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The neighbourhood of a regular language with respect to the prefix, suffix and subword
distance is always regular and a tight bound for the state complexity of prefix distance
neighbourhoods is known. We give upper bounds for the state complexity of the neigh-

bourhood of radius k of an n-state deterministic finite automaton language with respect
to the suffix distance and the subword distance, respectively. For restricted values of
k and n we give a matching lower bound for the state complexity of suffix distance

neighbourhoods.
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1. Introduction

Distances between words and languages are used in many applications [5, 7, 10, 11].

Perhaps the most commonly used distance, the Levenshtein distance (a.k.a. the edit

distance), is defined in terms of the number of substitution, insertion and deletion

operations needed to transform one word into another. The prefix distance [1, 4, 12]

of words x and y is the sum of the lengths of the suffixes of x and y after their

longest common prefix. The suffix distance (respectively, the subword distance) of

two words is defined analogously in terms of the longest common suffix (respectively,

subword) of the words.

Calude et al. [3] have shown that additive quasi-distances preserve regularity in

the sense that a neighbourhood of a regular language is always regular. The edit

distance is the best known example of additive distances. However, not all regularity

preserving distances are additive. The prefix, suffix, and subword distances are not

additive, but are known to preserve regularity [4].

In general, since the 90’s there has been much work on the state complexity

of regular languages. Recent surveys on the descriptional complexity of regular

languages include [6, 8, 13]. For regularity preserving distances an important question

∗A preliminary version of this paper appeared in the Proceedings of the 19th International

Conference on Descriptional Complexity of Formal Systems, DCFS 2017, Lect. Notes Comput.
Sci. 10316, Springer, 2017, pp. 287–298.
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is to determine the state complexity of the distance, that is, what is the optimal size

of a DFA (deterministic finite automaton) recognizing a neighbourhood of radius k

of an n state DFA language. In the context of error correction this can be viewed

also as the descriptional complexity of error detection [15, 16, 19]. The descriptional

complexity of error systems has been considered from a different point of view by

Kari and Konstantinidis [9]. They establish upper and lower bounds for the size of

DFAs needed to recognize a given error system.

A neighbourhood of a language recognized by a DFA A with respect to the prefix

distance, roughly speaking, can be recognized by simulating the computation of A

and, for each non-final state, keeping track of the shortest path (up to the radius

of the neighbourhood) to a final state of A. Additionally, we just need a number

of error states equal to the radius of the neighbourhood. This means that prefix

distance is an “inexpensive” operation in terms of state complexity. A tight lower

bound for the state complexity of prefix distance neighbourhoods is known both for

general regular languages and for finite languages [17, 18].

On the other hand, suffix distance (and subword distance) neighbourhoods are

considerably more “difficult”, that is, more expensive in terms of state complexity,

to recognize by a DFA because the computation has no way of knowing where the

longest common suffix begins. This means that the computation has to be inherently

nondeterministic and as can, perhaps, be expected the state complexity of the

neighbourhood depends exponentially on the size of the original DFA and the radius

of the neighbourhood.

This paper shows that the suffix distance neighbourhood of radius k of an n

state DFA language over an alphabet of size ` ≥ 2 can be recognized by a DFA

with `k−1
`−1 + 2n − 1 states when k < n. If A recognizes a finite language, the upper

bound for the state complexity of the neighbourhood is `k−1
`−1 + k · 2dn2 e. We give

matching lower bound constructions both for general regular languages and for finite

languages using a binary alphabet in the case when n is roughly equal to 2 · k. For

k > n, we show that the suffix distance neighbourhood can be recognized by a DFA

with (k − n) + 2n+1 − 2 states and give matching lower bound constructions for

both general regular languages and finite languages over an alphabet of size n+ 1.

We show also that for the class of suffix-closed languages, the neighbourhood is

recognized by a DFA with at most n+ k + 1 states and that this bound is tight for

all k ∈ N. Finally, we derive an upper bound for the state complexity of subword

distance neighbourhoods but it remains open whether the bound is tight.

2. Preliminaries

We recall some basic definitions on regular languages and distance measures. For

all unexplained notions on finite automata and regular languages the reader may

consult the textbook by Shallit [20] or the survey by Yu [21]. A survey of distances

is given by Deza and Deza [5].

In the following Σ is always a finite alphabet, the set of words over Σ is Σ∗ and ε
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is the empty word. The set of nonnegative integers is N0. The cardinality of a finite

set S is denoted |S| and the powerset of S is 2S . A word w ∈ Σ∗ is a subword of x

if there exist words u, v ∈ Σ∗ such that x = uwv. If u = ε, then w is a prefix of x. If

v = ε, then w is a suffix of x.

A deterministic finite automaton (DFA) is a tuple A = (Q,Σ, δ, q0, F ) where Q is

a finite set of states, Σ is an alphabet, δ is a partial function δ : Q×Σ→ Q, q0 ∈ Q
is the initial state, and F ⊆ Q is a set of final states. We extend the transition

function δ to a partial function Q×Σ∗ → Q in the usual way. A DFA A is complete

if δ is defined for all q ∈ Q and a ∈ Σ.

A word w ∈ Σ∗ is accepted by A if δ(q0, w) ∈ F . The language recognized by

A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F}. Two states p and q of A are equivalent if

δ(p, w) ∈ F if and only if δ(q, w) ∈ F for every word w ∈ Σ∗. A DFA A is minimal if

each state q ∈ Q is reachable from the initial state and no two states are equivalent.

A nondeterministic finite automaton (NFA) is an extension of a DFA where the

transition function is allowed to be multivalued, that is, δ is a function Q×Σ→ 2Q.

Note that our definition of a DFA allows some transitions to be undefined, that is,

by a DFA we mean an incomplete DFA. It is well known that, for a regular language

L, the sizes of the minimal incomplete and complete DFAs differ by at most one.

The constructions in this paper are more convenient to formulate using incomplete

DFAs but our results would not change in any significant way if we were to require

that all DFAs are complete. The (incomplete deterministic) state complexity of a

regular language L, sc(L), is the size of the minimal DFA recognizing L.

2.1. Distances and neighbourhoods of regular languages

We recall definitions of the distance measures used in the following. Generally,

a function d : Σ∗ × Σ∗ → [0,∞) is a distance if it satisfies for all x, y, z ∈ Σ∗,

the conditions d(x, y) = 0 if and only if x = y, d(x, y) = d(y, x), and d(x, z) ≤
d(x, y) + d(y, z). The neighbourhood of a language L of radius k with respect to a

distance d is the set

E(L, d, k) = {w ∈ Σ∗ | (∃x ∈ L)d(w, x) ≤ k}.

