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Abstract. A neighbourhood of a language L consists of all words that
are within a given distance from a word of L. We show that the neig-
hbourhood of a regular language L with respect to an additive quasi-
distance can be recognized by an additive weighted finite automaton
(WFA). The size of the WFA is the same as the size of an NFA (nonde-
terministic finite automaton) for L and the construction gives an upper
bound for the state complexity of a neighbourhood of a regular lan-
guage with respect to a quasi-distance. We give a tight lower bound
construction for the determinization of an additive WFA using an alpha-
bet of size five. The previously known lower bound construction needed
an alphabet that is linear in the number of states of the WFA.

1 Introduction

In many applications it is crucial to measure the similarity between data. How
we define the distance between objects depends on what the objects we want to
compare are and why we want to compare them [6]. By the distance between
languages L1 and L2 we mean the smallest distance between a word of L1 and
of L2, respectively. This definition is natural for error correction applications;
however, other definitions such as the relative distance or Hausdorff distance
have also been considered [4, 6].

One of the most commonly used similarity measures for words is the Levensh-
tein distance [15], also called the edit distance [5, 13, 14, 17]. The edit distance
between two words is the smallest number of substitution, insertion and deletion
operations required to transform one word into another. The problem of compu-
ting the edit distance arises in many areas, such as computational biology, text
processing and speech recognition. Pighizzini [17] has shown that the edit dis-
tance between a word and a language recognized by a one-way nondeterministic
auxiliary pushdown automaton is computable in polynomial time. Konstantini-
dis [14] showed that the edit distance of a regular language, that is, the smallest
edit distance between two distinct words in the language can be computed in po-
lynomial time. Han et al. [10] gave a polynomial time algorithm to compute the
edit distance between a regular language and a context-free language. Error/edit
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systems for error correction have been studied by Kari and Konstantinidis [12],
and the error correction capabilities of regular languages with respect to edit
operations were recently investigated by Benedikt et al. [1, 2].

The edit distance is additive with respect to concatenation of words in the
sense defined by Calude et al. [3]. A quasi-distance is a generalization of the
notion of distance in that it allows the possibility of distinct elements having
distance zero. Calude et al. [3] showed that the neighbourhood of a regular
language with respect to an additive distance or quasi-distance is regular. The
neighbourhood of radius r of a language L consists of all words that have distance
at most r from some word of L.

In an additive weighted finite automaton (WFA) [20] the weight of a path is
the sum of the weights of the individual transitions that make up the path and
the weight of an accepted word w is the minimum weight of a path from the
start state to a final state that spells out w. Note that this differs significantly
from weighted automata used, for example, in image processing applications [7,
8].

For a given nondeterministic finite automaton (NFA) A, an additive distance
d and radius r, Salomaa and Schofield [20] gave a construction for an additive
weighted finite automaton which recognizes the neighbourhood of radius r of
the language recognized by A. The construction relies essentially on the fact
that additive distances are finite, that is, the neighbourhood of any word is
always finite. This makes the construction not suitable for quasi-distances, since
neighbourhoods of additive quasi-distances are not guaranteed to be finite [3].

Here we show that neighbourhoods of a regular language with respect to
an additive quasi-distance can be recognized by a WFA. Given an NFA A, the
WFA recognizing a constant radius neighbourhood of L(A) can be constructed
in polynomial time. The construction relies on the property that the neighbour-
hoods with respect to a quasi-distance are regular and a finite automaton for
the neighbourhood can be constructed effectively. The construction also yields
an upper bound for the size of a deterministic finite automaton (DFA) needed
to recognize the neighbourhood of radius r of a regular language (given by an
NFA) with respect to a quasi-distance. The upper bound is significantly better
than the bound obtained by constructing an NFA for the neighbourhood [3] and
then determinizing the NFA.

We also study the state complexity of additive WFAs. A WFA A within a
given weight bound R recognizes a regular language, and Salomaa and Scho-
field [20] gave an upper bound for the size of a DFA for this language. They
also gave a matching lower bound construction; however, the WFAs used for
the lower bound construction needed an alphabet of size linear in the number of
states of the WFA. As our main result we give a tight lower bound construction
for the determinization of WFAs using a five-letter alphabet.

The paper concludes with a discussion of open problems on the state com-
plexity of neighbourhoods of a regular language with respect to an additive
distance or quasi-distance.



