Closest Substring Problems for Regular Languages

Yo-Sub Han ${ }^{1}$ Sang-Ki Ko ${ }^{2}$ Timothy Ng^{3} Kai Salomaa ${ }^{4}$

${ }^{1}$ Department of Computer Science, Yonsei University
${ }^{2}$ Al Research Center, Korea Electronics Technology Institute
${ }^{3}$ David R. Cheriton School of Computer Science, University of Waterloo
${ }^{4}$ School of Computing, Queen's University

DLT 2018, Tokyo, Japan

Given a set of strings, does there exist a string that is close to all of them?

Given a set of k strings $s_{1}, s_{2}, \ldots, s_{k}$ of equal length and a positive integer r, does there exist a string s such that for each $1 \leq i \leq k$, the Hamming distance between s and s_{i} is at most r ?

Given a set of k strings $s_{1}, s_{2}, \ldots, s_{k}$ of equal length and a positive integer r, does there exist a string s such that for each $1 \leq i \leq k$, the Hamming distance between s and s_{i} is at most r ?

- This is the consensus string problem [Frances and Litman 1997].

Given a set of k strings $s_{1}, s_{2}, \ldots, s_{k}$ of equal length and a positive integer r, does there exist a string s such that for each $1 \leq i \leq k$, the Hamming distance between s and s_{i} is at most r ?

- This is the consensus string problem [Frances and Litman 1997]. It is NP-complete.

Given a set of k strings $s_{1}, s_{2}, \ldots, s_{k}$ of equal length and a positive integer r, does there exist a string s such that for each $1 \leq i \leq k$, the Hamming distance between s and s_{i} is at most r ?

- This is the consensus string problem [Frances and Litman 1997]. It is NP-complete.
- r is the radius.

Given a set of k strings $s_{1}, s_{2}, \ldots, s_{k}$ and two positive integers ℓ, r, does there exist a string s of length ℓ such that for each $1 \leq i \leq k$, there exists a substring s_{i}^{\prime} of length ℓ in s_{i} with Hamming distance at most r from s ?

Given a set of k strings $s_{1}, s_{2}, \ldots, s_{k}$ and two positive integers ℓ, r, does there exist a string s of length ℓ such that for each $1 \leq i \leq k$, there exists a substring s_{i}^{\prime} of length ℓ in s_{i} with Hamming distance at most r from s ?

- This is the closest substring problem [Frances and Litman 1997].

Given a language L and positive integers r, ℓ, does there exist a string w (a consensus substring) of length ℓ such that every string $w^{\prime} \in L$ has a substring whose distance is at most r from w ?

Given a language L and positive integers r, ℓ, does there exist a string w (a consensus substring) of length ℓ such that every string $w^{\prime} \in L$ has a substring whose distance is at most r from w ?

- We consider sets of strings that are not necessarily finite.

Given a language L and positive integers r, ℓ, does there exist a string w (a consensus substring) of length ℓ such that every string $w^{\prime} \in L$ has a substring whose distance is at most r from w ?

- We consider sets of strings that are not necessarily finite.
- We consider edit distances with variable cost.

Language class	Complexity (Lower/upper bound)
A set of strings	NP-complete [FL97]
Sub-regular (acyclic FAs)	(coNP,NP)-hard / Σ_{2}^{P}
Regular (FAs)	PSPACE-complete
Context-free	PSPACE-hard / EXPTIME
Context-sensitive	Undecidable

Table: The complexity results for the CLOSEST SUBSTRING problem when l and r are given in unary.

A distance is a function $d: \Sigma^{*} \times \Sigma^{*} \rightarrow[0, \infty)$ such that

1. $d(x, y)=0$ if and only if $x=y$
2. $d(x, y)=d(y, x)$
3. $d(x, y) \leq d(x, w)+d(w, y)$

The edit distance of two words x and y is the minimum cost to transform x into y by a sequence of insertion, deletion, and substitution operations.

The edit distance of two words x and y is the minimum cost to transform x into y by a sequence of insertion, deletion, and substitution operations.

- Assign cost $d(a, b)$ to each edit operation (a / b), for $a, b \in \Sigma \cup\{\varepsilon\}$.

The edit distance of two words x and y is the minimum cost to transform x into y by a sequence of insertion, deletion, and substitution operations.

- Assign cost $d(a, b)$ to each edit operation (a / b), for $a, b \in \Sigma \cup\{\varepsilon\}$.
- The Levenshtein distance is the edit distance with unit cost for all edit operations.

The neighbourhood of a language $L \subseteq \Sigma^{*}$ of radius $r \geq 0$ with respect to a distance measure d is the set of all words u with $d(w, u) \leq r$ for some $w \in L$,

$$
E(L, d, r)=\left\{u \in \Sigma^{*} \mid(\exists w \in L) d(w, u) \leq r\right\}
$$

Proposition (Povarov 2007)

Let A be an NFA with n states and $r \in \mathbb{N}$. The neighbourhood of $L(A)$ of radius r with respect to the additive distance d can be recognized by an NFA B with $n \cdot(r+1)$ states. The NFA B can be constructed in time that depends polynomially on n and r.