Let x, y ∈ Σ∗. The prefix distance of x and y is the sum of the lengths of the

remaining suffixes that are not part of the longest common prefix of x and y [4]. It

is defined by

dp(x, y) = |x|+ |y| − 2 · max
z∈Σ∗
{|z| | x, y ∈ zΣ∗}.

Similarly, the suffix distance of x and y is the sum of the lengths of the prefixes that

are not part of the longest common suffix of x and y and is defined

ds(x, y) = |x|+ |y| − 2 · max
z∈Σ∗
{|z| | x, y ∈ Σ∗z}.
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The subword distance measures the similarity of x and y based on their longest

common continuous subword and is defined

df (x, y) = |x|+ |y| − 2 · max
z∈Σ∗
{|z| | x, y ∈ Σ∗zΣ∗}.

The term “subword distance” is taken from Choffrut and Pighizzini [4]. However,

“subword distance” has also been used for a distance defined in terms of the longest

common noncontinuous subword [14].

It is known that neighbourhoods of regular languages with respect to the prefix,

suffix and subword distance are always regular [4, 17]. We refer to the size of the

minimal DFA recognizing the radius k neighbourhood of an n state DFA language

with respect to a distance X simply as the state complexity of distance X. Tight

bounds for the state complexity of the prefix distance are known [17]. Optimal

bounds for the size of an NFA recognizing a suffix distance, or subword distance,

neighbourhood of a regular language are also known.

Theorem 1 ([17]) For a regular language L ⊆ Σ∗ recognized by an NFA with n

states and an integer k ≥ 0,

(1) the nondeterministic state complexity of E(L, ds, k) is n+ k,

(2) the nondeterministic state complexity of E(L, df , k) is (k + 1) · n+ 2k.

The bounds on the size of the NFAs imply the following upper bounds for determin-

istic state complexity of suffix distance and subword distance, respectively.

Proposition 2. Suppose L is a regular language recognized by a DFA with n states

and k ∈ N. Then

sc(E(L, ds, k)) ≤ 2n+k − 1 and sc(E(L, df , k)) ≤ 2(k+1)n+2k − 1.

Finally, we define the function ψA : Q→ N0 to give the length of the shortest

path from the initial state q0 to the state q. Formally, ψA is defined by

ψA(q) = min
w∈Σ∗

{|w| | δ(q0, w) = q}.

Note that under this definition, ψA(q0) = 0 for the initial state q0.

3. State Complexity of Suffix Neighbourhoods

In this section, we consider the deterministic state complexity of suffix distance

neighbourhoods. First, we construct a DFA for the neighbourhood of an n-state

DFA of radius k with respect to the suffix distance ds, when k < n and then give a

matching lower bound when k =
⌊
n
2

⌋
for an n state DFA.

Proposition 3. Let n > k ≥ 0 and L be a regular language recognized by a DFA

with n states over an alphabet Σ, with |Σ| ≥ 2. Then there is a DFA recognizing

E(L, ds, k) with at most |Σ|
k−1

|Σ|−1 + 2n − 1 states.
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Proof. Let L be recognized by the DFA A = (Q,Σ, δ, q0, F ) with |Q| = n. We con-

struct a DFA A′ = (Q′,Σ, δ′, q′0, F
′) that recognizes the neighbourhood E(L, ds, k).

First, let us consider what it means if w ∈ E(L(A), ds, k). If w is in the neigh-

bourhood, then there exists a word x recognized by A such that ds(w, x) ≤ k. In

other words, we can write w = w′z and x = x′z for words w′, x′, z ∈ Σ∗ such that

|w′|+ |x′| ≤ k. However, while A′ reads w, it is not known when such a common

suffix z might begin. A common suffix may begin in each of the first k symbols of w,

so A′ must keep track of and compute all possible common suffixes that begin on

each of the first k symbols of w.

We define the state set

Q′ = {0, . . . , k} × 2Q

and we define the initial state by q′0 = (0, {q ∈ Q | ψA(q) ≤ k}). The set of final

states is given by

F ′ = {0, . . . , k} × {P ⊆ Q | P ∩ F 6= ∅}.

In other words, a state (i, P ) of A′ is final if and only if P contains a final state of A.

The state set consists of subsets of the original state set with a counter component.

The operation of the automaton begins by counting the first k steps of computation.

On the ith step of the initial k steps, the automaton reaches a state containing those

states reachable from direct transitions from the set of states from the (i − 1)th

computation step and adds every state reachable from q0 within k − i steps and the

counter component is incremented. After the kth computation step, no further steps

need to be counted and the counter is no longer incremented since states are no

longer added to the existing state sets.

The transition function δ′ is defined for a ∈ Σ by

• δ′((i, P ), a) = (i+ 1, X) for 0 ≤ i ≤ k − 1, where X is defined as

X = {δ(p, a) | p ∈ P} ∪ {q ∈ Q | ψA(q) ≤ k − (i+ 1)},

• δ′((k, P ), a) = (k, {δ(p, a) | p ∈ P}).

We now show that reading a word w ∈ Σ∗ reaches the state (i, P ) if and only if

there exists a word x ∈ Σ∗ such that w = w′z and x = x′z where |w′| ≤ i, |x′| ≤ k−i
and δ(q0, x) ∈ Q.

First, suppose that δ′(q′0, w) = (i, P ). We write w = w′z with w′, z ∈ Σ∗ which

may possibly be empty. By definition, δ′(q′0, w
′) = (|w′|, P ′) if |w′| ≤ k and P ′

contains all states q such that ψA(q) ≤ k − |w′|. In other words, these are states

δ(q0, x
′) where x′ ∈ Σ∗ is of length ≤ k−|w′|. Choose q′ to be one of these states and

consider the state δ(q′, z) = q. Since q′ ∈ P ′ and δ′(q′0, w) = δ′((|w′|, P ′), z) = (i, P ),

we have q ∈ P . Thus, there exists a word x = x′z such that |x′| ≤ k − i and

δ(q0, x) ∈ P .

