State Complexity of Simple Splicing

Lila Kari and Timothy Ng
School of Computer Science, University of Waterloo DCFS 2019, Košice, Slovakia

ATCCTCACGCCGTAG CATITCCGTGTATGA

ATCCTCACGCGTGTATGA

Splicing systems
 T. Head (1987)

A splicing system is a 3-tuple $H=(\Sigma, R, L)$ where

- Σ is a finite alphabet
- R is a set of rules
- L is the initial language

A splicing rule is a 4-tuple $r=\left(u_{1}, u_{2} ; u_{3}, u_{4}\right)$ such that if $x=x_{1} u_{1} u_{2} x_{2}$ and $y=y_{1} u_{3} u_{4} y_{2}$, then

$$
x \vdash_{r} y=x_{1} u_{1} u_{4} y_{2}
$$

The language of a splicing system $H=(\Sigma, R, L)$ is $R^{*}(L)$ where

$$
R(L)=\left\{w \in \Sigma \mid(\exists x, y \in L, r \in R) \text { such that } x \vdash_{r} y\right\}
$$

and

- $R^{0}(L)=L$
- $R^{i}(L)=R^{\mathrm{i}}(L) \cup R\left(R^{i-1}(L)\right)$
- $R^{*}(L)=\bigcup_{i \geq 0} R^{i}(L)$

Complexity of splicing systems

Finite Ruleset
Regular Ruleset

Finite Initial Language

Regular Initial Language

Locally testable
(T. Head, 1987)

Recursively enumerable
(T. Head, Gh. Păun,
D. Pixton, 1997)

Recurisvely enumerable (Gh. Păun, 1996)

ACGTACGTATAC CATACTTGCTTC

ACGTACTTGCTTC

Simple splicing

A. Mateescu, Gh. Păun, G. Rozenberg, A. Salomaa (1998)

A splicing rule r is simple if $r=\left(u_{1}, \varepsilon ; u_{3}, \varepsilon\right)$ where $u_{1}=u_{3}$ and $\left|u_{1}\right|=1$.

A splicing system with only simple rules is a simple splicing system.

A simple splicing system is denoted by $H=(\Sigma, M, L)$ where $M \subseteq \Sigma$. Then $a \in M$ means $(a, \varepsilon ; a, \varepsilon)$ is a rule in H.

Word Blending
 S.K. Enaganti, L. Kari, T. N., Z. Wang (2018)

ACGTACGTATAC

 CATACTTGCTTC
ACGTACTTGCTTC

$$
\begin{array}{r}
u \bowtie v=\left\{\alpha w \beta \mid u=\alpha w \gamma_{1}, v=\gamma_{2} w \beta\right. \\
\left.\alpha, \beta, w, \gamma_{1}, \gamma_{2} \in \Sigma^{*}\right\}
\end{array}
$$

ACGTACGTATAC CATACTTGCTTC

ACGTACTTGCTTC

$$
\begin{aligned}
u \bowtie v=\{\alpha a \beta \mid & u=\alpha a \gamma_{1}, v=\gamma_{2} a \beta \\
& \left.\alpha, \beta, \gamma_{1}, \gamma_{2} \in \Sigma^{*}, a \in \Sigma\right\}
\end{aligned}
$$

Descriptional complexity

measures for splicing systems

- Radius (Gh. Păun, 1996)
- Size of initial language (A. Mateescu et al., 1998)
- Size of grammar (A. Mateescu et al., 1998)
- Number/length of rules (R. Loos et al., 2007)
- Size of nondeterministic finite automaton (R. Loos et al., 2007)

The state complexity of a regular language is the number of states in its minimal deterministic finite automaton.

The state complexity of an
operation is the worst-case state complexity of the language resulting from the operation, as a function of the state complexity of the operands.

For a simple splicing system with initial language L with state complexity n

$$
\begin{cases}2^{n}-1 & \text { if } L \text { is regular } \\ 2^{n-2}+1 & \text { if } L \text { is finite }\end{cases}
$$

Let $H=(\Sigma, M, L)$ be a simple splicing system and let A be the DFA for L.
From A, we will construct an NFA that recognizes the language of H.

For each symbol $a \in M$, construct a bridge:

Add ε-transitions:

- from each state in A with outgoing transitions on a to p_{a} and
- from $p^{\prime}{ }_{a}$ to all states of A with incoming transitions on a

Then perform ε-transition removal:

The new states p_{a} and $p^{\prime}{ }_{a}$ disappear and collapse into transitions between states of A on a.

Since we begin with an n-state DFA, this process results in an n-state NFA after removing ε-transitions.

This gives an upper bound of 2^{n-1} reachable (non-empty subsets) states via the subset construction.

The upper bound is reachable via the simple splicing system $\left(\{a, b, c\},\{c\}, L_{n}\right)$, where L_{n} is recognized by the following DFA

The upper bound is lower with a finite initial language

- Consider a simple splicing system (Σ, M, I), where I is a finite language with state complexity n
- Since I is finite, its DFA A, is acyclic. Then the initial state q_{0} of A has no incoming transitions so the only reachable subset containing q_{0} is $\left\{q_{0}\right\}$.
- Since I is finite, A must contain a sink state.
- This gives a total of $2^{n-2}-1+2$ states.