2 Definitions

We assume that the reader is familiar with the basics of finite automata and
regular languages [22, 24]. More information on their descriptional complexity
complexity can be found in the surveys [11, 9]. A general reference for weighted
finite automata is [7].

In the following Σ is always a finite alphabet, Σ∗ is the set of words over
Σ, Σ+ is the set of non-empty words and ε is the empty word. The length of
a word w is |w|. When there is no danger of confusion, a singleton set {w} is
denoted simply as w. The set of non-negative integers (respectively, rationals) is
N0 (respectively, Q0).

2.1 Finite automata and regular languages

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, q0, F ) where
Q is a finite set of states, Σ is an alphabet, δ is a multi-valued transition function
δ : Q × Σ → 2Q, q0 ∈ Q is the initial state, and F ⊆ Q is a set of final states.
We extend the transition function δ to Q×Σ∗ → 2Q in the usual way. A word
w ∈ Σ∗ is accepted by A if δ(q0, w) ∩ F 6= ∅ and the language recognized by A
consists of all strings accepted by A.

The automaton A is a deterministic finite automaton (DFA) if, for all q ∈ Q
and a ∈ Σ∗, δ(q, a) either consists of one state or is undefined. A DFA A is
complete if δ is defined for all q ∈ Q and a ∈ Σ. Two states p and q of a DFA A
are equivalent if δ(p, w) ∈ F if and only if δ(q, w) ∈ F for every string w ∈ Σ∗.
A DFA A is minimal if each state of Q is reachable from the initial state and no
two states are equivalent.

The (right) Kleene congruence of a language L ⊆ Σ∗ is the relation ≡L⊆
Σ∗ ×Σ∗ defined by setting, for x, y ∈ Σ∗,

x ≡L y iff [(∀z ∈ Σ∗) xz ∈ L⇔ yz ∈ L].

A language L is regular if and only if the index of ≡L is finite and, in this case,
the index of ≡L is equal to the size of the minimal complete DFA for L [22, 24].
The minimal DFA for a regular language L is unique. The state complexity of
L, sc(L), is the size of the minimal complete DFA recognizing L.

We extend the definition of additive weighted finite automata [20] by allowing
also ε-transitions.

Definition 1. An additive weighted finite automaton (WFA) is a 6-tuple A =
(Q,Σ, γ, ω, q0, F ) where Q is a finite set of states, Σ is an alphabet, γ : Q ×
(Σ ∪ {ε}) → 2Q is the transition function, ω : Q × (Σ ∪ {ε}) × Q → Q0 is a
partial weight function where ω(q1, a, q2) is defined if and only if q2 ∈ γ(q1, a),
(a ∈ Σ ∪ {ε}) q0 ∈ Q is the initial state, and F ⊆ Q is the set of accepting
states.

Strictly speaking, the transitions of γ are also determined by the domain of
the partial function ω. In the following by a WFA we always mean an additive



weighted finite automaton as in Definition 1. By a transition of A on symbol a ∈
Σ we mean a triple (q1, a, q2) such that q2 ∈ γ(q1, a), q1, q2 ∈ Q. A computation
path α of a WFA A along a word w = a1a2 · · · am, ai ∈ Σ, i = 1, . . . ,m, from
state p1 to p2 is a sequence of transitions that spell out the word w,

α = (q0, a1, q1)(q1, a2, q2) · · · (qm−1, am, qm),

where p1 = q0, p2 = qm, and qi ∈ γ(qi−1, ai), 1 ≤ i ≤ m. The weight of a
computation path is

ω(α) =

m∑
i=1

ω(qi−1, ai, qi).

We let Θ(p1, w, p2) denote the set of all computation paths along a word w from
p1 to p2. The language recognized by A within the weight bound r ≥ 0 is the set
of words for which there exists a computation path that is accepted by A and
has weight at most r, defined as

L(A, r) = {w ∈ Σ∗ : (∃f ∈ F )(∃α ∈ Θ(q0, w, f)) ω(α) ≤ r}.

2.2 Distance measures and neighbourhoods

Intuitively, a distance is a numerical description of how far apart the objects are
and we view a distance on words as a function from Σ∗×Σ∗ to the nonnegative
rationals that is has value zero only for two identical words, is symmetric, and
satisfies the triangle inequality. More formally, a function d : Σ∗ × Σ∗ → Q0 is
a distance if it satisfies, for all x, y, z ∈ Σ∗,

1. d(x, y) = 0 if and only if x = y,
2. d(x, y) = d(y, x),
3. d(x, z) ≤ d(x, y) + d(y, z).