Now, conversely, suppose that for an input word w = w′z with |w′| ≤ i, there

exists a word x = x′z with |x′| ≤ k− i such that q = δ(q0, x) ∈ P . Since |x′| ≤ k− i,
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let q′ = δ(q0, x
′) and we have ψA(q′) ≤ k − i. Then this means we have δ′(q′0, w

′) =

(|w′|, P ′) with q′ ∈ P ′. Since δ(q′, z) = q, we have δ′((|w′|, P ′), z) = (i, P ) with q ∈ P
as desired.

Thus, δ(q′0, w) ∈ F ′ if and only if there exists x ∈ L such that |w′|+ |x′| ≤ k for

w = w′z and x = x′z.

However, not all (k+ 1) · 2n in {0, . . . , k}× 2Q are reachable. Note that for i < k,

the only words that can be read to reach a state (i, P ) are those of length exactly i.

However, there are only |Σ|i words of length exactly i. Thus, the maximum number

of reachable states for 0 ≤ i < k is

k−1∑
i=0

|Σ|i =
|Σ|k − 1

|Σ| − 1
.

Furthermore, the state ∅ ⊆ Q is unreachable. Thus, A′ has at most |Σ|
k−1

|Σ|−1 + 2n − 1

reachable states.

The statement of Proposition 3 assumes that the cardinality of the alphabet is

at least two. For suffix distance neighbourhoods of unary languages we have the

following bounds.

Lemma 4. Let A be an n state DFA over a unary alphabet and k ∈ N. Then

sc(E(L(A), ds, k)) ≤


n if L(A) is infinite and n > 2k,

max{1, n− k} if L(A) is infinite and n ≤ 2k,

n+ k if L(A) is finite.

For every n, k ∈ N there exists an n state unary DFA A recognizing a finite language

such that sc(E(L(A), ds, k)) = n + k. For values n, k ∈ N where n > 2k there

exists a unary DFA A with n states recognizing an infinite language such that

sc(E(L(A), ds, k)) = n.

Proof. Let A = (Q,Σ, δ, q0, F ). Recall that a unary DFA always consists of a

sequence of states, called a tail, followed by a cycle of states, which may possibly

be empty. We observe that over a unary alphabet Σ, ds(x, y) = dp(x, y) for all

x, y ∈ Σ∗. Therefore, in the following, we will construct minimal DFAs for the

language E(L(A), dp, k).

If L(A) is finite, we make a state q of A into an accepting state if there exists a

word w ∈ Σ∗ such that |w| ≤ k and δ(q, w) ∈ F . We also add k new states. Thus,

the new automaton has at most n + k states. To see this bound is reachable, we

consider the language Ln = {an−1} which has a DFA with n states. Then it is clear

that for every k, the language E(Ln, dp, k) requires n+ k states.

For the infinite case, we first consider when n > 2k. Again, we make a state

q with δ(q, w) ∈ F and |w| ≤ k a final state in the new automaton. But instead

of adding k new states to the automaton, for states q where there is a final state

f such that δ(f, w) = q and |w| ≤ k, we make q a final state. To see this bound
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is reachable, we consider the language Ln = (an−1)∗ recognized by a DFA with n

states. Let 0 ≤ i, j ≤ n− 1 and without loss of generality let i < j and consider two

words ai and aj .

(1) If i + (n − j) ≤ k, then ajan−jak−(i+(n−j))+1 ∈ E(Ln, dp, k) and

aian−jak−(i+(n−j))+1 6∈ E(Ln, dp, k).

(2) If k < i+(n− j) < n−k, then aian−j 6∈ E(Ln, dp, k) and ajan−j ∈ E(Ln, dp, k).

(3) If n−k ≤ i+(n−j) ≤ n−1, then ajan−jak+1 6∈ E(Ln, dp, k) and aian−jak+1 ∈
E(Ln, dp, k).

Thus, for a DFA recognizing E(Ln, dp, k), the states reached by ai and aj cannot

be equivalent.

Finally, we consider when n ≤ 2k. Suppose A has n = `+m states consisting

of a tail of ` states and a cycle of m states. Since L(A) is infinite, m ≥ 1. If ` > k,

then k > 2k − ` ≥ m. In this case, the minimal DFA for E(Ln, dp, k) will have a

tail of size at most n − k followed by a cycle consisting of a single state with a

self loop. If ` ≤ k, then we have E(Ln, dp, k) = a∗, since m < 2k. Thus, the DFA

for E(Ln, dp, k) has at most either 1 or n− k states. These bounds are reached by

languages Ln = a`(am)∗ with n = `+m.

For a constant size alphabet, the bound of Proposition 3 is significantly better

than the bound implied by known results on nondeterministic state complexity in

Proposition 2. Next we show that, at least for some values of the radius k, the bound

of Proposition 3 is tight.

Lemma 5. Let k =
⌊
n
2

⌋
. Then there exists a DFA An with n states over a binary

alphabet such that

sc(E(L(An), ds, k)) ≥ 2k + 2n − 2.

Proof. Let An = (Qn, {a, b}, δn, 0, {0}), shown in Figure 1, with Qn = {0, . . . , n−1}
and the transition function δn is defined by

• δn(i, b) = i+ 1 mod n for all 0 ≤ i ≤ n− 1,

• δn(i, a) = i+ 1 mod n for i = 0, . . . , k − 1, k + 1 . . . , n− 1.

The DFA An operates as follows. From every state i < k, An reaches i+ 1 on any

symbol. From state k, the state k + 1 is reachable only on the symbol b. Otherwise,

on reading the symbol a, the computation terminates. For each state i > k, the DFA

An can reach the state i+ 1 on any symbol, except from state n− 1, which has a

transition to state 0.

We want to show that the automaton A′n from the construction of Proposition 3

is the minimal DFA for E(L(An), ds, k). We do this by showing that all states of

A′n are reachable and no two states are equivalent.

First, we show that all the states are reachable. For the first k steps of the

computation, states are of the form (i, P ) where P ⊆ Qn. Since the number of
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0start 1 · · · k

k + 1· · ·n− 1

a, b a, b a, b

b

a, ba, b

a, b

Fig. 1. The DFA An.

reachable states of this form is constrained by the number of words of length up to

k − 1, there are only |Σ|
k−1

|Σ|−1 = 2k − 1 such reachable states. Thus, we need to show

that reading each word of length up to k − 1 reaches a different state. Then since

a state (i, P ) is reachable on a word of length exactly i, we need only show that

reading no two words of the same length i < k will reach the same state (i, P ).

