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Given a set of strings, does there exist a string that is close
to all of them?
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Given a set of k strings s1, s2, . . . , sk of equal length and a
positive integer r, does there exist a string s such that for
each 1 ≤ i ≤ k, the Hamming distance between s and si is
at most r?

▶ This is the consensus string problem [Frances and
Litman 1997]. It is NP-complete.

▶ r is the radius.
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Given a set of k strings s1, s2, . . . , sk of equal length and a
positive integer r, does there exist a string s such that for
each 1 ≤ i ≤ k, the Hamming distance between s and si is
at most r?

▶ This is the consensus string problem [Frances and
Litman 1997].

It is NP-complete.
▶ r is the radius.
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Given a set of k strings s1, s2, . . . , sk of equal length and a
positive integer r, does there exist a string s such that for
each 1 ≤ i ≤ k, the Hamming distance between s and si is
at most r?

▶ This is the consensus string problem [Frances and
Litman 1997]. It is NP-complete.

▶ r is the radius.
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Given a set of k strings s1, s2, . . . , sk of equal length and a
positive integer r, does there exist a string s such that for
each 1 ≤ i ≤ k, the Hamming distance between s and si is
at most r?

▶ This is the consensus string problem [Frances and
Litman 1997]. It is NP-complete.

▶ r is the radius.
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Given a set of k strings s1, s2, . . . , sk and two positive
integers ℓ, r, does there exist a string s of length ℓ such that
for each 1 ≤ i ≤ k, there exists a substring s′i of length ℓ in si
with Hamming distance at most r from s?

▶ This is the closest substring problem [Frances and
Litman 1997].
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Given a set of k strings s1, s2, . . . , sk and two positive
integers ℓ, r, does there exist a string s of length ℓ such that
for each 1 ≤ i ≤ k, there exists a substring s′i of length ℓ in si
with Hamming distance at most r from s?

▶ This is the closest substring problem [Frances and
Litman 1997].
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Given a language L and positive integers r, ℓ, does there
exist a string w (a consensus substring) of length ℓ such that
every string w′ ∈ L has a substring whose distance is at
most r from w?

▶ We consider sets of strings that are not necessarily
finite.

▶ We consider edit distances with variable cost.
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Given a language L and positive integers r, ℓ, does there
exist a string w (a consensus substring) of length ℓ such that
every string w′ ∈ L has a substring whose distance is at
most r from w?

▶ We consider sets of strings that are not necessarily
finite.

▶ We consider edit distances with variable cost.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Given a language L and positive integers r, ℓ, does there
exist a string w (a consensus substring) of length ℓ such that
every string w′ ∈ L has a substring whose distance is at
most r from w?

▶ We consider sets of strings that are not necessarily
finite.

▶ We consider edit distances with variable cost.
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Language class Complexity (Lower/upper bound)

A set of strings NP-complete [FL97]
Sub-regular (acyclic FAs) (coNP,NP)-hard / ΣP

2

Regular (FAs) PSPACE-complete
Context-free PSPACE-hard / EXPTIME
Context-sensitive Undecidable

Table: The complexity results for the CLOSEST SUBSTRING
problem when l and r are given in unary.
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A distance is a function d : Σ∗ × Σ∗ → [0,∞) such that

1. d(x, y) = 0 if and only if x = y
2. d(x, y) = d(y, x)
3. d(x, y) ≤ d(x,w) + d(w, y)
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The edit distance of two words x and y is the minimum cost
to transform x into y by a sequence of insertion, deletion,
and substitution operations.

▶ Assign cost d(a, b) to each edit operation (a/b), for
a, b ∈ Σ ∪ {ε}.

▶ The Levenshtein distance is the edit distance with unit
cost for all edit operations.
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The edit distance of two words x and y is the minimum cost
to transform x into y by a sequence of insertion, deletion,
and substitution operations.

▶ Assign cost d(a, b) to each edit operation (a/b), for
a, b ∈ Σ ∪ {ε}.

▶ The Levenshtein distance is the edit distance with unit
cost for all edit operations.
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The edit distance of two words x and y is the minimum cost
to transform x into y by a sequence of insertion, deletion,
and substitution operations.

▶ Assign cost d(a, b) to each edit operation (a/b), for
a, b ∈ Σ ∪ {ε}.

▶ The Levenshtein distance is the edit distance with unit
cost for all edit operations.
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The neighbourhood of a language L ⊆ Σ∗ of radius r ≥ 0
with respect to a distance measure d is the set of all words
u with d(w, u) ≤ r for some w ∈ L,

E(L, d, r) = {u ∈ Σ∗ | (∃w ∈ L)d(w, u) ≤ r}.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proposition (Povarov 2007)
Let A be an NFA with n states and r ∈ N. The
neighbourhood of L(A) of radius r with respect to the
additive distance d can be recognized by an NFA B with
n · (r + 1) states. The NFA B can be constructed in time that
depends polynomially on n and r.
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Let cmin be the smallest deletion or insertion cost of a
symbol of the alphabet Σ and let cmax be the largest cost of
an insertion or deletion operation.

