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w1 €L
This is called the distance from L to L,.
» This distance is symmetric.

» This distance can be



Prior Work



Prior Work

Almost-reflexivity of word relations (Choffrut,
Pighizzini 2002)



Prior Work

» Almost-reflexivity of word relations (Choffrut,
Pighizzini 2002)

» Repair of regular specifications (Benedikt, Puppis,
Riveros 2011)



Prior Work

» Almost-reflexivity of word relations (Choffrut,
Pighizzini 2002)

» Repair of regular specifications (Benedikt, Puppis,
Riveros 2011)

» Edit distance of pushdown automata (Chatterjee et
al. 2015)



The of a language L is the set of words
that are close to L.

B(L,d, k) = {we ¥* | dw, L) < k}

E(L,d k)
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We say Ly is in Ly if Ly C Ly. Similarly, if
d(L1|Ly) < oo, then we can say that L is
contained in Ls.

d(L1|Ly) < kifand only if Ly C E(Ly, d, k)
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How to compute the distance from L, to Ly
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Theorem

Let Ly, Ly, be regular languages recognized by NFAs A,
and A, with ny and ny respectively. Suppose d,(Ly|Ls) is
bounded. Then

dp(L1|L2) <ng+no — 2.

» By the Pumping Lemma
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Theorem
Let A; and A, be DFAs. Then d,(L(A1)|L(As)) is
computable in polynomial time.

» We just need to check

L(Al) - E(L(AQ), dp, ny + No — 2)

» The DFA for E(L(As), dy, n1 + ny — 2) is at most

na(np — 1)

-1
9 +n1—|—n2

states (NRS 2015).
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Theorem
Let k € N be fixed. For given NFAs A; and A,, deciding
whether or not d,(L(A1)|L(As)) < kis PSPACE-complete.

Lemma
Consider languages L, and L, over an alphabet X.. Let #
be a symbol not in ¥ and k € N. Then

dy(L1#"|Ly) < kiff Ly C Ly.

Remark

dy (S #F| L) < kiff ©* C L.
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Corollary

Let Ay and A, be NFAs. Then the problem of deciding
whether dy(L(Ay)|L(Az)) is bounded is
PSPACE-complete.

» The current best known DFA construction for
E(L(As), ds, y + ny — 2) has at most ny + 2™ states,
and is therefore not known to be polynomial in ny
(NRS 2017).



NON-REGULAR
LANGUAGES

How to determine if the distance
from L, to Ly is bounded by k
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Let k € N be fixed. Given a regular language L, and a
context-free language Lo, determining whether or not
dy(L1|Le) < kis undecidable.

» We can reduce this to PDA universality
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Proposition
Given an NFA A and a PDA P, deciding whether or not
dy(L(P)|L(A)) < kis EXPTIME-complete.

Proposition (Chatterjee et al. 2015)

Given a PDA P and an NFA A, the inclusion L(P) C L(A)
can be decided in EXPTIME. Given a deterministic PDA P
and an NFA A, it is EXPTIME-hard to decide whether or
not L(P) C L(A).
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(DCFL) are a
proper subclass of context-free languages and are
recognized by
(DPDA).

» Inclusion of a regular language in a DCFL is
decidable

» Then we just need to make sure that
neighbourhoods of DCFLs are also DCFLs
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Lemma

There exist a deterministic context-free language L and
integer kfor which E(L, ds, k) is not a deterministic
context-free language.

Proof.
Let L = {ca'd’d | i,j > 0} U {da'¥d | 4,5 > 0}. Then Lis a
deterministic context-free language but

E(L, ds,1) N a*b*a* = {a'b'd’ | i,5> 0} U{a'¥d | i,j> 0},

which is a context-free language but is not
deterministic. O
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Theorem

Let L be a deterministic context-free language. Then for
every k> 0, the neighbourhood E(L, d,, k) is a
deterministic context-free language.

» Whether the input word is within a distance of k£ can
be determined by the current state and the top &
symbols on the stack

» Keep track of the top k symbols of the stack in
memory

» O(nk|T|¥) states
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A (VPA) is a PDA with the
restriction that stack operations are determined by input
symbols.
The input alphabet X is partitioned into three sets
» call actions X.; the VPA must push a symbol onto
the stack

» return actions X,; the VPA must pop a symbol from
the stack

» internal actions Y; the VPA cannot perform any
stack operations

VPAs recognize the class of



Theorem
Let L be a visibly pushdown language. Then E(L, d,, k) is
a visibly pushdown language for all k > 0.

» Modify the DPDA construction

» Dummy symbols are pushed onto the stack in order
to satisfy the condition that symbols are pushed and
popped from the stack when the correspodning
symbols are read.
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Proposition

Let k € N be fixed. For given VPAs A, and A,, deciding
dy(L(A1)|L(As)) < kis EXPTIME-complete.

» Inclusion for VPAs is EXPTIME-complete (Alur,
Madhusudan 2004)



The computational complexity of deciding
dy(L(A1)|L(A2)) < kis summarized as follows.

As DFA NFA VPA DPDA PDA
A

DFA P PSPACE EXPTIME P X
NFA P PSPACE  EXPTIME P X
VPA P EXPTIME EXPTIME X X
DPDA P EXPTIME x X X
PDA P EXPTIME  x X X




Open Questions

» How to decide when the distance is bounded for
non-regular languages.

» How to compute the distance for non-regular
languages.