Let w = w1w2 · · ·wi be a word that reaches the state (i, Pi). We claim that

Pi = {0, . . . , k} ∪Ri, where Ri = {j1, . . . jr} ⊆ {k + 1, . . . , k + i} such that k + 1 ≤
j1 < · · · < jr ≤ k + i. Furthermore, we have j` ∈ R if wi−j` = b and all other

symbols of w are a’s. We begin by observing that for i = 0, we have w = ε and

P0 = {0, . . . , k}.
Now, suppose our claim holds for arbitrary i and consider the case for i+1. That is,

we have reached the state (i, Pi) on the word w = w1 · · ·wi and Pi = {0, . . . , k}∪Ri

as defined above and we now consider the transition upon reading wi+1. First, we

consider every element q ∈ Pi \ {k} and note that δ(q, wi+1) = q + 1. This gives

us {1, . . . , k, j1 + 1, . . . , jr + 1} ⊆ Pi+1. We also observe that since ψAn
(0) = 0,

we have 0 ∈ Pi+1. Finally, we consider δ(k,wi+1). If wi+1 = b, then by definition

δ(k,wi+1) = k + 1. Otherwise, if wi+1 = a, the transition is undefined.

It remains to confirm that each state j` ≥ k + 1 in Pi+1 satisfies the condition

that j` ∈ Pi+1 only if wi+1−j` = b. By our assumption, we know that j` satisfied

this condition in Pi, since j` takes a transition to state j` + 1 in Pi+1. Then we

simply verify that wi+1−(j`+1) = wi−j` = b. Thus, reading each word wi of length i

reaches a state (i, Pi) where Pi = {0, . . . , k} ∪Ri and Ri depends on the word wi as

defined above.

Next, we consider states of the form (k, T ) ⊆ {k} × 2Qn , which are reachable

on words of length greater than or equal to k. First, we consider two states (k, S)

and (k, T ) with S ( T ⊆ Qn. We want to show that (k, S) is reachable from (k, T ).

Let T ⊆ Qn be some subset {i1, . . . , it} with i1 < i2 < · · · < it. Let is ∈ T and

consider the subset T \ {is}. For is ≤ k, the state (k, T \ {is}) is reachable on the

word bk−isabn−(k+1)+is . For is > k − 1, the state (k, T \ {is}) is reachable on the

word bn−is+kabis−k−1. Having established that (k, S) is reachable from (k, T ) for
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all S ⊆ T , we observe that the state (k, {0, . . . , n− 1}) is reachable on the word bk.

Then every state (k, T ) with subset T ⊆ {0, . . . , n − 1} (except the empty set) is

reachable in A′n and we have 2n − 1 reachable states of the form (k, T ).

To show that states of A′n are pairwise distinguishable, we first consider two

states (k, T ) and (k, T ′) with subsets T, T ′ ⊆ Qn and T 6= T ′. Then there is some

element is ∈ Qn such that is ∈ T and is 6∈ T ′. Then a final state is reachable from

the state (k, T ) on the word bn−is , while from (k, T ′), no final state can be reached

on the same word.

Next, consider two states (i, P ), (i, P ′) with P, P ′ ⊆ Qn and P 6= P ′ and 0 ≤ i ≤
k. Recall that when i ≤ k, the state P (P ′ respectively) is of the form {0. . . . , k}∪R
(R′ respectively). Then let is ∈ R be an element that is not in R′. On the word bk−i,

the state (k, P̂ ) is reachable from (i, P ) and (k, P̂ ′) is reachable from (i, P ′). We

note that we now have an element is + k − i in P̂ that is not in P̂ ′. Thus, we have

two states (k, P̂ ) and (k, P̂ ′) with P̂ 6= P̂ ′ and we can apply the same argument

from above.

Now, we consider two states (i, P ) and (i′, P ′) with i < i′ and P 6= P ′. Let is
be an element in P ′ that is not in P . By definition, we have is > k. On the word

ak−i
′
, the state (i+ k − i′, R) is reachable from (i, P ) and (k,R′) is reachable from

(i′, P ′), such that the element is + k − i′ is in R′ but is not in R. Then on the word

ak, the state (k, S) is reachable from (i+ k − i′, R) and (k, S′) from (k,R′). There

exists an element is − i′ ∈ S′ that is reachable from is + k − i′ ∈ R′. However, as

is + k− i′ 6∈ R, we have is − i′ 6∈ S. Thus, we have two states (k, S) and (k, S′) with

S 6= S′ and we can apply the prior argument again.

To conclude, we observe that this lower bound is tight only when k =
⌊
n
2

⌋
. If

k <
⌊
n
2

⌋
, then the state (k, {0, . . . , n− 1}) is unreachable. If A′n reads the word bk,

the automaton reaches the state (k, {0, . . . , 2k − 1} and the state (k, {1, . . . , 2k})
can be reached by reading b. Therefore, not all 2n − 1 states of the form (k, T ) are

reachable.

In the other case, if k >
⌊
n
2

⌋
, then there exist words of length

⌊
n
2

⌋
< ` ≤ k that

reach the same states (`, P ) for some P ⊆ Qn. To see this, we observe that reading

both words b` and ab`−1 brings the automaton to the state (`, {0, . . . , n − 1}) for

every
⌊
n
2

⌋
< ` ≤ k. Thus, there are fewer than 2k states that can be reached on

words of length less than k.

Thus we have shown that there are 2k + 2n − 2 reachable states and they are all

pairwise distinguishable for k =
⌊
n
2

⌋
.

From Proposition 3 and Lemma 5, we obtain the following theorem.

Theorem 6. Let n > k and let L be a regular language recognized by an n-state

DFA over an alphabet Σ with |Σ| ≥ 2. Then a DFA recognizing E(L, ds, k) requires

at most |Σ|
k−1

|Σ|−1 + 2n− 1 states. There is a family of DFAs with n states over a binary

alphabet which reaches this bound when k =
⌊
n
2

⌋
.
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Now we will consider the case when the distance k is greater than the number of

states n of the given DFA and give a matching lower bound.

Proposition 7. Let k > n > 0 and L be a regular language recognized by a DFA

with n states over an alphabet Σ with |Σ| ≥ 2. Then there is a DFA recognizing

E(L, ds, k) with at most (k − n) + 2n+1 − 2 states.

