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Input: A given DNA
HHE I

Inserted part
Step 1: Cut given DNA using primers a and b

Product A

mutagenic primer b Product B

Step 2: Annealing inserted sequence using primers ¢ and d

M_M_EEEHHHIMWIW primer ¢

mutagenic primer d-

Product C'

Step 3: Ligation PCR with product A,B and C'

Desired DNA
- —{CHEHIHT

Inserted part



Let w, z,y, z € X*. If w= xyz, we say zis a prefix of w, zis a
suffix of w, and (, 2) is an outfix of w.



Classical insertion [Haussler 1983]

T y={nyn | r=nn}.



Classical insertion [Haussler 1983]
T y={nyn | r=nn}.
Contextual insertion [Galiukschov 1981]

z e y={nuyvry | (u,v) € C,z= zuvry}



Classical insertion [Haussler 1983]
Ty ={nymn | 1= 1117}
Contextual insertion [Galiukschov 1981]
z & y={muyvry | (u,v) € C,z= ryuvz,}
Overlap assembly [Csuhaj-Varju et al. 2007]

10y = {uwww € XV | 1= uv,y = vw,v# ¢}



The outfix guided insertion of a string y into z is defined as
4 y={nuzvny | = nuvsy, y = uzv, u, v #£ £}.

We say that the nonempty substrings v and v are matched
parts. The matched parts form a non-trivial outfix of y.



The outfix guided insertion of a string y into z is defined as
4 y={nuzvny | = nuvsy, y = uzv, u, v #£ £}.

We say that the nonempty substrings v and v are matched
parts. The matched parts form a non-trivial outfix of y.
We can extend this operation for languages by setting

Ly + Ly, = U T <.

z€L1,y€ L2



Outfix-guided insertion is not associative.

acd + abc + abed



For a language L, define

» OGIV(L) = L,

» OGIY(L) = OGIY (L) + OGIV(L),
The outfix-guided insertion closure of L is

OGI*(L U OGI(L).



Note that by selecting the entire string x as an outfix, we
have z € z < xfor all x € ¥* with |2| > 2.



Note that by selecting the entire string x as an outfix, we
have z € z < xfor all x € ¥* with |2| > 2.
This implies that for any language L,

L\ (2 U{e}) C OGIV(L)

and thus, OGI (L) € OGI™ V(L) for all i > 1.



Let L, and Ly be languages. The right one-sided iterated
insertion of Ly into L, is defined by setting

» ROGI(Ly, Ly) = Lo,
» ROGID (L, Ly) = L + ROGIV (L, Ly).
The right one-sided insertion closure of Ly into Ly is

ROGI*(Ly, Ly) = | JROGI(Ly, Ly).

=0



Let L; and Ly be languages. The left one-sided iterated
insertion of Ly into Ly is defined by setting

» LOGIO (L, Ly) = Ly,
» LOGIUtY(Ly, Ly) = LOGIY(Ly, Ly) + L.
The left one-sided insertion closure of Ly into Ly is

LOGI* (L, Ly) = | JLOGI? (L, Ly).

=0



Let Ly = {aacc}, Ly = {abc}.



Let Ly = {aacc}, Ly = {abc}.

R@GH*(Ll, Lg) = CL+ bC+



Let Ly = {aacc}, Ly = {abc}.

R@GH*(Ll, Lg) = CL+ bC+

LOGI*(Ly, Ly) = {aabec, aacc}



Proposition
If Ly and L, are regular, then sois Ly < Ls.



Proposition
If Ly and L, are regular, then sois Ly < Ls.
Construct an NFA with state set

Qx (PUPU{% OHUQx P.



Proposition
If Ly and L, are regular, then sois Ly < Ls.
Construct an NFA with state set

Qx (PUPU{% OHUQx P.

I U z v 45

Qx& | QxP|QxP|QxP| QxQ




Theorem
There exists a finite langauge L such that OGI*(L) is
nonregular.



