Prefix Distance Between Regular
Languages

Timothy Ng
School of Computing, Queen’s University

CIAA 2016, Seoul, Korea

For words wy, wy € ¥* and regular languages Ly, Ly C ¥,

d Levenshtein prefix
d(wy, wy) | Wagner, Fisher (1974) LCP
d(wy, Ls) Wagner (1974) Bruschi, Pighizzini (2006)
d(Ly, L») Mohri (2002) x
d(Ly) | Konstantinidis (2005) X

A is a function d : ¥* x ¥* — [0, 00) such that
1. dz,y) =0ifandonly ifz =y
2. d(z,y) = d(y,)
2 d(a,g) < d(,w) + d(w, y)

We can extend the notion of distance to a distance
between r € X* and L C¥* by

d(z, L) = min d(z, y).

yeL

We can extend the notion of distance to a distance
between r € X* and L C¥* by

d(z, L) = min d(z, y).

yeL

We can further generalize this to a distance between
L, and Ly by

d(Ll, Lg) = min{d(wl, U)Q) | wy € Ll, Wy € LQ}

The of z and y counts the number of
symbols which do not belong to the longest common prefix
of zand v.

dp(2,y) = |2l + [y = 2- max{|d |,y € 227},

Harbord — Harbo

A is a b-tuples
A=(Q.%,0,1F)

where

v

() is a finite set of states,

Y is the input alphabet,

0 C @ x X x Qis the transition function,
I C @ is the set of initial states,

F C @Qis the set of accepting states.

v

v

v

v

A is a 6-tuple
T=(Q,%,A, I FE)

where
» (@ is a finite set of states,
» X is the input alphabet,
» A is the output alphabet,
I C @ is the set of initial states,
F C @Qis the set of accepting states,
EC @Qx (XU{e}) x (Au{e}) x Kx Qis the set of
transitions with weights in the semiring K.
The size of T, denoted | 7], is the sum of the number of
states and transitions of 7, | Q| + | E|.

v

v

v

A or of T'is a word 7 over the alphabet of
transitions £

™ = (pla ul) '017 wly C]l) e (pm u?’w U’I’L? wn’ Qn)

with ¢; = pii forl < i< n

A or of T'is a word 7 over the alphabet of
transitions £

™ = (pla ul) '017 wly C]l) e (pm u?’w U’I’L? wn’ Qn)

with ¢; = piiforl <i<n Lletw: E* -+ Kbea
™ =m -, defined by

w(m) = Z .

The of a path w, denoted ¢(m), is the pair of words
(z,y) with =y -+~ u, and y = vy - - - vy,

The of a path w, denoted ¢(m), is the pair of words
(z,y) withz= 1wy - - - u, and y = vy - - - v,. We define a weight
function w: ¥* x ¥* — K for labels (z, y) defined as the
labeled by
(2, y),
w(z, y) = min{w(r) [£(7) = (z,9)}.

Tel*

For an alphabet ¥, let &, be the alphabet of
over X,

Es ={(a/b) | a,b e L U{e}, ab # c}.

For an alphabet ¥, let &, be the alphabet of
over X,

Es ={(a/b) | a,b e L U{e}, ab # c}.

The of an edit string e = ejey - - - €, is the sum of the
cost of each symbol

We define the following sets of edit operations and their
costs:

» identities & = {(a/a) | a € ¥} with cost 0.
» insertions Z = {(¢/a) | a € X} with cost 1,
» deletions D = {(a/e) | a € X} with cost 1,
» substitutions S = {(a/b) | a # b, a, b € £} with cost 2,

We define the language of edit strings for the prefix
distance L, by
Ly, = &(E\ &)

We define the language of edit strings for the prefix
distance L, by
Ly, = &(E\ &)

We define the function &, : ¥* x ¥* — Non z,y € X* by

dy(z,y) = geliLI;{C(e) | h(e) = (z,9)}.

Theorem
Let 7, y € X* be two words. Then d (=, y) = dy(z,y).

Consider an edit string e € L, for two words z = p2’ and
y = py where pis the longest common prefix of z and v.

» Split einto two parts e = eye; with ey € £ and
€1 € (5 \ 80)*

» To minimize c¢(e), ep must be as long as possible and ¢e;
as short as possible.