The function d is a quasi-distance [3] if it satisfies conditions 2 and 3 and
d(x, y) = 0 always when x = y, that is, a quasi-distance allows the possibility
that distinct words may have distance zero. If d is a quasi-distance on Σ, we can
define an equivalence relation∼d onΣ by setting x ∼d y if and only if d(x, y) = 0.
Then the mapping d′([x]∼d

, [y]∼d
) = d(x, y) is a distance over Σ∗/ ∼d [3].

A quasi-distance d is integral if for all strings x and y, d(x, y) ∈ N. Note that
a distance is a special case of a quasi-distance and all properties that hold for
quasi-distances apply also to distances.

The neighbourhood of radius r of a language L is the set

E(L, d, r) = {x ∈ Σ∗ : (∃y ∈ L) d(x, y) ≤ r}.

A (quasi-)distance d is said to be finite if the neighbourhood of any given radius
of an individual word with respect to d is finite. A (quasi-)distance d is additive
if for every factorization w = w1w2 and radius r ≥ 0,

E(w, d, r) =
⋃

r1+r2=r

E(w1, d, r1) · E(w2, d, r2).



3 WFA Construction for a Quasi-Distance
Neighbourhood

It is known that the neighbourhood of a regular language with respect to an
additive quasi-distance is regular [3]. The next lemma constructs, based on an
NFA N , a WFA for an additive quasi-distance neighbourhood of L(N). Then
by converting the WFA to a DFA, the construction yields an upper bound for
the state complexity of quasi-distance neighbourhoods that is much improved
compared to the original construction from [3].

Our construction is inspired by related constructions for distance measures
in [21] but the significant difference is that, as opposed to additive distances,
an additive quasi-distance need not be finite, i.e., a finite radius neighbourhood
of a single word is, in general, infinite. The construction used for the proof of
Lemma 1 uses WFAs with ε-transitions.

An additive (quasi-)distance d is determined by the finite number of values
d(a, b), d(a, ε), where a, b ∈ Σ. For the complexity estimate of the lemma we
assume that d is a fixed additive quasi-distance that is given by listing the
values d(a, b), d(a, ε), a, b ∈ Σ.

Lemma 1. Let N = (Q,Σ, δ, q0, F ) be an NFA with n states, d an additive
quasi-distance, and R ≥ 0 is a constant. There exists an additive WFA A with
n states such that for any 0 ≤ r ≤ R,

L(A, r) = E(L(N), d, r)

Furthermore, the WFA A can be constructed in time O(n3).

Proof. We define an additive WFA A = (Q,Σ, γ, ω, q0, F ) as follows. The tran-
sition function γ is defined by setting, for p ∈ Q, a ∈ Σ ∪ {ε},

γ(p, a) = {q : (∃x ∈ Σ∗) q ∈ δ(p, x) and d(a, x) ≤ R}.

That is, for each pair of states p, q, we add a transition from p to q on a ∈ Σ∪{ε}
in the WFA A if there is a word x ∈ Σ∗ with d(a, x) ≤ R that takes p to q in
the NFA N . The transition (p, a, q) in A has weight

ω((p, a, q)) = min
x∈Σ∗

{d(a, x) : q ∈ δ(p, x)}. (1)

We claim that a word w ∈ Σ∗ spells out a path in A with weight r (≤ R)
from the start state q0 to a state q1 if and only if some word u with d(w, u) ≤ r
takes the state q0 to q1 in the NFA N .

We prove the “only if” direction of the claim using induction on the length
of w. If w = ε, then either q0 = q1 or A has an ε-transition from q0 to q1. Now
the claim follows by the definition of the transition function γ and the weight
function ω of A. For the inductive step consider w = ub, u ∈ Σ∗, b ∈ Σ, where
the claim holds for u. Since w takes state q0 to q1 by a path with weight r in
the WFA A, the word u takes q0 to a state p by a path of weight r1 where
r1 + ω(p, b, q1) = r.



