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Relative Prefix Distance Between
Languages

Timothy Ng David Rappaport Kai Salomaa

School of Computing, Queen’s University, Kingston, Canada

DLT 2017, Liège, Belgium
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The prefix distance of x and y counts the number of
symbols which do not belong to the longest common
prefix of x and y.

STARTING
STARLIGHT
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The prefix distance of x and y counts the number of
symbols which do not belong to the longest common
prefix of x and y.

STARTING
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We can extend a distance on words to a distance
between a word and a language

d(w,L) = min
x∈L

d(w, x).

We can extend this further to a distance between two
languages

d(L1,L2) = min
w1∈L1

d(w1,L2)
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We can extend a distance on words to a distance
between a word and a language

d(w,L) = min
x∈L

d(w, x).

We can extend this further to a distance between two
languages

d(L1,L2) = min
w1∈L1

d(w1,L2)
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We can extend a distance on words to a distance
between a word and a language

d(w,L) = min
x∈L

d(w, x).

We can extend this further to a distance between two
languages

d(L1|L2) = sup
w1∈L1

d(w1,L2)
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We can extend distances between words to distances
between two languages in a different way.

d(L1|L2) = sup
w1∈L1

d(w1,L2)

This is called the relative distance from L1 to L2.

▶ This distance is not symmetric.
▶ This distance can be unbounded.
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We can extend distances between words to distances
between two languages in a different way.

d(L1|L2) = sup
w1∈L1

d(w1,L2)

This is called the relative distance from L1 to L2.
▶ This distance is not symmetric.
▶ This distance can be unbounded.
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Prior Work

▶ Almost-reflexivity of word relations (Choffrut,
Pighizzini 2002)

▶ Repair of regular specifications (Benedikt, Puppis,
Riveros 2011)

▶ Edit distance of pushdown automata (Chatterjee et
al. 2015)
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Prior Work
▶ Almost-reflexivity of word relations (Choffrut,
Pighizzini 2002)

▶ Repair of regular specifications (Benedikt, Puppis,
Riveros 2011)

▶ Edit distance of pushdown automata (Chatterjee et
al. 2015)
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▶ Almost-reflexivity of word relations (Choffrut,
Pighizzini 2002)

▶ Repair of regular specifications (Benedikt, Puppis,
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Prior Work
▶ Almost-reflexivity of word relations (Choffrut,
Pighizzini 2002)

▶ Repair of regular specifications (Benedikt, Puppis,
Riveros 2011)

▶ Edit distance of pushdown automata (Chatterjee et
al. 2015)
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The neighbourhood of a language L is the set of words
that are close to L.

E(L, d, k) = {w ∈ Σ∗ | d(w,L) ≤ k}

L
E(L,d,k)

w
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We say L1 is contained in L2 if L1 ⊆ L2. Similarly, if
d(L1|L2) ≤ ∞, then we can say that L1 is approximately
contained in L2.

d(L1|L2) ≤ k if and only if L1 ⊆ E(L2, d, k)
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REGULAR LANGUAGES
How to compute the distance from L1 to L2
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Theorem
Let L1,L2 be regular languages recognized by NFAs A1

and A2 with n1 and n2 respectively. Suppose dp(L1|L2) is
bounded. Then

dp(L1|L2) ≤ n1 + n2 − 2.

▶ By the Pumping Lemma
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Theorem
Let L1,L2 be regular languages recognized by NFAs A1

and A2 with n1 and n2 respectively. Suppose dp(L1|L2) is
bounded. Then

dp(L1|L2) ≤ n1 + n2 − 2.

▶ By the Pumping Lemma
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Theorem
Let A1 and A2 be DFAs. Then dp(L(A1)|L(A2)) is
computable in polynomial time.

▶ We just need to check

L(A1) ⊆ E(L(A2), dp, n1 + n2 − 2).

▶ The DFA for E(L(A2), dp, n1 + n2 − 2) is at most

n2(n2 − 1)

2
+ n1 + n2 − 1

states (NRS 2015).
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Theorem
Let A1 and A2 be DFAs. Then dp(L(A1)|L(A2)) is
computable in polynomial time.

▶ We just need to check

L(A1) ⊆ E(L(A2), dp, n1 + n2 − 2).

▶ The DFA for E(L(A2), dp, n1 + n2 − 2) is at most

n2(n2 − 1)
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states (NRS 2015).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theorem
Let k ∈ N be fixed. For given NFAs A1 and A2, deciding
whether or not dp(L(A1)|L(A2)) ≤ k is PSPACE-complete.

