State Complexity of Simple Splicing

Lila Kari and Timothy Ng School of Computer Science, University of Waterloo DCFS 2019, Košice, Slovakia

ATCCTCACGCCGTAGACGCCGCATTCCGTGTATGATTCCGT

ATCCTCACGCGTGTATGA

Splicing systems T. Head (1987)

A splicing system is a 3-tuple $H = (\Sigma, R, L)$ where

- Σ is a finite alphabet
- R is a set of rules
- L is the initial language

A **splicing rule** is a 4-tuple $r = (u_1, u_2; u_3, u_4)$ such that if $x = x_1u_1u_2x_2$ and $y = y_1u_3u_4y_2$, then

 $x \vdash_r y = x_1 u_1 u_4 y_2$

The **language** of a splicing system $H = (\Sigma, R, L)$ is $R^*(L)$ where

$$R(L) = \{ w \in \Sigma \mid (\exists x, y \in L, r \in R) \text{ such that } x \vdash_r y \}$$

and

$$\bullet \ R^0(L) = L$$

•
$$R^i(L) = R^i(L) \cup R(R^{i-1}(L))$$

•
$$R^*(L) = \bigcup_{i \ge 0} R^i(L)$$

Complexity of splicing systems

ACGTACGTATACTCATACTTGCTTCT

ACGTACTTGCTTC

Simple splicing

A. Mateescu, Gh. Păun, G. Rozenberg, A. Salomaa (1998)

A splicing rule r is simple if $r = (u_1, \varepsilon; u_3, \varepsilon)$ where $u_1 = u_3$ and $|u_1| = 1$.

A splicing system with only simple rules is a **simple splicing system**.

A simple splicing system is denoted by $H = (\Sigma, M, L)$ where $M \subseteq \Sigma$. Then $a \in M$ means $(a, \varepsilon; a, \varepsilon)$ is a rule in H.

Franco, Bellamoli, Lampis (2017)

Word Blending S.K. Enaganti, L. Kari, T. N., Z. Wang (2018)

ACGTACGTATAC CATACTTGCTTC ACGTACTTGCTTC

$$u \bowtie v = \{ \alpha w\beta \mid u = \alpha w\gamma_1, v = \gamma_2 w\beta, \\ \alpha, \beta, w, \gamma_1, \gamma_2 \in \Sigma^* \}$$

ACGTACGTATAC CATACTTGCTTC ACGTACTTGCTTC

 $u \bowtie v = \{ \alpha a\beta \mid u = \alpha a\gamma_1, v = \gamma_2 a\beta, \\ \alpha, \beta, \gamma_1, \gamma_2 \in \Sigma^*, a \in \Sigma \}$

Descriptional complexity measures for splicing systems

- Radius (Gh. Păun, 1996)
- Size of initial language (A. Mateescu et al., 1998)
- Size of grammar (A. Mateescu et al., 1998)
- Number/length of rules (R. Loos et al., 2007)
- Size of nondeterministic finite automaton (R. Loos et al., 2007)

The state complexity of a regular language is the number of states in its minimal deterministic finite automaton.

The state complexity of an

operation is the worst-case state complexity of the language resulting from the operation, as a function of the state complexity of the operands. For a **simple** splicing system with initial language L with state complexity n

$$\begin{cases} 2^n - 1 & \text{if } L \text{ is regular,} \\ 2^{n-2} + 1 & \text{if } L \text{ is finite,} \end{cases}$$

Let $H = (\Sigma, M, L)$ be a simple splicing system and let A be the DFA for L. From A, we will **construct an NFA** that recognizes the language of H.

For each symbol $a \in M$, construct a **bridge**:

Add ε-transitions:

- from each state in A with outgoing transitions on a to p_{a} , and
- from p'_a to all states of A with incoming transitions on a

Then perform ε-transition removal:

The new states p_a and p'_a disappear and collapse into transitions between states of A on a.

Since we begin with an *n*-state DFA, this process results in an *n*-state NFA after removing ε -transitions.

This gives an **upper bound of** 2^{*n*}-1 reachable (non-empty subsets) states via the subset construction. The upper bound is reachable via the simple splicing system $(\{a,b,c\},\{c\},L_n)$, where L_n is recognized by the following DFA

The upper bound is lower with a finite initial language

- Consider a simple splicing system (Σ, M, I) , where *I* is a finite language with state complexity *n*
- Since I is finite, its DFA A, is acyclic. Then the initial state q₀ of A has no incoming transitions so the only reachable subset containing q₀ is {q₀}.
- Since *I* is finite, *A* must contain a **sink state**.
- This gives a total of $2^{n-2} 1 + 2$ states.