Some observations relating L, ℓ, and r:
▶ ℓ ≤ min(L) + r

cmin
since otherwise no substring of a

shortest string x can be transformed into a consensus
string of length ℓ by a sequence of edit operations with
cost r.

▶ ℓ > r
cmax

since otherwise ε is within a distance of r of
any string w of length ℓ via deleting all symbols of w.

▶ Together, this gives us

r
cmax

< ℓ ≤ min(L) + r
cmin

.
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Let cmin be the smallest deletion or insertion cost of a
symbol of the alphabet Σ and let cmax be the largest cost of
an insertion or deletion operation.
Some observations relating L, ℓ, and r:

▶ ℓ ≤ min(L) + r
cmin

since otherwise no substring of a
shortest string x can be transformed into a consensus
string of length ℓ by a sequence of edit operations with
cost r.

▶ ℓ > r
cmax

since otherwise ε is within a distance of r of
any string w of length ℓ via deleting all symbols of w.
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Let cmin be the smallest deletion or insertion cost of a
symbol of the alphabet Σ and let cmax be the largest cost of
an insertion or deletion operation.
Some observations relating L, ℓ, and r:

▶ ℓ ≤ min(L) + r
cmin

since otherwise no substring of a
shortest string x can be transformed into a consensus
string of length ℓ by a sequence of edit operations with
cost r.
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Let cmin be the smallest deletion or insertion cost of a
symbol of the alphabet Σ and let cmax be the largest cost of
an insertion or deletion operation.
Some observations relating L, ℓ, and r:

▶ ℓ ≤ min(L) + r
cmin

since otherwise no substring of a
shortest string x can be transformed into a consensus
string of length ℓ by a sequence of edit operations with
cost r.

▶ ℓ > r
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since otherwise ε is within a distance of r of
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▶ Together, this gives us

r
cmax

< ℓ ≤ min(L) + r
cmin

.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Let cmin be the smallest deletion or insertion cost of a
symbol of the alphabet Σ and let cmax be the largest cost of
an insertion or deletion operation.
Some observations relating L, ℓ, and r:

▶ ℓ ≤ min(L) + r
cmin

since otherwise no substring of a
shortest string x can be transformed into a consensus
string of length ℓ by a sequence of edit operations with
cost r.

▶ ℓ > r
cmax

since otherwise ε is within a distance of r of
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Lemma
The CLOSEST SUBSTRING problem for NFAs can be solved
in PSPACE when the length ℓ of consensus substring is
given in unary.

▶ Given an NFA A with n states, guess a string w ∈ Σℓ.
▶ Construct an NFA B for Σ∗E(w, de, r)Σ∗.
▶ If r is given in binary, r < cmax · ℓ, and the size of B is

polynomial in the size of the input.
▶ L(A) ⊆ L(B) is decidable in PSPACE.
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Lemma
The CLOSEST SUBSTRING problem for NFAs can be solved
in PSPACE when the length ℓ of consensus substring is
given in unary.

▶ Given an NFA A with n states, guess a string w ∈ Σℓ.

▶ Construct an NFA B for Σ∗E(w, de, r)Σ∗.
▶ If r is given in binary, r < cmax · ℓ, and the size of B is

polynomial in the size of the input.
▶ L(A) ⊆ L(B) is decidable in PSPACE.
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Lemma
The CLOSEST SUBSTRING problem for NFAs can be solved
in PSPACE when the length ℓ of consensus substring is
given in unary.

▶ Given an NFA A with n states, guess a string w ∈ Σℓ.
▶ Construct an NFA B for Σ∗E(w, de, r)Σ∗.

▶ If r is given in binary, r < cmax · ℓ, and the size of B is
polynomial in the size of the input.
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given in unary.

▶ Given an NFA A with n states, guess a string w ∈ Σℓ.
▶ Construct an NFA B for Σ∗E(w, de, r)Σ∗.
▶ If r is given in binary, r < cmax · ℓ, and the size of B is
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Corollary
The CLOSEST SUBSTRING problem for NFAs can be solved
in PSPACE when the radius r is given in unary.

▶ This follows from ℓ ≤ min(L) + r
cmin

.
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Theorem
Let de be an edit distance where the cost of deleting a
single character σ does not depend on σ. Then the
CLOSEST SUBSTRING problem for NFAs under the edit
distance de can be solved in PSPACE.

▶ If r < c · k · min(L(A)), where c is the cost of
deletion/insertion and k is the size of the alphabet,
then ℓ, r ∈ O(n), and we can use the same algorithm as
in the previous lemma.
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Theorem
Let de be an edit distance where the cost of deleting a
single character σ does not depend on σ. Then the
CLOSEST SUBSTRING problem for NFAs under the edit
distance de can be solved in PSPACE.