Lemma
Consider languages L1 and L2 over an alphabet Σ. Let #
be a symbol not in Σ and k ∈ N. Then

dp(L1#k|L2) ≤ k iff L1 ⊆ L2.

Remark
dp(Σ

∗#k|L) ≤ k iff Σ∗ ⊆ L.
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Theorem
Let k ∈ N be fixed. For given NFAs A1 and A2, deciding
whether or not dp(L(A1)|L(A2)) ≤ k is PSPACE-complete.
Lemma
Consider languages L1 and L2 over an alphabet Σ. Let #
be a symbol not in Σ and k ∈ N. Then

dp(L1#k|L2) ≤ k iff L1 ⊆ L2.

Remark
dp(Σ

∗#k|L) ≤ k iff Σ∗ ⊆ L.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theorem
Let k ∈ N be fixed. For given NFAs A1 and A2, deciding
whether or not dp(L(A1)|L(A2)) ≤ k is PSPACE-complete.
Lemma
Consider languages L1 and L2 over an alphabet Σ. Let #
be a symbol not in Σ and k ∈ N. Then

dp(L1#k|L2) ≤ k iff L1 ⊆ L2.

Remark
dp(Σ

∗#k|L) ≤ k iff Σ∗ ⊆ L.
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Corollary
Let A1 and A2 be NFAs. Then the problem of deciding
whether ds(L(A1)|L(A2)) is bounded is
PSPACE-complete.

▶ The current best known DFA construction for
E(L(A2), ds, n1 + n2 − 2) has at most n1 + 2n2 states,
and is therefore not known to be polynomial in n2

(NRS 2017).
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Corollary
Let A1 and A2 be NFAs. Then the problem of deciding
whether ds(L(A1)|L(A2)) is bounded is
PSPACE-complete.

▶ The current best known DFA construction for
E(L(A2), ds, n1 + n2 − 2) has at most n1 + 2n2 states,
and is therefore not known to be polynomial in n2

(NRS 2017).
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NON-REGULARLANGUAGES
How to determine if the distance
from L1 to L2 is bounded by k
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Proposition
Let k ∈ N be fixed. Given a regular language L1 and a
context-free language L2, determining whether or not
dp(L1|L2) ≤ k is undecidable.

▶ We can reduce this to PDA universality



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proposition
Let k ∈ N be fixed. Given a regular language L1 and a
context-free language L2, determining whether or not
dp(L1|L2) ≤ k is undecidable.

▶ We can reduce this to PDA universality
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Proposition
Given an NFA A and a PDA P, deciding whether or not
dp(L(P)|L(A)) ≤ k is EXPTIME-complete.

Proposition (Chatterjee et al. 2015)
Given a PDA P and an NFA A, the inclusion L(P) ⊆ L(A)
can be decided in EXPTIME. Given a deterministic PDA P
and an NFA A, it is EXPTIME-hard to decide whether or
not L(P) ⊆ L(A).
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Proposition
Given an NFA A and a PDA P, deciding whether or not
dp(L(P)|L(A)) ≤ k is EXPTIME-complete.
Proposition (Chatterjee et al. 2015)
Given a PDA P and an NFA A, the inclusion L(P) ⊆ L(A)
can be decided in EXPTIME. Given a deterministic PDA P
and an NFA A, it is EXPTIME-hard to decide whether or
not L(P) ⊆ L(A).
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Deterministic context-free languages (DCFL) are a
proper subclass of context-free languages and are
recognized by deterministic pushdown automata
(DPDA).

▶ Inclusion of a regular language in a DCFL is
decidable

▶ Then we just need to make sure that
neighbourhoods of DCFLs are also DCFLs
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Deterministic context-free languages (DCFL) are a
proper subclass of context-free languages and are
recognized by deterministic pushdown automata
(DPDA).

▶ Inclusion of a regular language in a DCFL is
decidable

▶ Then we just need to make sure that
neighbourhoods of DCFLs are also DCFLs
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Deterministic context-free languages (DCFL) are a
proper subclass of context-free languages and are
recognized by deterministic pushdown automata
(DPDA).

▶ Inclusion of a regular language in a DCFL is
decidable

▶ Then we just need to make sure that
neighbourhoods of DCFLs are also DCFLs
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Lemma
There exist a deterministic context-free language L and
integer k for which E(L, ds, k) is not a deterministic
context-free language.

