Relative Prefix Distance Between Languages

Timothy Ng David Rappaport Kai Salomaa

School of Computing, Queen's University, Kingston, Canada
DLT 2017, Liège, Belgium

The prefix distance of x and y counts the number of symbols which do not belong to the longest common prefix of x and y.

The prefix distance of x and y counts the number of symbols which do not belong to the longest common prefix of x and y.

> STARTING STARLIGHT

We can extend a distance on words to a distance between a word and a language

$$
d(w, L)=\min _{x \in L} d(w, x) .
$$

We can extend a distance on words to a distance between a word and a language

$$
d(w, L)=\min _{x \in L} d(w, x) .
$$

We can extend this further to a distance between two languages

$$
d\left(L_{1}, L_{2}\right)=\min _{w_{1} \in L_{1}} d\left(w_{1}, L_{2}\right)
$$

We can extend a distance on words to a distance between a word and a language

$$
d(w, L)=\min _{x \in L} d(w, x) .
$$

We can extend this further to a distance between two languages

$$
d\left(L_{1} \mid L_{2}\right)=\sup _{w_{1} \in L_{1}} d\left(w_{1}, L_{2}\right)
$$

We can extend distances between words to distances between two languages in a different way.

$$
d\left(L_{1} \mid L_{2}\right)=\sup _{w_{1} \in L_{1}} d\left(w_{1}, L_{2}\right)
$$

This is called the relative distance from L_{1} to L_{2}.

We can extend distances between words to distances between two languages in a different way.

$$
d\left(L_{1} \mid L_{2}\right)=\sup _{w_{1} \in L_{1}} d\left(w_{1}, L_{2}\right)
$$

This is called the relative distance from L_{1} to L_{2}.

- This distance is not symmetric.
- This distance can be unbounded.

Prior Work

Prior Work

- Almost-reflexivity of word relations (Choffrut, Pighizzini 2002)

Prior Work

- Almost-reflexivity of word relations (Choffrut, Pighizzini 2002)
- Repair of regular specifications (Benedikt, Puppis, Riveros 2011)

Prior Work

- Almost-reflexivity of word relations (Choffrut, Pighizzini 2002)
- Repair of regular specifications (Benedikt, Puppis, Riveros 2011)
- Edit distance of pushdown automata (Chatterjee et al. 2015)

The neighbourhood of a language L is the set of words that are close to L.

$$
E(L, d, k)=\left\{w \in \Sigma^{*} \mid d(w, L) \leq k\right\}
$$

We say L_{1} is contained in L_{2} if $L_{1} \subseteq L_{2}$. Similarly, if $d\left(L_{1} \mid L_{2}\right) \leq \infty$, then we can say that L_{1} is approximately contained in L_{2}.

$$
d\left(L_{1} \mid L_{2}\right) \leq k \text { if and only if } L_{1} \subseteq E\left(L_{2}, d, k\right)
$$

REGULAR LANGUAGES

How to compute the distance from L_{1} to L_{2}

Theorem
Let L_{1}, L_{2} be regular languages recognized by NFAs A_{1} and A_{2} with n_{1} and n_{2} respectively. Suppose $d_{p}\left(L_{1} \mid L_{2}\right)$ is bounded. Then

$$
d_{p}\left(L_{1} \mid L_{2}\right) \leq n_{1}+n_{2}-2 .
$$

Theorem
Let L_{1}, L_{2} be regular languages recognized by NFAs A_{1} and A_{2} with n_{1} and n_{2} respectively. Suppose $d_{p}\left(L_{1} \mid L_{2}\right)$ is bounded. Then

$$
d_{p}\left(L_{1} \mid L_{2}\right) \leq n_{1}+n_{2}-2 .
$$

- By the Pumping Lemma

Theorem
Let A_{1} and A_{2} be DFAs. Then $d_{p}\left(L\left(A_{1}\right) \mid L\left(A_{2}\right)\right)$ is computable in polynomial time.

Theorem
Let A_{1} and A_{2} be DFAs. Then $d_{p}\left(L\left(A_{1}\right) \mid L\left(A_{2}\right)\right)$ is computable in polynomial time.

- We just need to check

$$
L\left(A_{1}\right) \subseteq E\left(L\left(A_{2}\right), d_{p}, n_{1}+n_{2}-2\right) .
$$

Theorem

Let A_{1} and A_{2} be DFAs. Then $d_{p}\left(L\left(A_{1}\right) \mid L\left(A_{2}\right)\right)$ is computable in polynomial time.

