicing
systems from Proposition 1, observe that by removing the ε-transitions, we also
remove the states that were initially added earlier in the construction of BH .
Thus, the state set of B′H is exactly the state set of the DFA A recognizing L. ut
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Lemma 15. Let n ≥ 4. Then there exists a semi-simple splicing system with a (p. 9)

finite initial language H = (Σ,M (2), In) where |Σ| = 3 and In is a finite language
with state complexity n such that L(H) is recognized by a DFA that requires at
least 2n−2 + 1 states.

Proof. Let In be recognized by the DFA An = (Qn, {a, b, c}, δn, 0, Fn), where
Qn = {0, . . . , n− 1} and Fn = {n− 2}. We define δn by

– δn(i, a) = i+ 1 for 0 ≤ i ≤ n− 2,
– δn(i, b) = i+ 1 for 0 ≤ i ≤ n− 2,
– δn(0, c) = 1, δn(i, c) = n− 1 for 1 ≤ i ≤ n− 2,
– δn(n− 1, d) = n− 1 for all d ∈ Σ.

The DFA An is shown in Figure 5.
We define the semi-simple splicing system H = ({a, b, c},M (2), In) with

M (2) = {(a, c)} and let B′n be the NFA recognizing L(H) obtained via the
construction of Proposition 13.

It is clear that the initial state {0} and the sink state {n− 1} are reachable.
We will then show that all states S ⊆ {1, . . . , n − 2} are reachable. Let S =
{s1, . . . , sk} ⊆ {1, . . . , n− 2} with 1 ≤ s1 < · · · < sk ≤ n− 2. Then

δ′n(S, d) =


{1, s1 + 1, . . . , sk + 1} if d = a,

{s1 + 1, . . . , sk + 1} if d = b,

{n− 1} if d = c,

Then each subset S is reachable from the initial state {0} via the word w =
x1x2 · · ·xsk where

xi =

{
a if sk − i+ 1 ∈ S,
b if sk − i+ 1 6∈ S.

Now we show that each of these states is pairwise distinguishable. Consider
two subsets S, S′ ⊆ {1, . . . , n − 2} with S 6= S′. Without loss of generality, let
t ∈ S such that t 6∈ S′. Then S and S′ are distinguishable via the word bn−2−t.
Thus, we have shown that every nonempty subset of {1, . . . , n− 2} is reachable
and pairwise distinguishable and there are 2n−2 − 1 such subsets.

Together with the initial state {0} and the sink state {n− 1}, we have shown
that B′n has 2n−2 + 1 reachable and pairwise distinguishable states. ut

Lemma 18. There exist languages Am and Bn over Σ with |Σ| ≥ 4 recognized (p. 11)

by DFAs with m and n states, respectively, and a subset M ⊆ Σ ×Σ such that
the minimal DFA for L(Am)]ML(Bn) requires at least m · 2n states.

Proof. Let Σ = {a, b, c, d} and let M = {(d, d)}. Let Am be recognized by the
DFA Am = (QA, Σ, δA, sA, FA), where QA = {0, . . . ,m − 1}, sA = 0, FA =
{m− 2}, and the transition function δA is defined by

– δA(i, a) = i+ 1 mod m− 1 for 0 ≤ i ≤ m− 2,
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– δA(i, b) = i for 0 ≤ i ≤ m− 2,
– δA(i, c) = i for 0 ≤ i ≤ m− 2,
– δA(i, d) = i for 0 ≤ i ≤ m− 3, δA(m− 2, d) = m− 1.
– δA(m− 1, σ) = m− 1 for all σ ∈ Σ.

Note that the state m− 1 acts as the sink state of Am.
Let Bn be recognized by the DFA Bn = (QB , Σ, δB , sB , FB), where QB =

{0, . . . , n− 1}, sB = 0, FB = {n− 1}, and the transition function δB is defined
by

– δB(i, a) = i for 0 ≤ i ≤ n− 1,
– δB(i, b) = i+ 1 mod n for 0 ≤ i ≤ n− 1,
– δB(i, c) = i for 0 ≤ i ≤ n− 2, δB(n− 1, c) = 0,
– δB(i, d) = i for 0 ≤ i ≤ n− 1.

Observe that Bn has no sink state. The DFAs Am and Bn are shown in Figure 6.
Consider the DFA C ′ obtained by applying the construction from Proposi-

tion 17 on Am and Bn and taking M = {(d, d)}. We will show that every state
in QA × 2QB is reachable.

First, 〈0, ∅〉 is reachable since it is the initial state. Then we can show that

the state 〈q, ∅〉 is reachable for each 1 ≤ q ≤ m− 2 by 〈0, ∅〉 aq−→ 〈q, ∅〉. Finally,
〈m− 1, ∅〉 is reachable from 〈m− 2, ∅〉 on the word d.

Next, we will show how to reach every state 〈q, S〉 for q ∈ QA and S ⊆ QB.
We will first show that each state 〈q,QB〉, 0 ≤ q ≤ m− 3, is reachable from 〈q, ∅〉
by reading d. Then 〈m− 3, QB〉

a−→ 〈m− 2, QB〉 and 〈m− 2, QB〉
d−→ 〈m− 1, QB〉.

We can then show that for each subset S ⊆ QB , the state 〈q, S〉 is reachable by
the approach used in the proof of Proposition 2. We can do this by using words
over {b, c}, which keeps the first component of the state fixed.

Now we will see that each of these states is pairwise distinguishable. Suppose
we have two states 〈q, S〉 and 〈q′, S′〉. First, suppose that S 6= S′ and that there
is an element t ∈ S with t 6∈ S′. Then 〈q, S〉 and 〈q′, S′〉 are distinguishable via
the word bn−1−t.

Now suppose that S = S′ but q 6= q′ and without loss of generality, q < q′.
There are two cases. First, if S = QB, then 〈q, S〉 c−→ 〈q,QB \ {n − 1}〉 and let
T = QB \ {n− 1}. If S 6= QB , then let t = max(QB \ S) and denote by T ⊆ QB
the subset such that 〈q, S〉 bn−1−t

−−−−→ 〈q, T 〉. In either case, we have T ⊆ QB \{n−1}
and we can consider states 〈q, T 〉 and 〈q′, T 〉 obtained via the same words.

Then to distinguish 〈q, T 〉 and 〈q′, T 〉, first suppose that q < q′ ≤ m− 2. This
gives us

〈q, T 〉 am−2−q′d−−−−−−→ 〈q + (m− 2− q′), QB〉 and 〈q′, T 〉 am−2−q′d−−−−−−→ 〈m− 1, T 〉,

which puts us in the above case when S 6= S′. Next, if q′ = m− 1 and q < m− 2,
then we can enter the same situation via the word d. Finally, if q′ = m− 1 and
q = m− 2, we can enter the same scenario via the word ad.

Thus, we have shown that all m · 2n states are reachable and pairwise distin-
guishable, and thus C ′ requires at least m · 2n states. ut
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