Closest Substring Problems for Regular Languages

Yo-Sub Han¹ Sang-Ki Ko² Timothy Ng³ Kai Salomaa⁴

¹Department of Computer Science, Yonsei University
 ²Al Research Center, Korea Electronics Technology Institute
 ³David R. Cheriton School of Computer Science, University of Waterloo
 ⁴School of Computing, Queen's University

DLT 2018, Tokyo, Japan

うして 山田 マイボット ボット ショックタイ

Given a set of strings, does there exist a string that is close to all of them?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 This is the consensus string problem [Frances and Litman 1997].

 This is the consensus string problem [Frances and Litman 1997]. It is NP-complete.

 This is the consensus string problem [Frances and Litman 1997]. It is NP-complete.

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

► *r* is the radius.

Given a set of k strings s_1, s_2, \ldots, s_k and two positive integers ℓ, r , does there exist a string s of length ℓ such that for each $1 \le i \le k$, there exists a substring s'_i of length ℓ in s_i with Hamming distance at most r from s?

Given a set of k strings s_1, s_2, \ldots, s_k and two positive integers ℓ, r , does there exist a string s of length ℓ such that for each $1 \le i \le k$, there exists a substring s'_i of length ℓ in s_i with Hamming distance at most r from s?

 This is the closest substring problem [Frances and Litman 1997].

Given a language L and positive integers r, ℓ , does there exist a string w (a consensus substring) of length ℓ such that every string $w' \in L$ has a substring whose distance is at most r from w?

Given a language L and positive integers r, ℓ , does there exist a string w (a consensus substring) of length ℓ such that every string $w' \in L$ has a substring whose distance is at most r from w?

 We consider sets of strings that are not necessarily finite.

Given a language L and positive integers r, ℓ , does there exist a string w (a consensus substring) of length ℓ such that every string $w' \in L$ has a substring whose distance is at most r from w?

 We consider sets of strings that are not necessarily finite.

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

• We consider edit distances with variable cost.

Language class	Complexity (Lower/upper bound)
A set of strings	NP-complete [FL97]
Sub-regular (acyclic FAs)	(coNP,NP)-hard / Σ^{P}_2
Regular (FAs)	PSPACE-complete
Context-free	PSPACE-hard / EXPTIME
Context-sensitive	Undecidable

Table: The complexity results for the CLOSEST SUBSTRING problem when l and r are given in unary.

A distance is a function $d: \Sigma^* \times \Sigma^* \to [0,\infty)$ such that

- 1. d(x, y) = 0 if and only if x = y
- 2. d(x, y) = d(y, x)
- 3. $d(x, y) \le d(x, w) + d(w, y)$

The edit distance of two words x and y is the minimum cost to transform x into y by a sequence of insertion, deletion, and substitution operations.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 二臣 - のへぐ

The edit distance of two words x and y is the minimum cost to transform x into y by a sequence of insertion, deletion, and substitution operations.

► Assign cost d(a, b) to each edit operation (a/b), for $a, b \in \Sigma \cup \{\varepsilon\}$.

The edit distance of two words x and y is the minimum cost to transform x into y by a sequence of insertion, deletion, and substitution operations.

- ► Assign cost d(a, b) to each edit operation (a/b), for $a, b \in \Sigma \cup \{\varepsilon\}$.
- The Levenshtein distance is the edit distance with unit cost for all edit operations.

うして 山田 マイボット ボット ショックタイ

The neighbourhood of a language $L \subseteq \Sigma^*$ of radius $r \ge 0$ with respect to a distance measure d is the set of all words u with $d(w, u) \le r$ for some $w \in L$,

$$E(L, d, r) = \{ u \in \Sigma^* \mid (\exists w \in L) d(w, u) \le r \}.$$

Proposition (Povarov 2007)

Let A be an NFA with n states and $r \in \mathbb{N}$. The neighbourhood of L(A) of radius r with respect to the additive distance d can be recognized by an NFA B with $n \cdot (r+1)$ states. The NFA B can be constructed in time that depends polynomially on n and r.

Let c_{\min} be the smallest deletion or insertion cost of a symbol of the alphabet Σ and let c_{\max} be the largest cost of an insertion or deletion operation.

Let c_{\min} be the smallest deletion or insertion cost of a symbol of the alphabet Σ and let c_{\max} be the largest cost of an insertion or deletion operation. Some observations relating L, ℓ , and r.