- We just need to check

$$
L\left(A_{1}\right) \subseteq E\left(L\left(A_{2}\right), d_{p}, n_{1}+n_{2}-2\right) .
$$

- The DFA for $E\left(L\left(A_{2}\right), d_{p}, n_{1}+n_{2}-2\right)$ is at most

$$
\frac{n_{2}\left(n_{2}-1\right)}{2}+n_{1}+n_{2}-1
$$

states (NRS 2015).

Theorem
Let $k \in \mathbb{N}$ be fixed. For given NFAs A_{1} and A_{2}, deciding whether or not $d_{p}\left(L\left(A_{1}\right) \mid L\left(A_{2}\right)\right) \leq k$ is PSPACE-complete.

Theorem

Let $k \in \mathbb{N}$ be fixed. For given NFAs A_{1} and A_{2}, deciding whether or not $d_{p}\left(L\left(A_{1}\right) \mid L\left(A_{2}\right)\right) \leq k$ is PSPACE-complete.

Lemma

Consider languages L_{1} and L_{2} over an alphabet Σ. Let \# be a symbol not in Σ and $k \in \mathbb{N}$. Then

$$
d_{p}\left(L_{1} \#^{k} \mid L_{2}\right) \leq k \text { iff } L_{1} \subseteq L_{2} .
$$

Theorem

Let $k \in \mathbb{N}$ be fixed. For given NFAs A_{1} and A_{2}, deciding whether or not $d_{p}\left(L\left(A_{1}\right) \mid L\left(A_{2}\right)\right) \leq k$ is PSPACE-complete.
Lemma
Consider languages L_{1} and L_{2} over an alphabet Σ. Let \# be a symbol not in Σ and $k \in \mathbb{N}$. Then

$$
d_{p}\left(L_{1} \#^{k} \mid L_{2}\right) \leq k \text { iff } L_{1} \subseteq L_{2} .
$$

Remark

$$
d_{p}\left(\Sigma^{*} \#^{k} \mid L\right) \leq k \text { iff } \Sigma^{*} \subseteq L
$$

Corollary

Let A_{1} and A_{2} be NFAs. Then the problem of deciding whether $d_{s}\left(L\left(A_{1}\right) \mid L\left(A_{2}\right)\right)$ is bounded is PSPACE-complete.

Corollary

Let A_{1} and A_{2} be NFAs. Then the problem of deciding whether $d_{s}\left(L\left(A_{1}\right) \mid L\left(A_{2}\right)\right)$ is bounded is PSPACE-complete.

- The current best known DFA construction for $E\left(L\left(A_{2}\right), d_{s}, n_{1}+n_{2}-2\right)$ has at most $n_{1}+2^{n_{2}}$ states, and is therefore not known to be polynomial in n_{2} (NRS 2017).

non.regular Languages

How to determine if the distance from L_{1} to L_{2} is bounded by k

Proposition

Let $k \in \mathbb{N}$ be fixed. Given a regular language L_{1} and a context-free language L_{2}, determining whether or not $d_{p}\left(L_{1} \mid L_{2}\right) \leq k$ is undecidable.

Proposition

Let $k \in \mathbb{N}$ be fixed. Given a regular language L_{1} and a context-free language L_{2}, determining whether or not $d_{p}\left(L_{1} \mid L_{2}\right) \leq k$ is undecidable.

- We can reduce this to PDA universality

Proposition

Given an NFA A and a PDA P, deciding whether or not $d_{p}(L(P) \mid L(A)) \leq k$ is EXPTIME-complete.

Proposition

Given an NFA A and a PDA P, deciding whether or not $d_{p}(L(P) \mid L(A)) \leq k$ is EXPTIME-complete.

Proposition (Chatterjee et al. 2015)

Given a PDA P and an NFA A, the inclusion $L(P) \subseteq L(A)$ can be decided in EXPTIME. Given a deterministic PDA P and an NFA A, it is EXPTIME-hard to decide whether or not $L(P) \subseteq L(A)$.

Deterministic context-free languages (DCFL) are a proper subclass of context-free languages and are recognized by deterministic pushdown automata (DPDA).

Deterministic context-free languages (DCFL) are a proper subclass of context-free languages and are recognized by deterministic pushdown automata (DPDA).

- Inclusion of a regular language in a DCFL is decidable

Deterministic context-free languages (DCFL) are a proper subclass of context-free languages and are recognized by deterministic pushdown automata (DPDA).