Proof. Let A = (Q,Σ, δ, q0, F ) with |Q| = n. Then we follow the construction

given in the proof of Proposition 3 to obtain the DFA A′ = (Q′,Σ, δ′, q′0, F
′) that

recognizes the neighbourhood E(L(A), ds, k) with k > n. We note that ψA(q) ≤ n
for all q ∈ Q and thus by the definition of the transition function, we have, for

0 ≤ i ≤ k − n and all words w of length i, δ(q0, w) = (i, Q). This gives k − n states.

Then on the following n steps, we proceed as in the rest of the proof of Proposition 3.

This suggests that there are at most |Σ|
n−1

|Σ|−1 states. However, in this case, there are

far fewer states than this.

To consider how many states there are, we observe that the above bound requires

that each word of length i > k − n reaches a different state (i, P ), giving us a total

of |Σ|i−(k−n) states for each i. Then we must consider how many different subsets

P ⊆ Q are reachable. Recall that by definition, all states q with ψA(q) ≤ k − i are

contained in P for (i, P ). Thus, on step i, for two states (i, P ) and (i, P ′) both P

and P ′ contain the subset {q ∈ Q | ψA(q) ≤ k − i}. Then if P and P ′ are different,

they must contain different subsets of the set {q ∈ Q | ψA(q) > k − i}.
Let j be the size of the set {q ∈ Q | ψA(q) > k − i}. Then in order for each

word of length i to reach a different state, we must have |Σ|i−(k−n) ≤ 2j different

subsets. This means that we must have at least (i − (k − n)) · log2 |Σ| states q

with ψA(q) > k − i on step i of a computation on A′. In other words, for each

1 ≤ i ≤ maxq∈Q ψA(q), there are at least log2 |Σ| states q with ψA(q) = i. However,

since k > n, the number of states of A are further restricted by this condition.

Let ` = maxq∈Q ψA(q). Then there are at most

k − n

log2 |Σ|
+
|Σ|

n
log2 |Σ| − 1

|Σ| − 1

reachable states for words of length up to k. We observe that this is maximized

when |Σ| = 2. That is, for any alphabet of size at least 2, the maximum is achieved

when we have for each i exactly one state q such that ψA(q) = i. This gives us a

maximum of 2n − 1 reachable states of the form (i, P ) for i < k.

After the kth step of computation, there are 2n − 1 reachable states of the form

(k, P ) as usual. This gives a total of at most (k − n) + 2n+1 − 2 states.

We will show that the bound from Proposition 7 is reachable for a family of n

state DFAs over an alphabet of size n+ 1.

Lemma 8. Let k > n > 0. Then there exists a DFA Bn with n states over an
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0start 1 2 · · · n− 1
Σn − a0 Σn − a1 Σn − a2 Σn − an−2

Σn − an−1

Fig. 2. The DFA Bn.

alphabet of size n+ 1 such that

sc(E(L(An), ds, k)) ≥ (k − n) + 2n+1 − 2.

Proof. Let Bn = (Qn,Σn, δn, 0, {0}), shown in Figure 2, with Σn = {a0, a1, . . . , an}
and the transition function is defined by

δ(i, aj) = i+ 1 mod n for all 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n, and i 6= j.

We want to show that B′n, acquired from the construction of Proposition 3 is

the minimal DFA for E(L(Bn), ds, k).

First, we show that all states of B′n are reachable. States (i, Q) for 0 ≤ i ≤ k−n are

reachable on any word of length i, say ain. Next, we show that for each k−n < i < k

we can reach 2j states for each i = k − n+ j. Recall that for every state (i, P ), the

subset P contains the set of states {q ∈ Q | ψA(q) ≤ k − i}. But since i = k − n+ j

means k− i = n− j, the two states (i, P ) and (i, P ′) must have P and P ′ which are

different subsets {q ∈ Q | ψA(q) > n− j}.
Then for the state (i, P ) we have i = k − n + j and P = Q \ R with R ⊆

{n − j + 1, . . . , n − 1}. We write R = {i1, . . . , im} where m < j and i1 > i2 >

· · · > im. We observe that (i, P ) is reachable on the word ak−nn ai1−1ai2−1 · · · aim−1.

In this way, we can reach any subset R of j states on step i, giving us a total of

1 + 2 + · · ·+ 2n−1 = 2n − 1 reachable states (i, P ) with k − n < i < k.

Finally, we show that states (k, T ) are reachable for all T ⊆ Q. First, we note

that (k,Q) is reachable on the word akn. We will show how to reach any subset

T ⊆ Q from (k,Q). Let T = Q \ {i1, i2, . . . , im}. Then we can reach (k, T ) on the

word aknai1a
n−2
n ai2a

n−2
n · · · an−2

n aima
n−2
n .

In total, this gives us (k−n)+2n−1+2n−1 reachable states. Now, we will show

that these states are pairwise inequivalent. Consider two distinct states (i, T ) and

(i′, T ′). Setting i = i′, we have T 6= T ′ and there is an element it ∈ T but it 6∈ T ′.
Then a final state is reachable from the state (i, T ) by reading the word an−itn but

no final state can be reached from the state (i, T ′) on the same word.

Next, set i 6= i′. Without loss of generality, let i′ > i. Reading the word ak−i
′

n an−1

from (i′, T ′) brings the automaton to the state (k, S′), where 0 6∈ S′, and thus (k, S′)

is not a final state. However, reading the same word from (i, T ) brings the automaton
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to the state (i+ k − i′, S). Note that i+ k − i′ < k and in this case, we have 0 ∈ S,

since for all states (j, P ) with j < k, we have 0 ∈ P . Thus, (i, T ) is a final state.

Thus, we have shown that there are (k − n) + 2n+1 − 2 reachable states in A′

and they are all pairwise distinguishable.

Proposition 7 and Lemma 8 can then be summarized in the following theorem.

Theorem 9. Let k > n and let L be a regular language recognized by an n-state

DFA over an alphabet Σ with |Σ| ≥ 2. Then a DFA recognizing E(L, ds, k) requires

at most (k − n) + 2n+1 − 2 states. There is a family of DFAs with n states over an

alphabet of size n+ 1 which reaches this bound.

3.1. State Complexity of Subword Distance

Now, we give an upper bound on the deterministic state complexity of subword

neighbourhoods by giving a construction for a DFA for the neighbourhood of radius

k with respect to the subword distance df . In the construction we again assume that

the cardinality of the alphabet is at least two. For unary alphabets, the subword

distance coincides with the suffix distance and a tight bound is obtained from

Lemma 4.