By the inductive assumption, there exists up ∈ Σ∗, d(u, up) ≤ r1 such that
up in the NFA N takes q0 to the state p. By the definition of the transition
weights of A in (1), there exists a word vp,b, with d(b, vp,b) = ω(p, b, q1) such
that in the NFA N the word vp,b takes state p to state q1.

Since d is additive and r1 + ω(p, b, q1) = r, we have

E(u, d, r1) · E(b, d, ω(p, b, q1)) ⊆ E(w, d, r).

Thus, d(w, upvp,b) ≤ r and in the NFA N the word upvp,b takes the start state
q0 to q1. This concludes the proof of the “only if” direction of the claim.

Next we establish the “if” direction of the claim. Assuming there exists a
word u with d(w, u) ≤ r that takes q0 to q1 in the NFA N , we have to verify
that w ∈ E(u, d, r). Again, by induction on the length of w, we first see that if
w = ε, then, by the definition of the transition function γ, A has an ε-transition
from q0 to q1 having weight at most d(ε, u). Now, for the inductive step, consider
w = w1b, w1 ∈ Σ∗, b ∈ Σ. Since d is additive, we have u = u1u2 such that

w1 ∈ E(u1, d, r1) and b ∈ E(u2, d, r2)

where r1 + r2 = r. Then by the inductive assumption, since there is a path in N
from q0 to some state p on the word u1, there is a path in A from q0 to the state
p on the word w1 with weight at most r1. Now the NFA N has a transition on
symbol b from p to q1, and according to the definition of the transition relation
γ, A has a transition from p to q1 with weight at most d(b, u2) ≤ r2. We conclude
that A has a path from q0 to q1 with weight at most r1 + r2 = r.

Since the start states of A and N coincide and A and N have the same set
of final states, the claim implies that, for any r ≤ R, L(A, r) = E(L(N), d, r).

It remains to give an upper bound for the time complexity of finding the weig-
hts (1) in order to verify the claim concerning the time bound for constructing
A. Since d is additive, for given p, q ∈ Q and a ∈ Σ ∪ {ε}, the set of words x
such that d(a, x) ≤ R and x takes p to q in the NFA N is regular. This means
that, for p ∈ Q and a ∈ Σ ∪ {ε}, the set γ(p, a) can be efficiently constructed
and the weights of the transitions of N are computed as follows.

A word x = b1b2 · · · bm, bi ∈ Σ is in the neighbourhood of a of radius R if
and only if there exists an index i ∈ {1, . . . ,m} such that

d(a, bi) +
∑

j∈{1,...,m},j 6=i

d(ε, bj) ≤ R.

For the radius R neighbourhood of a, a ∈ Σ ∪{ε}, we define the two-state WFA
Ba = ({I0, I1}, Σ, η, ρ, I0, {I1}), shown in Figure 1. The states of Ba are {I0, I1}.
For each symbol σ ∈ Σ, we define self-loop transitions η(q, σ) = q with weight
d(σ, ε) for both states and the transition η(I0, σ) = I1 with weight d(σ, a) for the
transition which consumes the symbol a.

Let Ma = ({I0, I1} × Q,Σ, δa, ωa, (I0, q0), I1 × F ) be the WFA obtained as
a cross product of the WFA Ba and the NFA N . The states of Ma are of the



I0start I1
σ|d(σ, a)

σ|d(σ, ε) σ|d(σ, ε)

Fig. 1. The WFA Ba recognizing the language {x ∈ Σ : d(a, x) ≤ R}
.

form (P, q), where P ∈ {I0, I1} and q ∈ Q. The transitions of Ma are defined by
setting, for q ∈ Q, σ ∈ Σ,

δa((I0, q), σ) = {(I0, δ(q, σ)), (I1, δ(q, σ))},
δa((I1, q), σ) = {(I1, δ(q, σ))}.

The weights of transitions ((P1, q1), σ, (P2, q2)) defined in δMa
are defined

ωa((P1, q1), σ, (P2, q2)) =

{
d(σ, ε), if P1 = P2;

d(σ, a), if P1 6= P2.

For states p, q ∈ Q, paths from states (I0, p) to (I1, q) are labelled by words x
with weight d(a, x).

We compute the paths with the least weight for every pair of states of Ma.
There are 2n states in the product machine and minimal weight paths for every
pair of states can be computed in time O(n3) via the Floyd-Warshall algorithm
[5]. A transition from p to q on a is added if there is a path from (I0, p) to (I1, q)
with weight at most R.