- Inclusion of a regular language in a DCFL is decidable
- Then we just need to make sure that neighbourhoods of DCFLs are also DCFLs

Lemma

There exist a deterministic context-free language L and integer k for which $E\left(L, d_{s}, k\right)$ is not a deterministic context-free language.

Lemma

There exist a deterministic context-free language L and integer k for which $E\left(L, d_{s}, k\right)$ is not a deterministic context-free language.

Proof.
Let $L=\left\{c a^{i} b^{i} a^{j} \mid i, j \geq 0\right\} \cup\left\{d a^{i} b^{j} a^{j} \mid i, j \geq 0\right\}$. Then L is a deterministic context-free language but

$$
E\left(L, d_{s}, 1\right) \cap a^{*} b^{*} a^{*}=\left\{a^{i} b^{i} a^{j} \mid i, j \geq 0\right\} \cup\left\{a^{i} b^{j} a^{j} \mid i, j \geq 0\right\},
$$

which is a context-free language but is not deterministic.

Theorem

Let L be a deterministic context-free language. Then for every $k \geq 0$, the neighbourhood $E\left(L, d_{p}, k\right)$ is a deterministic context-free language.

Theorem

Let L be a deterministic context-free language. Then for every $k \geq 0$, the neighbourhood $E\left(L, d_{p}, k\right)$ is a deterministic context-free language.

- Whether the input word is within a distance of k can be determined by the current state and the top k symbols on the stack

Theorem

Let L be a deterministic context-free language. Then for every $k \geq 0$, the neighbourhood $E\left(L, d_{p}, k\right)$ is a deterministic context-free language.

- Whether the input word is within a distance of k can be determined by the current state and the top k symbols on the stack
- Keep track of the top k symbols of the stack in memory

Theorem

Let L be a deterministic context-free language. Then for every $k \geq 0$, the neighbourhood $E\left(L, d_{p}, k\right)$ is a deterministic context-free language.

- Whether the input word is within a distance of k can be determined by the current state and the top k symbols on the stack
- Keep track of the top k symbols of the stack in memory
- $O\left(n k|\Gamma|^{k}\right)$ states

A visibly pushdown automaton (VPA) is a PDA with the restriction that stack operations are determined by input symbols.

A visibly pushdown automaton (VPA) is a PDA with the restriction that stack operations are determined by input symbols.
The input alphabet Σ is partitioned into three sets

- call actions Σ_{c}; the VPA must push a symbol onto the stack
- return actions Σ_{r}; the VPA must pop a symbol from the stack
- internal actions Σ_{i}; the VPA cannot perform any stack operations

A visibly pushdown automaton (VPA) is a PDA with the restriction that stack operations are determined by input symbols.
The input alphabet Σ is partitioned into three sets

- call actions Σ_{c}; the VPA must push a symbol onto the stack
- return actions Σ_{r}; the VPA must pop a symbol from the stack
- internal actions Σ_{i}; the VPA cannot perform any stack operations
VPAs recognize the class of visibly pushdown languages.

Theorem
Let L be a visibly pushdown language. Then $E\left(L, d_{p}, k\right)$ is a visibly pushdown language for all $k \geq 0$.

- Modify the DPDA construction
- Dummy symbols are pushed onto the stack in order to satisfy the condition that symbols are pushed and popped from the stack when the correspodning symbols are read.

Proposition

Let $k \in \mathbb{N}$ be fixed. For given VPAs A_{1} and A_{2}, deciding $d_{p}\left(L\left(A_{1}\right) \mid L\left(A_{2}\right)\right) \leq k$ is EXPTIME-complete.

Proposition

Let $k \in \mathbb{N}$ be fixed. For given VPAs A_{1} and A_{2}, deciding $d_{p}\left(L\left(A_{1}\right) \mid L\left(A_{2}\right)\right) \leq k$ is EXPTIME-complete.

- Inclusion for VPAs is EXPTIME-complete (Alur, Madhusudan 2004)

The computational complexity of deciding $d_{p}\left(L\left(A_{1}\right) \mid L\left(A_{2}\right)\right) \leq k$ is summarized as follows.

A_{2}	DFA	NFA	VPA	DPDA	PDA
A_{1}					
DFA	P	PSPACE	EXPTIME	P	\times
NFA	P	PSPACE	EXPTIME	P	\times
VPA	P	EXPTIME	EXPTIME	\times	\times
DPDA	P	EXPTIME	\times	\times	\times
PDA	P	EXPTIME	\times	\times	\times

Open Questions

- How to decide when the distance is bounded for non-regular languages.
- How to compute the distance for non-regular languages.