Proposition 10. Let n > k ≥ 0 and L be a regular language recognized by a DFA

with n states over the alphabet Σ with |Σ| ≥ 2. Then there is a DFA recognizing

E(L, df , k) with at most |Σ|
k−1

|Σ|−1 + (k + 2) · 2n·(k+1) states.

Proof. Let L be recognized by the DFA A = (Q,Σ, δ, q0, F ) with |Q| = n. For a

given DFA A = (Q,Σ, δ, q0, F ), we define the function ϕA : Q→ N0 to be the length

of the shortest path from the state q to a reachable final state. Formally, we define

ϕA by

ϕA(q) = min
w∈Σ∗

{|w| | δ(q, w) ∈ F}.

Note that under this definition, if q ∈ F , then ϕA(q) = 0.

We construct a DFA A′ = (Q′,Σ, δ′, q′0, F
′). First, we define the set R = Q ×

{0, . . . , k}. The state set Q′ is then defined by

Q′ = {0, 1, . . . , k} × 2R × {0, . . . , k + 1}.

We define the initial state by q′0 = (0, I0, 0), where Ii is defined for 0 ≤ i ≤ k by

Ii = {(q, ψA(q) + i) ∈ R | ψA(q) ≤ k − i}

The set of final states F ′ is given by

F ′ = {(i, P, j) ∈ Q′ | j ≤ k or P ∩Q× {0, . . . , k − i} 6= ∅}.

States of A′ are of the form (i, P, j). The first component i counts the first k steps

of computation. As in the automaton from the proof of Proposition 3, on the ith
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computation step, the subset P contains tuples for all states reachable from direct

transitions from the (i − 1)th computation step and all of those states which are

reachable from q0 within k − i steps.

The second component P is a subset of R. Elements of R are 2-tuples (p, `)

where the first component is a state p ∈ Q of the original automaton A and the

second component is an integer 0 ≤ ` ≤ k. The first component p is the state of a

simulation of a computation on A. The second component remembers the length of

the word that was read by A′ when the tuple was first added to R.

The third component j allows the DFA A′ to keep track of the length of the

simulated computation of A on a suffix that is different from the actual input. This

value takes into account the length of the simulated computation of A on a prefix

that is different from the actual input of A′.

The transition function δ′ is defined for a ∈ Σ by

• δ′((i, P, j), a) = (i+ 1, Ii ∪ P ′, j′) for P ⊆ R and 0 ≤ i ≤ k − 1,

• δ′((k, P, j), a) = (k, P ′, j′) for P ⊆ R,

where P ′ = {(δ(q, a), `) ∈ R | (q, `) ∈ P} and

j′ = min{`+ ϕA(δ(q, a)) | (q, `) ∈ P} ∪ {j + 1} ∪ {k + 1}.

Again, note that the value of the second component of a member of R does not

change during any computation, as it is set when it is first added to a subset in a

computation. We also note that in the simulated computation of the DFA A, the

DFA A′ only keeps track of the length of the minimal suffix that deviates from the

input word for A′.

We show that on reading a word w ∈ Σ∗, the automaton A′ reaches the state

(i, P, j) if and only if for w = w1zw2, there exists a word x = x1zx2 in L(A′) such

that |w1| ≤ i, |x1| ≤ k − i, and j ≤ |x1|+ |w1|+ |x2|+ |w2| if j ≤ k.

First, suppose that there exists a word w ∈ Σ∗ such that δ′(q′0, w) = (i, P, j). We

consider w′ = w1z and note that by definition δ′(q′0, w1) = (|w1|, P ′, j′) for |w1| ≤ k.

Then P ′ contains some state (p, `) such that ` = ψA(p) ≤ k − |w1|. This means that

there is a word x1 such that δ(q0, x1) = p and |x1| ≤ k − |w1|.
If we choose x1 to minimize its length, we have ` = ψA(p) = |x1|. By definition,

we have (p, ψA(p) + |w1|) = (p, |x1|+ |w1|) ∈ P ′. Now, consider the state q = δ(p, z).

Since (p, |x1|+ |w1|) ∈ P ′ and δ′(q′0, w
′) = δ′((|w1|, P ′, j′), z) = (i′′, P ′′, j′′), we have

(q, |x1|+ |w1|) ∈ P ′′ where q = δ(q0, x).

Now, there exists a word x2 such that δ(q, x2) ∈ F . We choose the shortest such

x2 so that |x2| = ϕA(q). For the current state (i′′, P ′′, j′′), we have via (q, |w1|+ |x1|),

j′′ ≤ ϕA(q) + |x1|+ |w1|.

Then δ′(q′0, w) = δ′((i′′, P ′′, j′′), w2) = (i, P, j) with j ≤ |w2|+ |x1|+ |w1|+ ϕA(q).

If j ≤ k, we have j ≤ |x1|+ |w1|+ |x2|+ |w2|, as required.

We now show the other direction. For w = w1zw2, we suppose there exists a word

x = x1zx2 in L(A) such that |w1| ≤ i, |x1| ≤ k− i, and j ≤ |x1|+ |w1|+ |x2|+ |w2| if
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j ≤ k. Reading w1 takes the automaton to the state (|w1|, P ′, j′). Let p = δ(q0, x1).

We have ψA(p) ≤ |x1| ≤ k − i. Then (p, ψA(p) + |w1|) ∈ P ′. Next, reading z takes

the automaton to state (i′′, P ′′, j′′). If q = δ(p, z), then (q, ψA(p) + |w1|) ∈ P ′′.

Recall that δ(q, x2) ∈ F , which means that ϕA(q) ≤ |y2|. This implies that j′′ ≤
ϕA(q) + ψA(p) + |w1|.

Reading w2 from (i′′, P ′′, j′′) brings us to the state (i, P, j). If j ≤ k, we have

j ≤ |w2|+ j′′ ≤ |w2|+ ϕA(q) + ψA(p) + |w1| ≤ |w1|+ |w2|+ |x1|+ |x2|

as required.

Then if (i, P, j) is a final state of A′, this means that reading a word w ∈ Σ∗

reaches the state (i, P, j) if and only if |x1|+ |w1|+ |x2|+ |w2| ≤ k. This means that

df (w,L(A)) and therefore w ∈ E(L(A), df , k).