Let $c_{\text {min }}$ be the smallest deletion or insertion cost of a symbol of the alphabet Σ and let $c_{\text {max }}$ be the largest cost of an insertion or deletion operation.

Let $c_{\text {min }}$ be the smallest deletion or insertion cost of a symbol of the alphabet Σ and let $c_{\text {max }}$ be the largest cost of an insertion or deletion operation.
Some observations relating L, ℓ, and r :

Let $c_{\text {min }}$ be the smallest deletion or insertion cost of a symbol of the alphabet Σ and let $c_{\text {max }}$ be the largest cost of an insertion or deletion operation.
Some observations relating L, ℓ, and r :

- $\ell \leq \min (L)+\frac{r}{c_{\text {min }}}$ since otherwise no substring of a shortest string x can be transformed into a consensus string of length ℓ by a sequence of edit operations with cost r.

Let $c_{\text {min }}$ be the smallest deletion or insertion cost of a symbol of the alphabet Σ and let $c_{\text {max }}$ be the largest cost of an insertion or deletion operation.
Some observations relating L, ℓ, and r :

- $\ell \leq \min (L)+\frac{r}{c_{\text {min }}}$ since otherwise no substring of a shortest string x can be transformed into a consensus string of length ℓ by a sequence of edit operations with cost r.
- $\ell>\frac{r}{c_{\max }}$ since otherwise ε is within a distance of r of any string w of length ℓ via deleting all symbols of w.

Let $c_{\text {min }}$ be the smallest deletion or insertion cost of a symbol of the alphabet Σ and let $c_{\text {max }}$ be the largest cost of an insertion or deletion operation.
Some observations relating L, ℓ, and r :

- $\ell \leq \min (L)+\frac{r}{c_{\text {min }}}$ since otherwise no substring of a shortest string x can be transformed into a consensus string of length ℓ by a sequence of edit operations with cost r.
- $\ell>\frac{r}{c_{\max }}$ since otherwise ε is within a distance of r of any string w of length ℓ via deleting all symbols of w.
- Together, this gives us

$$
\frac{r}{c_{\max }}<\ell \leq \min (L)+\frac{r}{c_{\min }}
$$

Lemma
The Closest Substring problem for NFAs can be solved in PSPACE when the length ℓ of consensus substring is given in unary.

Lemma
The Closest Substring problem for NFAs can be solved in PSPACE when the length ℓ of consensus substring is given in unary.

- Given an NFA A with n states, guess a string $w \in \Sigma^{\ell}$.

Lemma
The Closest Substring problem for NFAs can be solved in PSPACE when the length ℓ of consensus substring is given in unary.

- Given an NFA A with n states, guess a string $w \in \Sigma^{\ell}$.
- Construct an NFA B for $\Sigma^{*} E\left(w, d_{e}, r\right) \Sigma^{*}$.

Lemma

The Closest Substring problem for NFAs can be solved in PSPACE when the length ℓ of consensus substring is given in unary.

- Given an NFA A with n states, guess a string $w \in \Sigma^{\ell}$.
- Construct an NFA B for $\Sigma^{*} E\left(w, d_{e}, r\right) \Sigma^{*}$.
- If r is given in binary, $r<c_{\max } \cdot \ell$, and the size of B is polynomial in the size of the input.

Lemma

The Closest Substring problem for NFAs can be solved in PSPACE when the length ℓ of consensus substring is given in unary.

- Given an NFA A with n states, guess a string $w \in \Sigma^{\ell}$.
- Construct an NFA B for $\Sigma^{*} E\left(w, d_{e}, r\right) \Sigma^{*}$.
- If r is given in binary, $r<c_{\max } \cdot \ell$, and the size of B is polynomial in the size of the input.
- $L(A) \subseteq L(B)$ is decidable in PSPACE.

Corollary

The Closest Substring problem for NFAs can be solved in PSPACE when the radius r is given in unary.

- This follows from $\ell \leq \min (L)+\frac{r}{c_{\text {min }}}$.

Theorem
Let d_{e} be an edit distance where the cost of deleting a single character σ does not depend on σ. Then the CLOSEST SUBSTRING problem for NFAs under the edit distance d_{e} can be solved in PSPACE.

Theorem
Let d_{e} be an edit distance where the cost of deleting a single character σ does not depend on σ. Then the Closest Substring problem for NFAs under the edit distance d_{e} can be solved in PSPACE.