Lemma 1 gives the following result.

Theorem 1. Suppose that L has an NFA with n states and d is a quasi-distance.
The neighbourhood of L of radius R can be recognized by an additive WFA having
n states within weight bound R. Given an NFA for L the WFA can be constructed
in polynomial time.

The next proposition gives an upper bound for the size of a DFA recognizing
the language of a WFA within a given weight bound. An analogous result is
known [20] for an additive WFA model that does not allow ε-transitions.

Proposition 1. If A is a WFA with n states where all transition weights are
integers and r ∈ N0, then L(A, r) can be recognized by a DFA with at most
(r + 2)n states.

Proof. The construction is modified from the proof of Theorem 5 of [20] to allow
the possibility that the WFA has ε-transitions.



Let A = (Q,Σ, γ, ω, q0, FA), where Q = {q0, q1, . . . , qn−1}. Denote Xr =
{0, 1, 2, . . . , r + 1} and define a DFA

D = (Xn
r , Σ, δ, p0, FD),

as follows. The set of final states is

FD = {(i0, . . . , in−1) | (∃ 0 ≤ j ≤ n− 1) ij ≤ r and qj ∈ FA}.

The initial state is p0 = (0, s1, . . . , sn−1) where, for 1 ≤ j ≤ n− 1,

sj = min({r + 1} ∪ {ω(α) | α ∈ Θ(q0, ε, qj}).

The transition relation δ is defined by setting for (i0, . . . , in−1) ∈ Xn
r and a ∈ Σ,

δ((i0, . . . , in−1), a) = (j0, . . . , jn−1),

where, for 0 ≤ x ≤ n− 1,

jx = min({r + 1} ∪ {k | k = iz + ω((qz, a, qx)), qx ∈ γ(qz, a), 0 ≤ z ≤ n− 1}.

A state (i0, . . . , in−1) of the DFA D keeps track in the component ij , 0 ≤ j ≤
n− 1, the weight of the smallest weight path in A that, on the input processed
thus far, takes the initial state q0 to the state qj . A value ij = r + 1 is used
to indicate that the weight of the smallest weight path from q0 to qj is at least
r + 1.

The initial state p0 = (0, s1, . . . , sn−1) satisfies the above property because
sj , 1 ≤ j ≤ n − 1, is the smallest weight of a computation path along ε from
q0 to qj . Then assuming that a state (i0, . . . , in−1) ∈ Xn

r satisfies the claimed
property after processing input string u, the transition function δ on input a ∈ Σ
is defined in a way that correctly updates the components to give the smallest
weight from q0 to each state of A on an input spelling out u · a. The choice of
the set of final states FD guarantees that L(D) = L(A, r).

As a consequence of Theorem 1 and Proposition 1 we get in Corollary 1 an
upper bound for the state complexity of the neighbourhood of a regular language
with respect to an additive quasi-distance d where all values d(u, v), u, v ∈ Σ∗
are integers.

We note that if a quasi-distance d associates a non-negative integer value
with any pair of words, then the weights of the WFA A constructed in the proof
of Lemma 1 are integral. Furthermore, a neighbourhood with respect to a quasi-
distance d with rational values can be converted to a neighbourhood with respect
to a quasi-distance with integral values by multiplying the radius and the values
of d by a suitably chosen constant. This can be done since the distance between
any two words is determined by distances between two alphabet symbols and
alphabet symbols and the empty word.

Corollary 1. Let N be an NFA with n states, R ∈ N0, and d an integral quasi-
distance. Then the neighbourhood E(L(N), d, R) can be recognized by a DFA with
(R+ 2)n states.



The upper bound (R + 2)n is significantly better than what is obtained by
first constructing an NFA for E(L(N), d, R) as in [3] and then determinizing the
NFA. If the set of states of N is Q, Theorem 8 of [3] 1 constructs an NFA for
E(L(N), d, R) with set of states Q×D where D ⊆ N, roughly speaking, consists
of all integers at most R that can be represented as a sum of distances between
an element of Σ and an element of Σ∗.

In the next section we will give a lower bound construction for the size of
a DFA needed to simulate an additive WFA that matches the upper bound of
Proposition 1.