Proof.
Let L = {caibiaj | i, j ≥ 0} ∪ {daibjaj | i, j ≥ 0}. Then L is a
deterministic context-free language but

E(L, ds, 1) ∩ a∗b∗a∗ = {aibiaj | i, j ≥ 0} ∪ {aibjaj | i, j ≥ 0},

which is a context-free language but is not
deterministic.
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Lemma
There exist a deterministic context-free language L and
integer k for which E(L, ds, k) is not a deterministic
context-free language.
Proof.
Let L = {caibiaj | i, j ≥ 0} ∪ {daibjaj | i, j ≥ 0}. Then L is a
deterministic context-free language but

E(L, ds, 1) ∩ a∗b∗a∗ = {aibiaj | i, j ≥ 0} ∪ {aibjaj | i, j ≥ 0},

which is a context-free language but is not
deterministic.
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Theorem
Let L be a deterministic context-free language. Then for
every k ≥ 0, the neighbourhood E(L, dp, k) is a
deterministic context-free language.

▶ Whether the input word is within a distance of k can
be determined by the current state and the top k
symbols on the stack

▶ Keep track of the top k symbols of the stack in
memory

▶ O(nk|Γ|k) states
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Theorem
Let L be a deterministic context-free language. Then for
every k ≥ 0, the neighbourhood E(L, dp, k) is a
deterministic context-free language.

▶ Whether the input word is within a distance of k can
be determined by the current state and the top k
symbols on the stack

▶ Keep track of the top k symbols of the stack in
memory

▶ O(nk|Γ|k) states
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Theorem
Let L be a deterministic context-free language. Then for
every k ≥ 0, the neighbourhood E(L, dp, k) is a
deterministic context-free language.

▶ Whether the input word is within a distance of k can
be determined by the current state and the top k
symbols on the stack

▶ Keep track of the top k symbols of the stack in
memory

▶ O(nk|Γ|k) states
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Theorem
Let L be a deterministic context-free language. Then for
every k ≥ 0, the neighbourhood E(L, dp, k) is a
deterministic context-free language.

▶ Whether the input word is within a distance of k can
be determined by the current state and the top k
symbols on the stack

▶ Keep track of the top k symbols of the stack in
memory

▶ O(nk|Γ|k) states
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A visibly pushdown automaton (VPA) is a PDA with the
restriction that stack operations are determined by input
symbols.

The input alphabet Σ is partitioned into three sets
▶ call actions Σc; the VPA must push a symbol onto
the stack

▶ return actions Σr; the VPA must pop a symbol from
the stack

▶ internal actions Σi; the VPA cannot perform any
stack operations

VPAs recognize the class of visibly pushdown languages.
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A visibly pushdown automaton (VPA) is a PDA with the
restriction that stack operations are determined by input
symbols.
The input alphabet Σ is partitioned into three sets

▶ call actions Σc; the VPA must push a symbol onto
the stack

▶ return actions Σr; the VPA must pop a symbol from
the stack

▶ internal actions Σi; the VPA cannot perform any
stack operations

VPAs recognize the class of visibly pushdown languages.
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A visibly pushdown automaton (VPA) is a PDA with the
restriction that stack operations are determined by input
symbols.
The input alphabet Σ is partitioned into three sets

▶ call actions Σc; the VPA must push a symbol onto
the stack

▶ return actions Σr; the VPA must pop a symbol from
the stack

▶ internal actions Σi; the VPA cannot perform any
stack operations

VPAs recognize the class of visibly pushdown languages.
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Theorem
Let L be a visibly pushdown language. Then E(L, dp, k) is
a visibly pushdown language for all k ≥ 0.

▶ Modify the DPDA construction
▶ Dummy symbols are pushed onto the stack in order
to satisfy the condition that symbols are pushed and
popped from the stack when the correspodning
symbols are read.
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Proposition
Let k ∈ N be fixed. For given VPAs A1 and A2, deciding
dp(L(A1)|L(A2)) ≤ k is EXPTIME-complete.

▶ Inclusion for VPAs is EXPTIME-complete (Alur,
Madhusudan 2004)
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Proposition
Let k ∈ N be fixed. For given VPAs A1 and A2, deciding
dp(L(A1)|L(A2)) ≤ k is EXPTIME-complete.

▶ Inclusion for VPAs is EXPTIME-complete (Alur,
Madhusudan 2004)
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The computational complexity of deciding
dp(L(A1)|L(A2)) ≤ k is summarized as follows.

A2 DFA NFA VPA DPDA PDA
A1

DFA P PSPACE EXPTIME P ×
NFA P PSPACE EXPTIME P ×
VPA P EXPTIME EXPTIME × ×
DPDA P EXPTIME × × ×
PDA P EXPTIME × × ×
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Open Questions
▶ How to decide when the distance is bounded for
non-regular languages.

▶ How to compute the distance for non-regular
languages.