Theorem
There exists a finite langauge L such that OGI*(L) is
nonregular.

L= {$a3a1 b1 b3$, a3alagb1, a2b2b1 bg,

ayazagbs, azbsbaby, azasay bs, G1blbsb2}‘



L= {a3ala251>a252b153>a1a2a3b2,

a3bsb2b17aza3alb3>a1b15352}

4

$CL3 a bl bg$



L= {a301a251>a252b153>ala2d3b2,

G3bgb2b17aza3alb3>a1b15352}

4

$(L3 aq bl bg$



L= {asa1azb1>a252b153>alazd3b2,

G3bgb2b17aza3alb3>a1b15352}

4

$CL36L1 a2b1 b3$



L = {aza1a2by, azb2b1 b3, ayaza3bs,

G3bgb2b17aza3alb3>a1b15352}

4

$G3 ap o bl b3$



L = {aza1a2by, azb2b1 b3, ayaza3bs,

G3bgb2b17aza3alb3>a1b15352}

4

$CL30,1 a2b2 bl b3$



L= {d3ala251>a252b153701a2d352,

G3bgb2b17aza3alb3>a1b15352}

4

$CL36L1 a bz bl b3$



L= {d3ala251>a252b153701a2d352,

G3bgb2b17aza3alb3>a1b15352}

4

$CL3(L1 2 a3 bg b1 b3$



L= {d3ala251>a252b153>ala2d3b2,

035352517aza3alb3>a1b15352}

4

$CL3 a1 0903 bg bl b3$



L= {d3ala251>a252b153>ala2d3b2,

035352517aza3alb3>a1b15352}

4

$CL3 a1 a9oas bg bg bl b3$



L= {d3ala251>a252b153>ala2d3b2,

a3b3b2bl,a2a3albg,a1b1bgb2}

4

$CL3 a1 a9 as b3 bg bl b3$



L= {d3ala251>a252b153>ala2d3b2,

a3b3b2bl,a2a3albg,a1b1bgb2}

4

$CL3 a1 0o asaq bg b2 bl b3$



L= {d3ala251>a252b153>ala2d3b2,

G3bgb2b17aza3alb3>a1b15352}

4

$CL3 a1z a3 a1 bg bQ bl b3$



L= {d3ala251>a252b153>ala2d3b2,

G3bgb2b17aza3alb3>a1b15352}

4

$CL36L1 Ao 3 bl bg bg bl b3$



L= {asa1azb1>a252b153>alazd3b2,

G3bgb2b17aza3alb3>a1b15352}

4

$CL36L1 a9 a3 a7 b1 b3 bg bl b3$



@GH*(L) = {$a3(a1a2ag)iz(bgbgbl)ibﬁ | ZZ O, A S}

S= {Glbl, a1azb1, a1azbabg, a1azagbaby,

arazaz bz by by, 611@2@3@1535251}



Theorem
The outfix-guided insertion closure of a unary regular
language is always regular.



Theorem
The outfix-guided insertion closure of a unary regular
language is always regular.

The 2-overlap catenation of x and y, denoted x@Qy is
defined as the set

{zeXt | Bu,we X9 (3v e B2z = w, y = vw, z = uvw}.



Theorem
The outfix-guided insertion closure of a unary regular
language is always regular.

The 2-overlap catenation of x and y, denoted m@Qy is
defined as the set

{zeXt | Bu,we X9 (3v e B2z = w, y = vw, z = uvw}.

> Ifz,y € a*, then 2+ y= 10°v.
» If Lis a unary language, then OGI*(L) = 20C*(L).

» The 2-overlap catenation closure of a regular language
is regular.



Proposition

There exist finite languages Ly, Lo, L3, Ly such that
ROGI*(Ly, Ly) and LOGI*(Ls, Ly) are non-regular.



Proposition
There exist finite languages Ly, Lo, L3, Ly such that
ROGI*(Ly, Ly) and LOGI*(Ls, Ly) are non-regular.