4 State Complexity of Weighted Finite Automata

Salomaa and Schofield [20] have given a matching lower bound construction for
Proposition 1 using a family of WFAs over an alphabet of size 2n − 1 where n
is the number of states of the WFA. Here, we define a family of WFAs over a
five-letter alphabet which reaches the upper bound (r + 2)n. Note that while
our WFA definition allows the use of ε-transitions, the WFAs used below for the
lower bound construction do not have ε-transitions.

Let An = (Qn, Σ, γ, ω, 1, n) be an additive WFA with Qn = {1, 2, . . . , n} and
Σ = {a, b, c, d, e}. The transition function γ with q ∈ Q and σ ∈ Σ is defined

γ(q, σ) =


{1, 2}, if q = 1, σ = a or q = 2, σ = b;

{3}, if q = 1, σ = b or q = 2, σ = a;

{q + 1}, if q = 3, . . . , n− 1 and σ = a, b;

{q}, if q = 1, . . . , n and σ = c, d, e.

The weight function ω for a transition α ∈ Qn ×Σ ×Qn is defined

ω(α) =


1, if α = (1, c, 1);

1, if α = (2, d, 2);

1, if α = (q, e, q) for all q ∈ Q;

0, for all other transitions defined by γ.

The transition diagram for An is shown in Figure 2 with the non-zero weights of
each transition marked after the alphabet symbols labeling the transition. For
example, state 1 has self-loops on a and d with weight zero and self-loops on c
and e with weight one.

We will use the WFAs An to give a lower bound for the size of DFAs for a
language recognized by a WFA within a given weight bound. First in Lemma 2
we establish a technical property of the weights of computations of An reaching
a particular state and for this purpose we introduce the following notation.

1 Theorem 8 of [3] assumes that N is deterministic. However, the construction used
in the proof works also for an NFA.



For 0 ≤ ki ≤ r + 1 and 1 ≤ i ≤ n, we define the words

w(k1, . . . , kn) =

{
acknbdkn−1ackn−2 · · · ack3bdk2ck1 , if n is odd;

abdknackn−1bdkn−2 · · · ack3bdk2ck1 , if n is even.

3

1start

2

4 · · · n− 1 n

a, d
c, e|1

b, c
d, e|1

ab

b

a

a, b a, b a, b a, b

c, d
e|1

c, d
e|1

c, d
e|1 c, d

e|1

Fig. 2. The weighted finite automaton An used in the proof of Lemma 2.

Lemma 2. Let n ∈ N. The WFA An after processing the input w(k1, . . . , kn)
can reach the state s, 1 ≤ s ≤ n, on a path with weight ks. Furthermore, any
computation of An on input w(k1, . . . , kn) that reaches state s, 1 ≤ s ≤ n, has
weight ks.

Proof. In the string w(k1, . . . , kn) occurrences of symbols a and b alternate. Thus
the computation of A can exit states 1 and 2 after making a self-loop on a in
state 1 or a self-loop on b in state 2 and, furthermore, this is the only way for
the computation to get out of the “binary cycle” of states 1 and 2.

Below using a case analysis we verify that, for 1 ≤ s ≤ n, An has a compu-
tation with weight ks that ends in state s and, furthermore, any computation
ending in s has weight ks.

(i) First consider the case where n is even. Consider a computation of An that
reaches a state s where s ≥ 2 is even. Note that after exiting the cycle of
states 1 and 2, only the symbols a or b move the computation to the next
state. Thus, the only way to reach s is that the computation must make a
self-loop on b in state 2 directly before reading the substring dks . After that



the following ks symbols d are read via the weight one transitions. This also
applies for the case s = 2.
If s ≥ 3 is odd, in order to reach state s, directly before reading the substring
cks the computation must on input a make a self-loop in state 1 and then
the following ks symbols c are read with transitions of weight one in state 1.
Finally consider the case s = 1. In order to end in state 1, the computation
must not have made any self-loops on a in state 1 or b in state 2. If this is
done the computation ends in a state z with z ≥ 2. Thus, reading the final
b takes the computation from state 2 to state 1, where the transition on d
is taken k2 times. The computation remains in state 1 and reads the rest of
the word ck1 on the transition of weight 1 exactly k1 times.

(ii) Next consider the case where n is odd. The above argument remains the
same, almost word for word. The only minor difference is in the case s = n.
In order to reach state n, the computation must read the first symbol a using
a self-loop and then the following kn symbols c using transitions of weight
1. (Note that when n is odd, in w(k1, . . . , kn) the first symbol a is followed
by kn symbols c.)

