Relative Prefix Distance Between
Languages

Timothy Ng David Rappaport Kai Salomaa

School of Computing, Queen’s University, Kingston, Canada

DLT 2017, Liege, Belgium

The of rand y counts the number of
symbols which do not belong to the longest common
prefix of zand .

The of zand y counts the number of
symbols which do not belong to the longest common
prefix of zand .

TING
LIGHT

We can extend a distance on words to a distance
between a word and a language

d(w, L) = min d(w,).

zel

We can extend a distance on words to a distance
between a word and a language

d(w, L) = min d(w,).
We can extend this further to a distance between two
languages
d(Ll, Lg) = min d(wl, Lg)

w1 €Ly

We can extend a distance on words to a distance
between a word and a language

d(w, L) = min d(w,).
We can extend this further to a distance between two
languages
d(L1|L2> = sup d(wl,Lg)

w1 €Ly

We can extend distances between words to distances
between two languages in a different way.

d(Llng) = sup d(’wl,Lg)

w1 €L

This is called the distance from L to L,.

We can extend distances between words to distances
between two languages in a different way.

d(Llng) = sup d(’wl,Lg)

w1 €L
This is called the distance from L to L,.
» This distance is symmetric.

» This distance can be

Prior Work

Prior Work

Almost-reflexivity of word relations (Choffrut,
Pighizzini 2002)

Prior Work

» Almost-reflexivity of word relations (Choffrut,
Pighizzini 2002)

» Repair of regular specifications (Benedikt, Puppis,
Riveros 2011)

Prior Work

» Almost-reflexivity of word relations (Choffrut,
Pighizzini 2002)

» Repair of regular specifications (Benedikt, Puppis,
Riveros 2011)

» Edit distance of pushdown automata (Chatterjee et
al. 2015)

The of a language L is the set of words
that are close to L.

B(L,d, k) = {we ¥* | dw, L) < k}

E(L,d k)

se

We say Ly is in Ly if Ly C Ly. Similarly, if
d(L1|Ly) < oo, then we can say that L is
contained in Ls.

d(L1|Ly) < kifand only if Ly C E(Ly, d, k)

REGULAR LANGUAGES

How to compute the distance from L, to Ly

Theorem

Let Ly, Ly, be regular languages recognized by NFAs A,
and A, with ny and ny respectively. Suppose d,(Ly|Ls) is
bounded. Then

dp(L1|L2) <ng+no — 2.

Theorem

Let Ly, Ly, be regular languages recognized by NFAs A,
and A, with ny and ny respectively. Suppose d,(Ly|Ls) is
bounded. Then

dp(L1|L2) <ng+no — 2.

» By the Pumping Lemma

Theorem
Let A; and A, be DFAs. Then d,(L(A1)|L(As)) is
computable in polynomial time.

Theorem
Let A; and A, be DFAs. Then d,(L(A1)|L(As)) is
computable in polynomial time.

» We just need to check

L(Al) - E(L(AQ), dp, ny + No — 2)

Theorem
Let A; and A, be DFAs. Then d,(L(A1)|L(As)) is
computable in polynomial time.

» We just need to check

L(Al) - E(L(AQ), dp, ny + No — 2)

» The DFA for E(L(As), dy, n1 + ny — 2) is at most

na(np — 1)

-1
9 +n1—|—n2

states (NRS 2015).

Theorem
Let k € N be fixed. For given NFAs A; and A,, deciding
whether or not d,(L(A1)|L(As)) < kis PSPACE-complete.

Theorem
Let k € N be fixed. For given NFAs A; and A,, deciding
whether or not d,(L(A1)|L(As)) < kis PSPACE-complete.

Lemma
Consider languages L, and L, over an alphabet X.. Let #
be a symbol not in ¥ and k € N. Then

dy(L1#"|Ly) < kiff Ly C Ly.

Theorem
Let k € N be fixed. For given NFAs A; and A,, deciding
whether or not d,(L(A1)|L(As)) < kis PSPACE-complete.

Lemma
Consider languages L, and L, over an alphabet X.. Let #
be a symbol not in ¥ and k € N. Then

dy(L1#"|Ly) < kiff Ly C Ly.

Remark

dy (S #F| L) < kiff ©* C L.

Corollary

Let Ay and A, be NFAs. Then the problem of deciding
whether dy(L(Ay)|L(Az)) is bounded is
PSPACE-complete.

Corollary

Let Ay and A, be NFAs. Then the problem of deciding
whether dy(L(Ay)|L(Az)) is bounded is
PSPACE-complete.

» The current best known DFA construction for
E(L(As), ds, y + ny — 2) has at most ny + 2™ states,
and is therefore not known to be polynomial in ny
(NRS 2017).