For a simple splicing system with initial **finite** language L with state complexity n **over** k **symbols**

$$\begin{cases} 2 & \text{if } k = 1, \\ 2n - 3 & \text{if } k = 2, \\ 2^{\frac{n}{2}} + 1 & \text{if } k = 3 \text{ and } n \text{ is even}, \\ 3 \cdot 2^{\frac{n-3}{2}} + 1 & \text{if } k = 3 \text{ and } n \text{ is odd}, \\ 2^{n-2} + 1 & \text{if } k \ge 2^{n-3}. \end{cases}$$

Lemma. If $a \in M$, then im δ_a' contains exactly the sink state and im δ_a .

In other words, if $a \in M$, then reading a will take the DFA to either exactly one subset or the sink state.

To reach the upper bound for finite initial languages

- Let q₁ be a state reachable directly by the initial state and no other state; this state must exist since the DFA is acyclic.
- If $q_1 \in S$, then S is reachable only if it is **the image** of δ_a for some $a \in M$.
- Since there are up to 2ⁿ⁻³ subsets that contain q₁, to reach each of these subsets, there must be one a ∈ M for each.

If k = 2

- If a, b are not in M, then we just have L.
- If a, b are both in M, then we have at most
 two reachable subsets.
- If a ∈ M and b is not, then to maximize the number of reachable states, we must have δ_b(i) = i+1 and |im δ_a| = 2. This gives us at most 2n-3 states.

For k = 3, the upper bound is reached by $(\{a, b, c\}, \{c\}, I_n)$ where I_n is recognized by the DFA below.

A splicing rule r is **semi-simple** if $r = (u_1, \varepsilon; u_3, \varepsilon)$ with $|u_1| = |u_3| = 1$.

A splicing system with only simple rules is a **semi-simple splicing system**.

A semi-simple splicing system is denoted by $H = (\Sigma, M^{(2)}, L)$ where $M^{(2)} \subseteq \Sigma \times \Sigma$. Then $(a, b) \in M^{(2)}$ means $(a, \varepsilon; b, \varepsilon)$ is a rule in H.

Semi-simple splicing

E. Goode and D. Pixton (2001)

For each pair $(a,b) \in M^{(2)}$, construct a **bridge**:

Add ε-transitions:

- from each state in A with outgoing transitions on a to p_{a} , and
- from p'_b to all states of A with incoming transitions on b

Then perform ε-transition removal:

The new states p_a and p'_b disappear and collapse into transitions between states of A on a.

This construction shows that **semi-simple** splicing systems with regular and finite initial languages have the **same upper bound** for state complexity.

For semi-simple splicing systems with a regular initial language, this upper bound is reached by the **same lower bound witness** for simple splicing systems. The upper bound for semi-simple splicing systems with a **finite initial language** can be reached via $(\{a,b,c\},\{(a,c)\},I_n)$, where I_n is recognized by the following DFA

For $M \subseteq \Sigma \times \Sigma$ we define the operation on two strings u, v by $u \diamond_M v = u'av'$

if u = u'a and v = bv' for $(a,b) \in M$ and $u',v' \in \Sigma$; and is undefined otherwise.

The **crossover operation** can be defined in terms of this operation extended to languages by

$$L_1 \sharp_M L_2 = \operatorname{pref}(L_1) \diamond_M \operatorname{suff}(L_2)$$

Crossover

A. Mateescu et al. (1998), R. Ceterchi (2006)

The crossover operation is used for the **algebraic characterization** of simple and semi-simple splicing.

The operation can be thought of as a **single step** of simple or semi-simple splicing.

For two DFAs A and B, if $(a,b) \in M$, then for each state of A with outgoing transitions on a, add transitions on a to all states in B with incoming transitions on b.

This gives **at most** $m \times 2^n$ **states**.

Conclusion

- State complexity for simple splicing systems with regular initial languages
- State complexity for simple splicing systems with finite initial languages defined over alphabets of size 1, 2, 3, and ≥2ⁿ⁻³
- State complexity of semi-simple splicing systems with regular and finite initial languages
- State complexity of the crossover operation on regular languages

Open problems

- State complexity for other simple and semi-simple splicing systems (2,4; 2,3; 1,4) with finite and regular initial languages.
- State complexity of simple splicing systems with finite initial languages over **alphabets of size** k for $3 < k < 2^{n-3}$.
- State complexity of k-limited splicing systems, for k = 1, 2,

Thank you