» Then ¢ corresponds to an edit string for 2/ and /.

» Thus, c(e) = c(er) = || + || = dy(z, y).

afe :
b/e :
ela:
e/b:
a/b:
b/a:

N DN ==

Lemma

The set of accepting paths of the transducer T}, over X
corresponds to exactly the set of edit strings over X
belonging to L,. If w is an accepting path of T, and e, is the
corresponding edit string, then the weight of 7 is ¢(e,).

afe :
b/e :
ela:
e/b:
a/b:
b/a:

N DN ==

Lemma
Let z, y € £*. Then the weight w(z, y) of zand yin T, is
exactly d,(z, y).

Lemma
Let z, y € £*. Then the weight w(z, y) of zand yin T, is

exactly d,(z, y).

» w(z, y) is the weight of the minimal weight accepted
path labeled by (z, y)

» The accepting paths of T}, corresponds to edit strings
in L,

» The minimal cost edit string in L,, for z and y has cost
dp(, y)

The T\ Ty, = (Q,%,1, I, F, E) of two
weighted transducers Ty = (@1, 3, A, Iy, Fy, Fy) and
Ty = (Q2, AT, I, Fy, E») is defined by

> Q= Q1 X @y,

» [=1 X I,

> F=QnN(F x Fy),

» and the transition set E consists of transitions of the
form ((q1, ¢,), a, ¢, wy + ws, (g2, ¢,)) for each transition
(q1,a,b, w1, o) € Ey and (¢4, b, ¢, ws, ¢y) € Es.

The composition 71 ® T, can be computed in O(| T1|| T5|)
time.

Theorem

Let L1 and Ly be regular languages recognized by NFAs A;
and Ay, respectively. If z € Ly and y € Ly, then (z, y) is the
label of an accepting path of T'= 4, ® T}, ® A and the
weight of (z, y) in T'is d,(z,).

For any accepting path of T,
» the input part must be recognized by A,
» the output part must be recognized by A,,
» the path must correspond to an edit string in L,

Thus, there is an accepting path labeled (z, y) with weight
dp(% y)

Theorem

For given NFAs A; and A, recognizing the languages
and L, respectively, the value d,(Ly, Ly) can be computed
in polynomial time.

Theorem

For given NFAs A; and A, recognizing the languages
and L, respectively, the value d,(Ly, Ly) can be computed
in polynomial time.

» Transducer composition can be done in time
O(|A1]|Az|).

» Shortest path can be computed in time polynomial in
the size of 41 ® T), ® As.

The of a language L, also called the
is the minimal distance between any two distinct
words that belong to L,

d(L) = min{d(wy, wy) | wy, wy € L, wy # ws}.

To compute the inner distance, we can use the same
approach, but we must exclude all edit strings with cost O.

To compute the inner distance, we can use the same
approach, but we must exclude all edit strings with cost O.

LY = E(EN\ &)

To compute the inner distance, we can use the same
approach, but we must exclude all edit strings with cost O.

LY = E(EN\ &)

aje 1
bje: 1
aje: 1 efa:l
ble: 1 efb:1
a/a: 0 ela:l a/b: 2
1 H2
12
12

start —

We can apply the same approach to suffix distance.

Ly=(E\&)'E

We can apply the same approach to suffix distance.

Ly=(E\&)'E

aje :
b/e :
ela:
e/b:
a/b :
b/a:

afe :
b/e :
ela:
e/b:

a/a:0
b/b: 0

MO DD = =

1
1
1
1
22
12

And infix distance.

Lf = (5 \ 50)*55(5 \ 50>*

And infix distance.

Lf = (5 \ 50)*55(5 \ 50)*

aje: 1 aje: 1
bje: 1 bje: 1
e/a:1 afe 1 ela:1
e/b:1 bje: 1 e/b:1
a/b: 2 a/a:0 efa:1 a/b: 2
b/a:2 b/b:0 /b1 b/a:2

a/a:0 ‘ ! a/b:2
% b/b: 0 b/a:2 8
start

We have shown

» how to compute the prefix distance between two
regular languages

» how to compute the inner prefix distance of a regular
language

» how to compute the suffix and infix distances for the
above

» What about other distances?

» What about the distance between a regular language
and a context-free language?