For a simple splicing system with initial finite language L with state complexity n over k symbols

$$
\begin{cases}2 & \text { if } k=1 \\ 2 n-3 & \text { if } k=2 \\ 2^{\frac{n}{2}}+1 & \text { if } k=3 \text { and } n \text { is even } \\ 3 \cdot 2^{\frac{n-3}{2}}+1 & \text { if } k=3 \text { and } n \text { is odd } \\ 2^{n-2}+1 & \text { if } k \geq 2^{n-3}\end{cases}
$$

Lemma. If $a \in M$, then im $\delta_{a}{ }^{\prime}$ contains exactly the sink state and im δ_{a}.

In other words, if $a \in M$, then reading a will take the DFA to either exactly one subset or the sink state.

To reach the upper bound for finite initial languages

- Let q_{1} be a state reachable directly by the initial state and no other state; this state must exist since the DFA is acyclic.
- If $q_{1} \in S$, then S is reachable only if it is the image of δ_{a} for some $a \in M$.
- Since there are up to 2^{n-3} subsets that contain q_{1}, to reach each of these subsets, there must be one $a \in M$ for each.

If $k=2$

- If a, b are not in M, then we just have L.
- If a, b are both in M, then we have at most two reachable subsets.
- If $a \in M$ and b is not, then to maximize the number of reachable states, we must have $\delta_{b}(i)=i+1$ and $\left|\operatorname{im} \delta_{a}\right|=2$. This gives us at most $2 n-3$ states.

For $k=3$, the upper bound is reached by $\left(\{a, b, c\},\{c\}, I_{n}\right)$ where I_{n} is recognized by the DFA below.

A splicing rule r is semi-simple if $r=\left(u_{1}, \varepsilon ; u_{3}, \varepsilon\right)$ with $\left|u_{1}\right|$
$=\left|u_{3}\right|=1$.

A splicing system with only simple rules is a semi-simple splicing system.

A semi-simple splicing system is denoted by $H=\left(\Sigma, M^{(2)}, L\right)$ where $M^{(2)} \subseteq \Sigma \times \Sigma$. Then $(a, b) \in M^{(2)}$ means $(a, \varepsilon ; b, \varepsilon)$ is a rule in H.

> Semi-simple splicing
> E. Goode and D. Pixton (2001)

For each pair $(a, b) \in M^{(2)}$, construct a bridge:

Add ε-transitions:

- from each state in A with outgoing transitions on a to p_{a} and
- from p^{\prime} ' to all states of A with incoming transitions on b

Then perform ε-transition removal:

The new states p_{a} and $p^{\prime}{ }_{b}$ disappear and collapse into transitions between states of A on a.

This construction shows that semi-simple splicing systems with regular and finite initial languages have the same upper bound for state complexity.

For semi-simple splicing systems with a regular initial language, this upper bound is reached by the same lower bound witness for simple splicing systems.

The upper bound for semi-simple splicing systems with a finite initial language can be reached via $\left(\{a, b, c\},\{(a, c)\}, I_{n}\right)$, where I_{n} is recognized by the following DFA

For $M \subseteq \Sigma \times \Sigma$ we define the operation on two strings u, v by

$$
\begin{aligned}
u \diamond_{M} v & =u^{\prime} a v^{\prime} \\
\text { if } u=u^{\prime} a \text { and } v=b v^{\prime} \text { for }(a, b) & \in M \text { and } u^{\prime}, v^{\prime} \in \Sigma \text {; and is }
\end{aligned}
$$ undefined otherwise.

The crossover operation can be defined in terms of this operation extended to languages by

$$
L_{1} \sharp_{M} L_{2}=\operatorname{pref}\left(L_{1}\right) \diamond_{M} \operatorname{suff}\left(L_{2}\right)
$$

Crossover
A. Mateescu et al. (1998), R. Ceterchi (2006)

The crossover operation is used for the algebraic characterization of simple and semi-simple splicing.

The operation can be thought of as a single step of simple or semi-simple splicing.

For two DFAs A and B, if $(a, b) \in M$, then for each state of A with outgoing transitions on a, add transitions on a to all states in B with incoming transitions on b.

This gives at most $m \times 2^{n}$ states.

M

(art

Conclusion

- State complexity for simple splicing systems with regular initial languages
- State complexity for simple splicing systems with finite initial languages defined over alphabets of size 1, 2, 3, and $\mathbf{2 n}^{\mathbf{n}-\mathbf{3}}$
- State complexity of semi-simple splicing systems with regular and finite initial languages
- State complexity of the crossover operation on regular languages

Open problems

- State complexity for other simple and semi-simple splicing systems (2,4; 2,3; 1,4) with finite and regular initial languages.
- State complexity of simple splicing systems with finite initial languages over alphabets of size k for $3<k<2^{n-}$ 3.
- State complexity of k-limited splicing systems, for $k=$ $1,2, \ldots$

Thank you