Let c_{\min} be the smallest deletion or insertion cost of a symbol of the alphabet Σ and let c_{\max} be the largest cost of an insertion or deletion operation. Some observations relating L, ℓ , and r.

▶ $l \leq \min(L) + \frac{r}{c_{\min}}$ since otherwise no substring of a shortest string *x* can be transformed into a consensus string of length *l* by a sequence of edit operations with cost *r*.

うして 山田 マイボット ボット ショックタイ

Let c_{\min} be the smallest deletion or insertion cost of a symbol of the alphabet Σ and let c_{\max} be the largest cost of an insertion or deletion operation. Some observations relating L, ℓ , and r:

- ▶ $l \leq \min(L) + \frac{r}{c_{\min}}$ since otherwise no substring of a shortest string x can be transformed into a consensus string of length l by a sequence of edit operations with cost r.
- ℓ > r/cmax since otherwise ε is within a distance of r of any string w of length ℓ via deleting all symbols of w.

Let c_{\min} be the smallest deletion or insertion cost of a symbol of the alphabet Σ and let c_{\max} be the largest cost of an insertion or deletion operation. Some observations relating L, ℓ , and r.

- ▶ $l \leq \min(L) + \frac{r}{c_{\min}}$ since otherwise no substring of a shortest string x can be transformed into a consensus string of length l by a sequence of edit operations with cost r.
- $\ell > \frac{r}{c_{\max}}$ since otherwise ε is within a distance of r of any string w of length ℓ via deleting all symbols of w.
- Together, this gives us

$$\frac{r}{c_{\max}} < \ell \le \min(L) + \frac{r}{c_{\min}}.$$

The CLOSEST SUBSTRING problem for NFAs can be solved in PSPACE when the length ℓ of consensus substring is given in unary.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

The CLOSEST SUBSTRING problem for NFAs can be solved in PSPACE when the length ℓ of consensus substring is given in unary.

• Given an NFA A with n states, guess a string $w \in \Sigma^{\ell}$.

The CLOSEST SUBSTRING problem for NFAs can be solved in PSPACE when the length ℓ of consensus substring is given in unary.

• Given an NFA A with n states, guess a string $w \in \Sigma^{\ell}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

• Construct an NFA *B* for $\Sigma^* E(w, d_e, r) \Sigma^*$.

The CLOSEST SUBSTRING problem for NFAs can be solved in PSPACE when the length ℓ of consensus substring is given in unary.

- Given an NFA A with n states, guess a string $w \in \Sigma^{\ell}$.
- Construct an NFA *B* for $\Sigma^* E(w, d_e, r) \Sigma^*$.
- ▶ If r is given in binary, $r < c_{\max} \cdot \ell$, and the size of B is polynomial in the size of the input.

うして 山田 マイボット ボット ショックタイ

The CLOSEST SUBSTRING problem for NFAs can be solved in PSPACE when the length ℓ of consensus substring is given in unary.

- Given an NFA A with n states, guess a string $w \in \Sigma^{\ell}$.
- Construct an NFA *B* for $\Sigma^* E(w, d_e, r) \Sigma^*$.
- ▶ If r is given in binary, $r < c_{\max} \cdot \ell$, and the size of B is polynomial in the size of the input.

うして 山田 マイボット ボット ショックタイ

• $L(A) \subseteq L(B)$ is decidable in PSPACE.

Corollary

The CLOSEST SUBSTRING problem for NFAs can be solved in PSPACE when the radius r is given in unary.

• This follows from
$$\ell \leq \min(L) + \frac{r}{c_{\min}}$$
.

Let d_e be an edit distance where the cost of deleting a single character σ does not depend on σ . Then the CLOSEST SUBSTRING problem for NFAs under the edit distance d_e can be solved in PSPACE.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Let d_e be an edit distance where the cost of deleting a single character σ does not depend on σ . Then the CLOSEST SUBSTRING problem for NFAs under the edit distance d_e can be solved in PSPACE.

If r < c ⋅ k ⋅ min(L(A)), where c is the cost of deletion/insertion and k is the size of the alphabet, then l, r ∈ O(n), and we can use the same algorithm as in the previous lemma.

うして 山田 マイボット ボット ショックタイ

- If $r \ge c \cdot k \cdot \min(L(A))$,
 - Choose $w = (a_1 a_2 \cdots a_k)^{\min(L(A))} \cdot a_1^{\ell-\min(L(A))}$. We claim *w* is a consensus substring for L(A) with radius *r*.
 - For any $z \in L(A)$, take a substring z_1 of length $\min(L(A))$.
 - ► To transform *w* into z_1 , delete $(k-1) \cdot \min(L(A))$ symbols from the prefix of *w* to attain the word $z_1 a_1^{\ell-\min(L(A))}$ then delete the a_1 's.
 - ► Since $\ell \leq \min(L(A)) + \frac{r}{c}$, at most $\frac{r}{c}$ deletions were performed.