Lemma 3. Let An be the WFA defined above and r ∈ N. Then the minimal
DFA for L(An, r) needs (r + 2)n states.

Proof. It is sufficient to show that all words w(k1, . . . , kn), 0 ≤ ki ≤ r + 1,
i = 1, . . . , n, belong to distinct classes of ≡L(An,r).

Consider two distinct words w(k1, . . . , kn) and w(k′1, . . . , k
′
n) with 0 ≤ ki, k′i ≤

r + 1, i = 1, . . . , n. There exists an index j such that kj 6= k′j . Without loss of
generality, we assume that kj < k′j . Choose

z = er−kjan−j .

Since kj < k′j ≤ r + 1, it follows that r − kj ≥ 0 and z is a well-defined word.
We claim that

w(k1, . . . , kn) · z ∈ L(A, r), w(k′1, . . . , k
′
n) · z 6∈ L(A, r).

By Lemma 2, A has a computation on input w(k1, . . . , kn) that ends in state j
with weight kj . In state j, A reads the first r − kj symbols e of z, after which
the total weight is kj + (r − kj) = r. The zero weight transitions on the suffix
an−j take the automaton from state j to the final state n.

Now consider from which states q the WFA A can reach the accepting state
n on input z. On any state of A, the symbols c, d, e define self-loops. On states
3 ≤ q ≤ n− 1, transitions to state q+ 1 only occur on a, b. For states q = 1, 2, a
transition to state q+ 1 occurs only on a. Thus, A can reach the accepting state
n from a state q on input z only if q = j.

Thus, the only possibility for A to accept w(k′1, . . . , k
′
n) · z would be that the

computation has to reach state j on the prefix w(k′1, . . . , k
′
n). By Lemma 2, the

weight of this computation can only be k′j . But when continuing the computation
on z from state j, A has to read the first r− kj symbols e, each with a self-loop



transition having weight one. After this, the weight of the computation will be
k′j + r − kj > r. Thus, w(k′1, . . . , k

′
n) · z 6∈ L(A, r).

Thus, the equivalence relation ≡L(A,r) has index at least (r + 2)n.

As a consequence of Lemma 3 and Proposition 1 we have:

Theorem 2. If A is an n state WFA with integer weights for transitions and
r ∈ N, then

sc(L(A, r)) ≤ (r + 2)n.

For n, r ∈ N, there exists an n state WFA A with integral weights, and
having no ε-transitions, defined over a five-letter alphabet such that sc(L(A, r)) =
(r + 2)n.

5 Conclusion

For the state complexity of a language recognized by an additive WFA with a
given weight we have established a tight lower bound using a constant size alp-
habet. The earlier known lower bound construction [20] used a variable alphabet
that has size linear in the number of states of the WFA.

We have also constructed a WFA recognizing the neighbourhood of a regular
language with respect to an additive quasi-distance. This yields an upper bound
(r + 2)n for the state complexity of a neighbourhood of radius r of an n state
NFA language with respect to an additive quasi-distance. The upper bound
is significantly better than a bound obtained by directly constructing an NFA
for the neighbourhood [3] and then determinizing the NFA. The same upper
bound (r + 2)n has been known previously for neighbourhoods with respect to
an additive distance. This yields then the question what is the state complexity
of neighbourhoods with respect to additive (quasi-)distances. The lower bound
for WFA determinization (in Lemma 3) uses a WFA that does not recognize a
neighbourhood.

The authors have given a lower bound (r+2)n for the radius r neighbourhood
of an n-state NFA language with respect to an additive distance [16]. A limitation
of the result is that the construction uses an alphabet that depends linearly on
the number of states of the original NFA and the underlying distance is defined
based on the radius r.

The precise state complexity of neighbourhoods with respect to specific dis-
tances or quasi-distances remains open. Povarov [18, 19] has given a lower bound
for the radius-one Hamming neighbourhood of a regular language that is tight
within an order of magnitude. Shamkin [23] has also provided constructions for
finite languages Ln with n ≥ 4 over a ternary alphabet, such that Ln is recog-
nized by an incomplete DFA with n states. For radius r ≤ n

2 − 1, the lower
bound for the radius r Hamming neighbourhood has a state complexity of at
least 2b

n
2−rc states.
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