However, note that not all (k + 1) · (k + 2) · 2n(k+1) are reachable. Recall that

for i < k, the only words that can reach a state (i, P, j) are of length exactly i.

However, there are only |Σ|i words of length exactly i. Thus, the maximum number

of reachable states with i < k is

k−1∑
i=0

|Σ|i =
|Σ|k − 1

|Σ| − 1
.

Thus, A′ has at most |Σ|
k−1

|Σ|−1 + (k + 2) · 2n(k+1) reachable states.

The bound of Proposition 10 is significantly better than the bound implied by

nondeterministic state complexity [17] (in Proposition 2) for a fixed alphabet Σ.

However, we do not know whether the bound is the best possible.

4. State Complexity of Suffix Distance on Subregular Languages

Here, we consider the state complexity of neighbourhoods with respect to the

suffix distance of subregular languages. First, we consider neighbourhoods of finite

languages.

Proposition 11. Let n > k ≥ 0 and L be a finite language recognized by a DFA

with n states over a binary alphabet. Then there is a DFA recognizing E(L, ds, k)

with at most 2k + k · 2b
n
2 c − 1 states.

Proof. We use the construction for A′ from the proof of Proposition 3. Observe that,

as is the case for general regular languages, not all (k + 1) · 2n states are reachable.

Recall that the states of A′ are pairs (i, P ) where i is a counter from 0 to k and P is

a subset of states of A and that a word w reaches a state (i, P ) if and only if there

exists a word x ∈ Σ∗ such that w = w′z and x = x′z where |w′| ≤ i, |x′| ≤ k− i and

δ(q0, x) ∈ Q. We also note that for i < k, any state (i, P ) with P ⊆ Q is reachable

on a word of length exactly i. This gives us at most
∑

i<k 2i = 2k − 1 reachable

states of the form (i, P ) for i < k.
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It remains to show how many states (k, P ) with P ⊆ Q are reachable. Since P is

a subset of the set of states of A, we would like to know how many different subsets

P exist such that (k, P ) is reachable. Since A recognizes a finite language, there

exists at least one state q of A with ψA(q) = i that is reachable on some word of

length i and is not reachable on any word of length j > i. Note that this property

does not hold for states of the form (i, P ) with i < k. To see this, we consider some

i and observe that every state q ∈ Q with ψA(q) ≤ k − i is in some subset P with

(i, P ) reachable for all i < k by definition. Hence, we can restrict consideration to

states where the first component is k.

Let (k, T ) be a state that is reached on a word w of length k. Since A′ is

deterministic, there are up to 2k possible such states. Let Ri ⊆ Q denote the set

of states of A that are not contained in any state P ⊆ Q, where (k, P ) is reachable

on a word of length greater than k + i. In other words, Ri is the set of states of

A which become unreachable in A on a word of length i. We note that Ri must

contain at least one element, since A recognizes a finite language.

We write T = R∪S, where R ⊆
⋃

0≤i≤k Ri and S ⊆ Q\R. We have |Q\R| ≤ n−k,

since k < n. From this, we can see that to maximize the number of reachable states,

each Ri must contain at most one element. This gives us a total of 2n−k possible

subsets S.

Then for each set T = R ∪ S that is reachable on a word of length k, there

is a state Ti = (R \
⋃i

j=0Rj) ∪ S that is reachable on a word of length k + i for

1 ≤ i ≤ k. Since each Ri has one element, each subset S is contained in up to k

different subsets of Q that are reachable in A′. This gives k · 2b
n
2 c possible subsets

that can be reached on each word of length greater than k.

Thus, A′ can have up to |Σ|
k−1

|Σ|−1 + k · 2b
n
2 c − 1 states in total.

The statement of Proposition 11 assumes that the alphabet is binary. A tight

bound is also known from Lemma 4 for unary finite languages. Next, we give a lower

bound construction for the suffix distance neighbourhoods of finite languages.

Lemma 12. Let k =
⌊
n
2

⌋
. Then there exists a DFA Cn with n states over a binary

alphabet recognizing a finite language such that

sc(E(L(Cn), ds, k)) ≥ 2k + k · 2b
n
2 c − 1.

Proof. Let Cn = (Qn, {a, b}, δn, 0, {n − 1}), shown in Figure 3, with Qn =

{0, . . . , n− 1} and the transition function δn is given by

• δn(i, a) = i+ 1 for i = 0, . . . , k − 1, k + 1, . . . n− 2,

• δn(i, b) = i+ 1 for all 0 ≤ i ≤ n− 2.

The DFA Cn recognizes the subset of {a, b}n−1 consisting of all words w = ubv

with |w| = n− 1, |v| =
⌊
n
2

⌋
, and the (k + 1)st symbol is b. On every state, An has

a transition to the next state on both a and b except for state k where there is
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0start 1 · · · k k + 1 · · · n− 1
a, b a, b a, b b a, b a, b

Fig. 3. The DFA Cn.

a transition to state k + 1 only on b. We construct the DFA C ′n recognizing the

neighbourhood by using the construction from Proposition 3.

First, we show that all the states are reachable. For the first k steps of the

computation, we get a total of |Σ|
k−1

|Σ|−1 = 2k − 1 states by the same reasoning as in

the proof of Lemma 5.

Now, we consider states (k, T ) with T ⊆ Q, which are reachable on words of length

k or greater. We can write T = R∪S, where R ⊆ {0, . . . , k} and S ⊆ {k+1, . . . , n−1}.
Then the state (k, {0, . . . , k} ∪ S) is reachable on the word wS = w1 · · ·wk with

wi = b if n− i ∈ T and wi = a if n− i 6∈ T . Since k =
⌊
n
2

⌋
, we have 2b

n
2 c reachable

states. From this, we see that we can reach the state (k, {i, . . . , k} ∪ S) on the word

aiwS . Then for 1 ≤ i ≤ k, we get k · 2b
n
2 c states.

Now we show that these states are pairwise distinguishable. Consider two distinct

states (i, T ) and (i′, T ′). Setting i = i′, we have T 6= T ′ and there is an element

it ∈ T but it 6∈ T ′. Then a final state is reachable from the state (i, T ) on the word

bn−it , while no final state is reachable from (i, T ′) on the same word.

Next, set i 6= i′. Without loss of generality, let i′ > i. Then n− 1 is reachable

from (i, T ) on the word bk−ibn−k but the same computation from (i′, T ′) would

reach n− 1 before the automaton finished reading the word.