▶ If r < c · k · min(L(A)), where c is the cost of
deletion/insertion and k is the size of the alphabet,
then ℓ, r ∈ O(n), and we can use the same algorithm as
in the previous lemma.
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▶ If r ≥ c · k · min(L(A)),
▶ Choose w = (a1a2 · · · ak)

min(L(A)) · aℓ−min(L(A))
1 . We

claim w is a consensus substring for L(A) with radius r.
▶ For any z ∈ L(A), take a substring z1 of length

min(L(A).
▶ To transform w into z1, delete (k − 1) · min(L(A))

symbols from the prefix of w to attain the word
z1aℓ−min(L(A))

1 then delete the a1’s.
▶ Since ℓ ≤ min(L(A)) + r

c , at most r
c deletions were

performed.
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Theorem
There exists an edit distance de such that the CLOSEST
SUBSTRING problem for DFAs under the edit distance de is
PSPACE-hard even when the length ℓ of consensus
substring and radius r are given in unary.

▶ Via reduction from deciding L(A) ⊆ Σ∗aΣnbΣ∗, which
is PSPACE-complete [Björklund, Martens, Schwentick
2013].
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Theorem
There exists an edit distance de such that the CLOSEST
SUBSTRING problem for DFAs under the edit distance de is
PSPACE-hard even when the length ℓ of consensus
substring and radius r are given in unary.

▶ Via reduction from deciding L(A) ⊆ Σ∗aΣnbΣ∗, which
is PSPACE-complete [Björklund, Martens, Schwentick
2013].
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▶ Define the distance d0 by

d0(#, a) = d0(#, b) = d0(#, c) = d0(#, ♮) = 1,

d0(σ1, σ2) = 2 when σ1, σ2 ∈ {a, b, c, ♮}, σ1 ̸= σ2,

d0(σ, ε) = 2 for σ ∈ Σ′.

▶ Let Ln = {awb | w ∈ {a, b}n ∪ {cn, ♮n}} for n ∈ N. The
string a#nb has inner distance n to Ln. There is no
other string of length n + 2 with inner distance n to Ln.
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Corollary
There exists an edit distance de such that the CLOSEST
SUBSTRING problem under the edit distance de is
PSPACE-complete both for NFAs and for DFAs.
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Theorem
The CLOSEST SUBSTRING problem for acyclic NFAs is in ΣP

2

when the length ℓ of consensus substring is given in unary.

▶ For an acyclic NFA A, check that there exists w ∈ Σℓ

such that all strings of L(A) of length at most n have a
substring in E(w, de, r).
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Theorem
The CLOSEST SUBSTRING problem for acyclic NFAs is in ΣP

2

when the length ℓ of consensus substring is given in unary.

▶ For an acyclic NFA A, check that there exists w ∈ Σℓ

such that all strings of L(A) of length at most n have a
substring in E(w, de, r).
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Theorem
The CLOSEST SUBSTRING problem for acyclic DFAs is
coNP-hard even when the length ℓ and radius r are given in
unary.

▶ Via reduction from complement of SQUARE TILING;
SQUARE TILING is NP-complete [van Emde Boas 1997].
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Theorem
The CLOSEST SUBSTRING problem for acyclic DFAs is
coNP-hard even when the length ℓ and radius r are given in
unary.

▶ Via reduction from complement of SQUARE TILING;
SQUARE TILING is NP-complete [van Emde Boas 1997].
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Theorem
The CLOSEST SUBSTRING problem for context-free
languages can be solved in EXPTIME when the length ℓ of
consensus substring is given in unary.

▶ Given a PDA P, for every string w of length ℓ, construct
an NFA B for Σ∗E(w, de, r)Σ∗.

▶ L(P) ⊆ L(B) is decidable in EXPTIME since testing
L(P) ∩ L(B)c = ∅ is decidable in exponential time.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Theorem
The CLOSEST SUBSTRING problem for context-free
languages can be solved in EXPTIME when the length ℓ of
consensus substring is given in unary.

▶ Given a PDA P, for every string w of length ℓ, construct
an NFA B for Σ∗E(w, de, r)Σ∗.

▶ L(P) ⊆ L(B) is decidable in EXPTIME since testing
L(P) ∩ L(B)c = ∅ is decidable in exponential time.
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Theorem
The CLOSEST SUBSTRING problem for context-free
languages can be solved in EXPTIME when the length ℓ of
consensus substring is given in unary.

▶ Given a PDA P, for every string w of length ℓ, construct
an NFA B for Σ∗E(w, de, r)Σ∗.

▶ L(P) ⊆ L(B) is decidable in EXPTIME since testing
L(P) ∩ L(B)c = ∅ is decidable in exponential time.
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Corollary
The CLOSEST SUBSTRING problem for context-sensitive
languages is undecidable.

▶ Since testing emptiness for context-sensitive
languages is undecidable.
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Corollary
The CLOSEST SUBSTRING problem for context-sensitive
languages is undecidable.

▶ Since testing emptiness for context-sensitive
languages is undecidable.
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Language class Complexity (Lower/upper bound)

A set of strings NP-complete [FL97]
Sub-regular (acyclic FAs) (coNP,NP)-hard / ΣP

2

Regular (FAs) PSPACE-complete
Context-free PSPACE-hard / EXPTIME
Context-sensitive Undecidable

Table: The complexity results for the CLOSEST SUBSTRING
problem when l and r are given in unary.