For Ly = {acdb, cabd} and Ly = {a$b}, we have

ROGI*(Ly, Ly) = {(ca)'$(bd)" | i > 0}U{a(ca)’$(bd)'b | i > 0}



Proposition

There exist finite languages Ly, Lo, L3, Ly such that
ROGI*(Ly, Ly) and LOGI*(Ls, Ly) are non-regular.

For Ly = {acdb, cabd} and Ly = {a$b}, we have

ROGI*(Ly, Ly) = {(ca)'$(bd)" | i > 0}U{a(ca)’$(bd)'b | i > 0}

For L3 = {$&3a1b1b3$} and

Ly = {a3ala2b17 a2b2b1b3> CL1(126L352,

agbsba by, azaga, bs, G1b1bgb2},

we have the same language as in the regular language
case.



Theorem
There exists a context-free language L such that L < Lis
not context-free.



Theorem
There exists a context-free language L such that L < Lis
not context-free.

L=1{$a"$$¢" | n> 1} U {$a"$b"S | n > 1}



Theorem
There exists a context-free language L such that L < Lis
not context-free.

L=1{$a"$$¢" | n> 1} U {$a"$b"S | n > 1}

(L<+ L)N$a*$b"$ct = {$a"$0"$c™ | n > 1}



Theorem
If Ly is context-free and Ly is regular, then Ly < L, and
Lo < L, are context-free.

The same idea as for the case of regular Ly and L, with the
addition of stack operations for the context-free language.



Theorem

If Ly is deterministic context-free and Ly is regular, then
Ly < Ly and Ly < Ly need not be deterministic
context-free.



Theorem

If Ly is deterministic context-free and Ly is regular, then
Ly < Ly and Ly < Ly need not be deterministic
context-free.

For Ly = {cda'b'@ | i,5 > 1} U{ca’¥d | 4,7 > 1} and

Ly = {cda}, we have

Ly < Ly =cd- ({a'b'd | 4,7 > 1} U{a'Vd | i, > 1}).



Theorem

If Ly is deterministic context-free and Ly is regular, then
Ly < Ly and Ly < Ly need not be deterministic
context-free.

For Ly = {cda'b'@ | i,5 > 1} U{ca’¥d | 4,7 > 1} and

Ly = {cda}, we have

Ly < Ly =cd- ({a'b'd | 4,7 > 1} U{a'Vd | i, > 1}).
For Ly = (a*bac) + (aba*) and
Ly={Vdc|j>1}u{a’b'a®|i> 1}, we have

Ly + Ly = {d'Vdc|ij> 1} u{a'b'd | i>1,5> 2},



We say that a language L is closed under outfix-guided
insertion if outfix-guided insertion of strings of L into L does
not produce strings outside of L. That'is, (L < L) C L.



Proposition
There is a polynomial time algorithm to decide whether for
a given DFA A the language L(A) is og-closed.



Proposition
There is a polynomial time algorithm to decide whether for
a given DFA A the language L(A) is og-closed.

» Construct NFA Bfor L(A) < L(A).

» Let A’ be the DFA obtained from A by interchanging
final and non-final states.

» L(B) C L(A) ifand only if L(B) N L(A") = (.



Theorem
For a given context-free language L, the question of
whether or not L is og-closed is undecidable.

» Via a PCP instance.



Outfix-guided insertion of two regular languages is
regular.

There exist outfix-guided closures of finite languages
that are non-regular.

Outfix-guided insertion of two context-free languages
may be non-context-free.

Outfix-guided insertion of a context-free language and
regular language is context-free.

Outfix-guided insertion of a deterministic context-free
language and regular language is not deterministic
context-free.

Deciding outfix-guided closure for a regular language
is decidable and can be computed in polynomial time if
given as a DFA.



Some open problems:

» Does there exist a regular language L such that the
outfix-guided insertion closure of L is not context-free?

» If Lis context-free, is OGI*(L) context-sensitive?

» What is the complexity of deciding outfix-guided
closure for a language given an NFA?