There exists an edit distance d_e such that the CLOSEST SUBSTRING problem for DFAs under the edit distance d_e is PSPACE-hard even when the length ℓ of consensus substring and radius r are given in unary.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

There exists an edit distance d_e such that the CLOSEST SUBSTRING problem for DFAs under the edit distance d_e is PSPACE-hard even when the length ℓ of consensus substring and radius r are given in unary.

▶ Via reduction from deciding $L(A) \subseteq \Sigma^* a \Sigma^n b \Sigma^*$, which is PSPACE-complete [Björklund, Martens, Schwentick 2013].

うして 山田 マイボット ボット ショックタイ

• Define the distance d_0 by

$$\begin{aligned} &d_0(\#, a) = d_0(\#, b) = d_0(\#, c) = d_0(\#, \natural) = 1, \\ &d_0(\sigma_1, \sigma_2) = 2 \text{ when } \sigma_1, \sigma_2 \in \{a, b, c, \natural\}, \ \sigma_1 \neq \sigma_2, \\ &d_0(\sigma, \varepsilon) = 2 \text{ for } \sigma \in \Sigma'. \end{aligned}$$

► Let $L_n = \{awb \mid w \in \{a, b\}^n \cup \{c^n, \natural^n\}\}$ for $n \in \mathbb{N}$. The string $a \#^n b$ has inner distance n to L_n . There is no other string of length n + 2 with inner distance n to L_n .

うして 山田 マイボット ボット ショックタイ

Corollary

There exists an edit distance d_e such that the CLOSEST SUBSTRING problem under the edit distance d_e is PSPACE-complete both for NFAs and for DFAs.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

The CLOSEST SUBSTRING problem for acyclic NFAs is in $\Sigma_2^{\rm P}$ when the length ℓ of consensus substring is given in unary.

The CLOSEST SUBSTRING problem for acyclic NFAs is in $\Sigma_2^{\rm P}$ when the length ℓ of consensus substring is given in unary.

For an acyclic NFA A, check that there exists $w \in \Sigma^{\ell}$ such that all strings of L(A) of length at most n have a substring in $E(w, d_e, r)$.

うして 山田 マイボット ボット ショックタイ

Theorem The CLOSEST SUBSTRING problem for acyclic DFAs is coNP-hard even when the length ℓ and radius r are given in unary.

The CLOSEST SUBSTRING problem for acyclic DFAs is coNP-hard even when the length ℓ and radius r are given in unary.

 Via reduction from complement of SQUARE TILING; SQUARE TILING is NP-complete [van Emde Boas 1997].

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

The CLOSEST SUBSTRING problem for context-free languages can be solved in EXPTIME when the length ℓ of consensus substring is given in unary.

The CLOSEST SUBSTRING problem for context-free languages can be solved in EXPTIME when the length ℓ of consensus substring is given in unary.

• Given a PDA *P*, for every string *w* of length ℓ , construct an NFA *B* for $\Sigma^* E(w, d_e, r)\Sigma^*$.

The CLOSEST SUBSTRING problem for context-free languages can be solved in EXPTIME when the length ℓ of consensus substring is given in unary.

► Given a PDA *P*, for every string *w* of length ℓ , construct an NFA *B* for $\Sigma^* E(w, d_e, r)\Sigma^*$.

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

► $L(P) \subseteq L(B)$ is decidable in EXPTIME since testing $L(P) \cap L(B)^c = \emptyset$ is decidable in exponential time.

Corollary

The CLOSEST SUBSTRING problem for context-sensitive languages is undecidable.

Corollary

The CLOSEST SUBSTRING problem for context-sensitive languages is undecidable.

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

 Since testing emptiness for context-sensitive languages is undecidable.

Language class	Complexity (Lower/upper bound)
A set of strings	NP-complete [FL97]
Sub-regular (acyclic FAs)	(coNP,NP)-hard / Σ^{P}_2
Regular (FAs)	PSPACE-complete
Context-free	PSPACE-hard / EXPTIME
Context-sensitive	Undecidable

Table: The complexity results for the CLOSEST SUBSTRING problem when l and r are given in unary.