State Complexity of Prefix Distance

Timothy Ng, David Rappaport, and Kai Salomaa

School of Computing, Queen's University CIAA 2015, Umeå, Sweden

August 21, 2015

Are neighbourhoods of a regular language also regular? What is the state complexity of the neighbourhood of a regular language?

 Additive distances are regularity preserving (Calude, Salomaa, Yu 2002)

- Additive distances are regularity preserving (Calude, Salomaa, Yu 2002)
- ► The state complexity of these neighbourhoods is $(k+2)^n$
 - Upper bound (Salomaa, Schofield 2007)
 - Lower bound (Ng, Rappaport, Salomaa 2015)

- Additive distances are regularity preserving (Calude, Salomaa, Yu 2002)
- ► The state complexity of these neighbourhoods is $(k+2)^n$
 - Upper bound (Salomaa, Schofield 2007)
 - Lower bound (Ng, Rappaport, Salomaa 2015)
- Asymptotic lower bounds for neighbourhoods with respect to Hamming distance
 - r = 1 (Povarov 2007)
 - ► r > 1 (Shamkin 2011)

1. Tight state complexity bounds for neighbourhoods with respect to the prefix distance.

- Tight state complexity bounds for neighbourhoods with respect to the prefix distance.
- 2. Tight nondeterministic state complexity bounds for neighbourhoods with respect to the prefix, suffix, and substring distances.

A distance is a function $d: \Sigma^* \times \Sigma^* \to [0, \infty)$ such that

- 1. d(x, y) = 0 if and only if x = y
- 2. d(x, y) = d(y, x)
- 3. $d(x, y) \le d(x, w) + d(w, y)$

The prefix distance of x and y counts the number of symbols which do not belong to the longest common prefix of x and y.

$$d_p(x, y) = |x| + |y| - 2 \cdot \max_{z \in \Sigma^*} \{ |z| \mid x, y \in z\Sigma^* \}.$$

The prefix distance of x and y counts the number of symbols which do not belong to the longest common prefix of x and y.

$$d_p(x, y) = |x| + |y| - 2 \cdot \max_{z \in \Sigma^*} \{ |z| \mid x, y \in z\Sigma^* \}.$$

Analogously, we can define the suffix distance d_s and substring distance d_f .

Harbord → Harbourfront

Harbord → Harbourfront Kingston → Eglinton

Harbord → Harbourfront Kingston → Eglinton Church → Bathurst

The neighbourhood of a language $L \subseteq \Sigma^*$ of radius $k \ge 0$ with respect to a distance measure d is the set of all words u with $d(w,u) \le k$ for some $w \in L$,

$$E(L,d,k) = \{u \in \Sigma^* : (\exists w \in L) d(w,u) \le k\}.$$

Theorem

For a regular language $L\subseteq \Sigma^*$ recognized by an NFA with n states and an integer $k\ge 0$,

$$\operatorname{nsc}(E(L, d_p, k)) \le n + k.$$

- ▶ Let $A = (Q, \Sigma, \delta, q_0, F)$.
- Let $\varphi(q)$ be the length of the shortest word w such that $\delta(q, w) \cap F \neq \emptyset$.

Let $A'=(\mathit{Q}',\Sigma,\delta',\mathit{q}'_0,\mathit{F}').$

 $Q' = Q \cup \{p_1, \ldots, p_k\}$

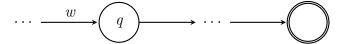
- $Q = Q \cup \{p_1, \dots, p_k\}$
- $F' = F \cup \{p_q, \dots, p_k\} \cup \{q \in Q \mid \varphi(q) \le k\}$

- $Q' = Q \cup \{p_1, \dots, p_k\}$
- $F' = F \cup \{p_q, \dots, p_k\} \cup \{q \in Q \mid \varphi(q) \le k\}$
- $\delta'(q, a) = \delta(q, a) \cup \{p_1\}$ for all $q \in F$,

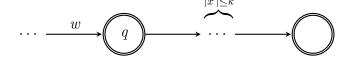
- $P Q' = Q \cup \{p_1, \dots, p_k\}$
- $F' = F \cup \{p_q, \dots, p_k\} \cup \{q \in Q \mid \varphi(q) \le k\}$
- lacksquare $\delta'(q,a)=\delta(q,a)\cup\{p_1\}$ for all $q\in F$,
- ▶ $\delta'(q,a) = \delta(q,a) \cup \{p_{\varphi(q)+1}\}$ for all $q \in Q$ with $\varphi(q) < k$,

- $Q' = Q \cup \{p_1, \ldots, p_k\}$
- $F' = F \cup \{p_q, \dots, p_k\} \cup \{q \in Q \mid \varphi(q) \le k\}$
- lacksquare $\delta'(q,a) = \delta(q,a) \cup \{p_1\}$ for all $q \in F$,
- ▶ $\delta'(q,a) = \delta(q,a) \cup \{p_{\varphi(q)+1}\}$ for all $q \in Q$ with $\varphi(q) < k$,
- $\delta'(p_i, a) = p_{i+1} \text{ for } i = 1, \dots, k-1.$

