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The state complexity for these classes is strictly less than
for regular languages.



A is a function d : ¥* x ¥* — [0, 00) such that
1. dz,y) =0ifandonly ifz =y
2. d(z,y) = d(y, )
2 d(a,g) < d(,w) + d(w, y)



The of a language L C ¥* of radius k> 0
with respect to a distance measure d is the set of all words
u with d(w, u) < kfor some w € L,

E(L d k) ={ue X : (Jwe L)d(w,u) < k}.
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» Additive distances are regularity preserving (Calude,
Salomaa, Yu 2002)
» The state complexity of these neighbourhoods is
(k+2)"
» Upper bound (Salomaa, Schofield 2007)
» Lower bound (Ng, Rappaport, Salomaa 2015)
» Asymptotic lower bounds for neighbourhoods with
respect to Hamming distance

» r= 1 (Povarov 2007)
» r> 1 (Shamkin 201)



The of z and y counts the number of
symbols which do not belong to the longest common prefix
of zand v.

dp(z,y) = [a] + [y| = 2- max{|z| [ 7,y € 227},



Harbord — Harbo



Theorem (Ng, Rappaport, Salomaa 2015)
Forn > k> 0,ifsc(L) = nthen

k(k+1)

se(B(L, dy, k) < n- (k+1) = ==
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This gives us (n— f) - (k+ 1) + k+ fstates in total, however
not all of these states are reachable.
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There are atleast 1 + 2 + --- + kunreachable states. The
number of reachable states is at most
k(k+ 1)

n-(k:+1)—T.




A language is if and only if it is recognized by an
finite automaton.



Theorem
Let L be a finite language. For n > 2k > 0, if sc(L) = n, then

sc(BE(L, dy, k) < (n—2) - (k+1) -k +2,

and this bound can be reached in the worst case.



Each state has a longest word that reaches it.




There must be at least 2 final states.
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A regular language is if x € Limplies p € L for
every prefix p of z. A prefix-closed regular language is
recognized by a finite automaton with all states final.



Theorem

Let L be a prefix-closed regular language recognized by an
n-state DFA A. Then there is a DFA A’ that recognizes the
neighbourhood E(L, d,, k) with at most n + k states and this
bound is reachable.



Since every state is a final state, f= n and

(n—fH-(k+1)+f+k=(n—-—n)-(k+1)+n+k
=n+k



A language is if for every x € L, no prefix p of zis
in L. A prefix-free regular language is recognized by a
finite automaton.



Theorem
Let L be a prefix-free regular language. Forn > k£ > 0, if
sc(L) = n, then

k(k — 1)

sc(BE(L,dy, k) < (n—1)-k+2— —

and this bound can be reached in the worst case.
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The state complexity neighbourhoods of some subregular
language classes with respect to the prefix distance is
strictly less than for regular languages.

Regular n-(k+1) — _’f(k;rl)
Finite (n=2)-(k+1) =K +2
Prefix-closed n+k

Prefix-free (n—1)-k+2— k(kgl)



Future work:

» Tight state complexity bounds for neighbourhoods of
finite languages with respect to

» additive distances
» suffix and factor distances

» Other subregular language classes