NON-REGULAR
LANGUAGES

How to determine if the distance
from L, to Ly is bounded by k

Proposition

Let k € N be fixed. Given a regular language L, and a
context-free language Lo, determining whether or not
dy(L1|Le) < kis undecidable.

Proposition

Let k € N be fixed. Given a regular language L, and a
context-free language Lo, determining whether or not
dy(L1|Le) < kis undecidable.

» We can reduce this to PDA universality

Proposition

Given an NFA A and a PDA P, deciding whether or not
dy(L(P)|L(A)) < kis EXPTIME-complete.

Proposition
Given an NFA A and a PDA P, deciding whether or not
dy(L(P)|L(A)) < kis EXPTIME-complete.

Proposition (Chatterjee et al. 2015)

Given a PDA P and an NFA A, the inclusion L(P) C L(A)
can be decided in EXPTIME. Given a deterministic PDA P
and an NFA A, it is EXPTIME-hard to decide whether or
not L(P) C L(A).

(DCFL) are a
proper subclass of context-free languages and are

recognized by
(DPDA).

(DCFL) are a
proper subclass of context-free languages and are

recognized by
(DPDA).

» Inclusion of a regular language in a DCFL is
decidable

(DCFL) are a
proper subclass of context-free languages and are
recognized by
(DPDA).

» Inclusion of a regular language in a DCFL is
decidable

» Then we just need to make sure that
neighbourhoods of DCFLs are also DCFLs

Lemma

There exist a deterministic context-free language L and
integer kfor which E(L, ds, k) is not a deterministic
context-free language.

Lemma

There exist a deterministic context-free language L and
integer kfor which E(L, ds, k) is not a deterministic
context-free language.

Proof.
Let L = {ca'd’d | i,j > 0} U {da'¥d | 4,5 > 0}. Then Lis a
deterministic context-free language but

E(L, ds,1) N a*b*a* = {a'b'd’ | i,5> 0} U{a'¥d | i,j> 0},

which is a context-free language but is not
deterministic. O

Theorem

Let L be a deterministic context-free language. Then for
every k> 0, the neighbourhood E(L, d,, k) is a
deterministic context-free language.

Theorem

Let L be a deterministic context-free language. Then for
every k> 0, the neighbourhood E(L, d,, k) is a
deterministic context-free language.

» Whether the input word is within a distance of k£ can
be determined by the current state and the top &
symbols on the stack

Theorem

Let L be a deterministic context-free language. Then for
every k> 0, the neighbourhood E(L, d,, k) is a
deterministic context-free language.

» Whether the input word is within a distance of k£ can
be determined by the current state and the top &
symbols on the stack

» Keep track of the top k symbols of the stack in
memory

Theorem

Let L be a deterministic context-free language. Then for
every k> 0, the neighbourhood E(L, d,, k) is a
deterministic context-free language.

» Whether the input word is within a distance of k£ can
be determined by the current state and the top &
symbols on the stack

» Keep track of the top k symbols of the stack in
memory

» O(nk|T|¥) states

A (VPA) is a PDA with the
restriction that stack operations are determined by input
symbols.

A (VPA) is a PDA with the
restriction that stack operations are determined by input
symbols.

The input alphabet X is partitioned into three sets

» call actions X.; the VPA must push a symbol onto
the stack

» return actions X,; the VPA must pop a symbol from
the stack

» internal actions Y; the VPA cannot perform any
stack operations

A (VPA) is a PDA with the
restriction that stack operations are determined by input
symbols.
The input alphabet X is partitioned into three sets
» call actions X.; the VPA must push a symbol onto
the stack

» return actions X,; the VPA must pop a symbol from
the stack

» internal actions Y; the VPA cannot perform any
stack operations

VPAs recognize the class of

Theorem
Let L be a visibly pushdown language. Then E(L, d,, k) is
a visibly pushdown language for all k > 0.

» Modify the DPDA construction

» Dummy symbols are pushed onto the stack in order
to satisfy the condition that symbols are pushed and
popped from the stack when the correspodning
symbols are read.

Proposition

Let k € N be fixed. For given VPAs A, and A,, deciding
dy(L(A1)|L(As)) < kis EXPTIME-complete.

Proposition

Let k € N be fixed. For given VPAs A, and A,, deciding
dy(L(A1)|L(As)) < kis EXPTIME-complete.

» Inclusion for VPAs is EXPTIME-complete (Alur,
Madhusudan 2004)

The computational complexity of deciding
dy(L(A1)|L(A2)) < kis summarized as follows.

As DFA NFA VPA DPDA PDA
A

DFA P PSPACE EXPTIME P X
NFA P PSPACE EXPTIME P X
VPA P EXPTIME EXPTIME X X
DPDA P EXPTIME x X X
PDA P EXPTIME x X X

Open Questions

» How to decide when the distance is bounded for
non-regular languages.

» How to compute the distance for non-regular
languages.