- If $r<c \cdot k \cdot \min (L(A))$, where c is the cost of deletion/insertion and k is the size of the alphabet, then $\ell, r \in O(n)$, and we can use the same algorithm as in the previous lemma.
- If $r \geq c \cdot k \cdot \min (L(A))$,
- Choose $w=\left(a_{1} a_{2} \cdots a_{k}\right)^{\min (L(A))} \cdot a_{1}^{\ell-\min (L(A))}$. We claim w is a consensus substring for $L(A)$ with radius r.
- For any $z \in L(A)$, take a substring z_{1} of length $\min (L(A)$.
- To transform w into z_{1}, delete $(k-1) \cdot \min (L(A))$ symbols from the prefix of w to attain the word $z_{1} a_{1}^{\ell-\min (L(A))}$ then delete the a_{1} 's.
- Since $\ell \leq \min (L(A))+\frac{r}{c}$, at most $\frac{r}{c}$ deletions were performed.

Theorem
There exists an edit distance d_{e} such that the CLOSEST SUBSTRING problem for DFAs under the edit distance d_{e} is PSPACE-hard even when the length ℓ of consensus substring and radius r are given in unary.

Theorem
There exists an edit distance d_{e} such that the CLOSEST SUBSTRING problem for DFAs under the edit distance d_{e} is PSPACE-hard even when the length ℓ of consensus substring and radius r are given in unary.

- Via reduction from deciding $L(A) \subseteq \Sigma^{*} a \Sigma^{n} b \Sigma^{*}$, which is PSPACE-complete [Björklund, Martens, Schwentick 2013].
- Define the distance d_{0} by

$$
\begin{aligned}
d_{0}(\#, a) & =d_{0}(\#, b)=d_{0}(\#, c)=d_{0}(\#, দ)=1, \\
d_{0}\left(\sigma_{1}, \sigma_{2}\right) & =2 \text { when } \sigma_{1}, \sigma_{2} \in\{a, b, c, দ\}, \sigma_{1} \neq \sigma_{2}, \\
d_{0}(\sigma, \varepsilon) & =2 \text { for } \sigma \in \Sigma^{\prime} .
\end{aligned}
$$

- Let $L_{n}=\left\{a w b \mid w \in\{a, b\}^{n} \cup\left\{c^{n}, দ^{n}\right\}\right\}$ for $n \in \mathbb{N}$. The string $a \#^{n} b$ has inner distance n to L_{n}. There is no other string of length $n+2$ with inner distance n to L_{n}.

Corollary

There exists an edit distance d_{e} such that the CLOSEST
SUBSTRING problem under the edit distance d_{e} is PSPACE-complete both for NFAs and for DFAs.

Theorem
The CLOSEST SUBSTRING problem for acyclic NFAs is in Σ_{2}^{P} when the length ℓ of consensus substring is given in unary.

Theorem
The Closest Substring problem for acyclic NFAs is in Σ_{2}^{P} when the length ℓ of consensus substring is given in unary.

- For an acyclic NFA A, check that there exists $w \in \Sigma^{\ell}$ such that all strings of $L(A)$ of length at most n have a substring in $E\left(w, d_{e}, r\right)$.

Theorem
The Closest Substring problem for acyclic DFAs is coNP-hard even when the length ℓ and radius r are given in unary.

Theorem
The Closest Substring problem for acyclic DFAs is coNP-hard even when the length ℓ and radius r are given in unary.

- Via reduction from complement of SQUARE TILING; Square Tiling is NP-complete [van Emde Boas 1997].

Theorem
The Closest Substring problem for context-free languages can be solved in EXPTIME when the length ℓ of consensus substring is given in unary.

Theorem
The Closest Substring problem for context-free languages can be solved in EXPTIME when the length ℓ of consensus substring is given in unary.

- Given a PDA P, for every string w of length ℓ, construct an NFA B for $\Sigma^{*} E\left(w, d_{e}, r\right) \Sigma^{*}$.

Theorem
The CLOSEST SUBSTRING problem for context-free languages can be solved in EXPTIME when the length ℓ of consensus substring is given in unary.

- Given a PDA P, for every string w of length ℓ, construct an NFA B for $\Sigma^{*} E\left(w, d_{e}, r\right) \Sigma^{*}$.
- $L(P) \subseteq L(B)$ is decidable in EXPTIME since testing $L(P) \cap L(B)^{c}=\emptyset$ is decidable in exponential time.

Corollary
The Closest Substring problem for context-sensitive languages is undecidable.

Corollary
The Closest Substring problem for context-sensitive languages is undecidable.

- Since testing emptiness for context-sensitive languages is undecidable.

Language class	Complexity (Lower/upper bound)
A set of strings	NP-complete [FL97]
Sub-regular (acyclic FAs)	(coNP,NP)-hard / Σ_{2}^{P}
Regular (FAs)	PSPACE-complete
Context-free	PSPACE-hard / EXPTIME
Context-sensitive	Undecidable

Table: The complexity results for the CLOSEST SUBSTRING problem when l and r are given in unary.