If x = wx' with $x' \in \Sigma^*$,

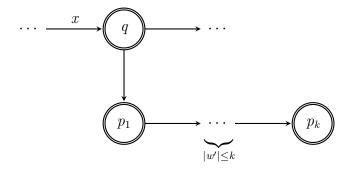


If x = wx' with $x' \in \Sigma^*$,

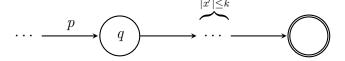


If w = xw' with $w' \in \Sigma^*$,

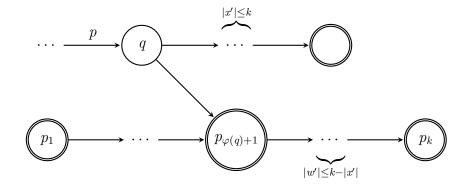
If w = xw' with $w' \in \Sigma^*$,



If w = pw' and x = px' with $p, w', x' \in \Sigma^*$,



If w = pw' and x = px' with $p, w', x' \in \Sigma^*$,



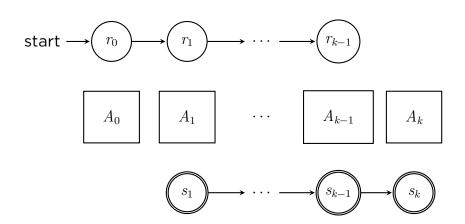
Theorem

For a regular language $L\subseteq \Sigma^*$ recognized by an NFA with n states and an integer $k\ge 0$,

$$\operatorname{nsc}(E(L, d_s, k)) \le n + k.$$

Theorem If L has an NFA with n states and $k \in \mathbb{N}_0$,

$$\operatorname{nsc}(E(L, d_f, k)) \le (k+1) \cdot n + 2k.$$



- ▶ Let $A = (Q, \Sigma, \delta, q_0, F)$.
- ▶ Recall that $\varphi(q)$ is the length of the shortest word w such that $\delta(q, w) \notin F$.

•
$$Q' = ((Q - F) \times \{1, \dots, k+1\}) \cup F \cup \{p_1, \dots, p_k\}$$

$$V = ((Q - F) \times \{1, \dots, k+1\}) \cup F \cup \{p_1, \dots, p_k\}$$

►
$$F' = ((Q - F) \times \{1, ..., k\}) \cup F \cup \{p_1, ..., p_k\}$$

$$Q' = ((Q - F) \times \{1, \dots, k+1\}) \cup F \cup \{p_1, \dots, p_k\}$$

•
$$F' = ((Q - F) \times \{1, \dots, k\}) \cup F \cup \{p_1, \dots, p_k\}$$

Let $q_{i,a} = \delta(i, a)$ for $i \in Q$ and $a \in \Sigma$, if $\delta(i, a)$ is defined.

$$Q' = ((Q - F) \times \{1, \dots, k+1\}) \cup F \cup \{p_1, \dots, p_k\}$$

•
$$F' = ((Q - F) \times \{1, \dots, k\}) \cup F \cup \{p_1, \dots, p_k\}$$

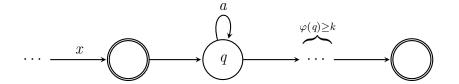
Let $q_{i,a} = \delta(i,a)$ for $i \in Q$ and $a \in \Sigma$, if $\delta(i,a)$ is defined. First, for states $p_{\ell}, \ell = 1, \ldots, k-1$, we have $\delta'(p_{\ell}, a) = p_{\ell+1}$.

For final states, we have

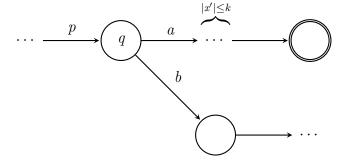
$$\delta'(i,a) = \begin{cases} (q_{i,a},1), & \text{if } q_{i,a} \in Q - F\text{;} \\ q_{i,a}, & \text{if } q_{i,a} \in F\text{;} \\ p_1, & \text{if } \delta(i,a) \text{ is undefined.} \end{cases}$$

For states $(i, j) \in Q - F \times \{1, \dots, k+1\}$, we have

$$\begin{split} \delta'((i,j),a) &= \\ \begin{cases} q_{i,a}, & \text{if } q_{i,a} \in \mathit{F}; \\ (q_{i,a}, \min\{j+1, \varphi(q_{i,a})\}), & \text{if } \varphi(q_{i,a}) \text{ or } j+1 \leq \mathit{k}; \\ (q_{i,a}, \mathit{k}+1), & \text{if } \varphi(q_{i,a}) \text{ and } j+1 > \mathit{k}; \\ p_{j+1}, & \text{if } \delta(\mathit{i}, \mathit{a}) \text{ is undefined.} \end{cases} \end{split}$$

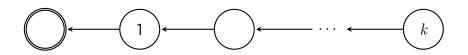


If w = pw' and x = px' with $p, w', x' \in \Sigma^*$,



This gives us $(n-f) \cdot (k+1) + k + f$ states in total, however not all of these states are reachable.

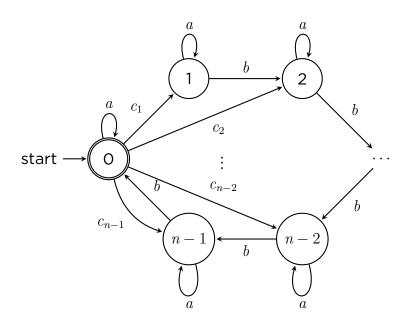
This gives us $(n-f) \cdot (k+1) + k + f$ states in total, however not all of these states are reachable.



Theorem

For $n > k \ge 0$, if sc(L) = n then

$$sc(E(L, d_p, k)) \le n \cdot (k+1) - \frac{k(k+1)}{2}.$$



In summary,

- 1. Nondeterministic state complexity of n + k for prefix and suffix neighbourhoods
- 2. Nondeterministic state complexity of $(k+1) \cdot n + 2k$ for substring neighbourhoods
- 3. Deterministic state complexity of $(k+1)\cdot n \frac{k(k+1)}{2}$ for prefix neighbourhoods

Future work:

- DFA constructions for suffix and substring neighbourhoods
- Lower bound examples for suffix and substring neighbourhoods
- Properties of regularity-preserving distances