Thus, we have shown that there are 2k + k · 2b
n
2 c − 1 reachable states in C ′n and

they are all pairwise distinguishable.

We can summarize the results of Proposition 11 and Lemma 12 as follows:

Theorem 13. Let L be a finite language recognized by an n-state DFA over an

alphabet Σ with |Σ| ≥ 2 and k ≤ n. Then a DFA recognizing E(L, ds, k) requires at

most |Σ|
k−1

|Σ|−1 + k · 2b
n
2 c − 1 states. There is a family of DFAs with n states over a

binary alphabet which reaches this bound when k =
⌊
n
2

⌋
.

Next, we show that in the case k > n, the upper bound for the state complexity

of suffix distance neighbourhoods for general regular languages can be reached by a

neighbourhood of a finite language.

Theorem 14. Let L be a finite language recognized by an n-state DFA over an

alphabet Σ with |Σ| ≥ 2 and k > n. Then a DFA recognizing E(L, ds, k) requires at

most (k − n) + 2n+1 − 2 states. There is a family of DFAs with n states over an

alphabet of size n which reaches this bound.
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0start 1 2 · · · n− 1
Σn − a0 Σn − a1 Σn − a2 Σn − an−2

Fig. 4. The DFA Dn.

Proof. The upper bound follows from the upper bound for general regular languages

given in Proposition 3.

Let Dn = (Qn,Σn, δn, 0, {0}), shown in Figure 4, with Σn = {a0, a1, . . . , an−1}
and the transition function is defined by

δ(i, aj) = i+ 1 for all 0 ≤ i < n− 1, 0 ≤ j ≤ n− 1, and i 6= j.

We will show that D′n, obtained by the construction of Proposition 3 is the

minimal DFA for E(L(Dn), ds, k).

First, we show that all states of D′n are reachable. States (i, Q) for 0 ≤ i ≤ k− n
are reachable on the word ain−1. Next, we show that for each k − n < i ≤ k

we can reach 2j states for each i = k − n + j. By a similar argument from the

proof of Lemma 8, we note that for the state (i, P ) we have i = k − n + j and

P = Q \ R with R ⊆ {n − j + 1, . . . , n − 1}. Writing R = {i1, . . . , im} where

m < j and i1 > i2 > · · · > im, we observe that (i, P ) is reachable on the word

ak−nn ai1−1ai2−1 · · · aim−1. In this way, we can reach any subset R of j states on

step i, giving us a total of 1 + 2 + · · ·+ 2n = 2n+1 − 1 reachable states (i, P ) with

k − n < i ≤ k.

In total, this gives us (k − n) + 2n+1 − 1 reachable states. Now, we will show

that these states are pairwise inequivalent. Consider two distinct states (i, T ) and

(i′, T ′). Setting i = i′, we have T 6= T ′ and there is an element it ∈ T but it 6= T ′.

Then a final state is reachable from the state (i, T ) by reading the word an−1−it
n−1 but

no final state is reachable from the state (i, T ′) on the same word.

Next, set i 6= i′. Without loss of generality, let i′ > i. Reading the word ak−i+n−1
n−1

from (i, T ) brings the automaton to the state (k, S) with n − 1 ∈ S so (k, S) is

accepting. However, reading the same word from (i′, T ′) causes the automaton

to crash since k + n − 1 is the length of the longest word in E(L(Dn), ds, k) and

i′ + k − i+ n− 1 > k + n− 1.

Thus, we have shown that there are (k − n) + 2n+1 − 2 reachable states in A′

and they are all pairwise distinguishable.

Next, we consider the class of suffix-closed languages [2]. A language L is suffix-

closed if wx ∈ L implies x ∈ L. It is well known that the class of suffix-closed

languages is a subclass of the regular languages. We will give a tight bound on the

size of the DFA for neighbourhoods of suffix-closed languages with respect to the

suffix distance.

Theorem 15. Let L be a suffix-closed language recognized by an n-state DFA. Then
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Fig. 5. The DFA En.

a DFA recognizing E(L, ds, k) requires at most n + k + 1 states. For each n ∈ N
there exists an n-state DFA En recognizing a suffix-closed language such that the

state complexity of E(L(En), ds, k) is n+ k + 1 for all k ∈ N.

Proof. First, we show that if L is suffix-closed, then E(L, ds, k) = Σ≤kL. Consider

a word w and let v ∈ L be the closest word in L to w. We have |w| ≥ |v|, since

otherwise, we can find a suffix v′ of v such that |w| ≥ |v′| which is closer to w than

v. In this case, v must be a proper suffix of w. Suppose otherwise and v and w

share a suffix, say v′. Again, w would be closer to v′ than v. Thus, w = uv and

ds(w, v) = |u| and E(L, ds, k) = Σ≤kL.

Brzozowski et al. [2] show that for two suffix-closed languages L1 and L2 with

state complexity m1 and m2, respectively, the state complexity of L1L2 is ((m1 +

1)−f)m2 +f , where f is the number of accepting states for the DFA recognizing L1.

Since the DFA recognizing L has n states and Σ≤k has a DFA with k+1 states where

all states are final, this implies that the state complexity of E(L, ds, k) = Σ≤k · L
has a DFA with at most n+ k + 1 states.

To show that this bound is reachable, we consider the language Ln recognized by

the DFA En = (Qn, {a, b}, δn, q0, Fn) shown in Figure 5. Consider two words x = ai

and y = aj with 1 ≤ i, j ≤ n + k and we show that the states reached by these

words are distinct. We choose z = an+k−1−jb and observe that xz ∈ E(Ln, ds, k)

and yz 6∈ E(Ln, ds, k).

5. Conclusion

The state complexity of radius k prefix distance neighbourhoods of an n state DFA

language depends linearly on n and on k [17]. As we have seen, the corresponding

bounds for the suffix and the subword distance neighbourhoods depend exponentially

on n and k and, furthermore, coming up with matching lower bounds is considerably

more involved.

For suffix distance neighbourhoods where the radius k equals, roughly, half of

the number of states n, we have given a matching lower bound construction based

on a binary alphabet. However (and perhaps curiously), the construction does not

seem to extend, at least not directly, for other values of the radius when k < n.

The precise state complexity of subword distance neighbourhoods remains open.
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We do not have a lower bound construction matching the upper bound of Proposi-

tion 10 for the state complexity of subword distance neighbourhoods.
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