We provide motivation and guidance for further development of the experiment, diagnostics and comparisons between two- and three-dimensional models. The FLASH code proved efficient and accurate in modeling the shock-cylinder interaction problem. We find good overall agreement between the experiment and numerical model in structure of the velocity field while model velocities were over 50% larger than in experiment. This discrepancy does not necessarily imply serious problem since our early 3-D calculation did not benefit from the detailed analysis of the initial conditions.

Los Alamos Experiment

- Shock tube with square cross section, initially filled with air. Mar=1.2 planar shock.
- Dense gas column: sulfur hexafluoride (SF\textsubscript{6}) enters from a nozzle in the top wall and falls through the test section. Because air and SF\textsubscript{6} interdiffuse, the SF\textsubscript{6} distribution is a function of height.
- Data taken in a single horizontal plane, 2 cm below the top wall. CCD cameras used for imaging initial conditions and evolution; PIV data for analysis of velocity field.

Study Targets

- We study the shock-cylinder interaction to validate the FLASH code for vortex-dominated flows and discover three-dimensional effects in a nominally two-dimensional experiment.
- Our objective is to understand behavior of the complete system, including the initial conditions.
- We find the flowfield’s development to be highly sensitive to the distribution of heavy gas, SF\textsubscript{6}, prior to the arrival of the shock, i.e. the initial conditions are extremely important.
- We provide motivation and guidance for further development of the experiment, diagnostics of the initial conditions and the resulting three-dimensional flowfield as indicated by our predictive hydrodynamic model.

Matching Initial Conditions

- Simulate the SF\textsubscript{6} falling through the test section, prior to shock interaction, i.e. generate initial conditions for FLASH simulations.
- Main goal is to determine maximum initial mole fraction, X\textsubscript{SF6}, in image plane which cannot be measured directly.
- We model the initial evolution of the gas column by solving a species advection equation, the momentum equation, and an elliptic equation for the pressure, with constant gravity, viscosity, and species diffusion, in axisymmetric geometry.
- Choose inlet velocity and the initial SF\textsubscript{6} mass fraction, then run until steady state is achieved.
- Construct goodness-of-fit map of the initial conditions extracting SF\textsubscript{6} radial profile in image plane and compare to experimental data.

Revealing the True Nature of the Experiment

- Comparison between 2- and 3-dimensional models reveals certain differences in morphology indicating additional redistribution of material due to vertical motions and coupling between horizontal and vertical flows. In light of this newly discovered element, 2-D studies appear of very limited use. Comparison of realistic 3-D model to experiment, shows good overall agreement of morphology of large and medium scale structures.

Conclusions

- The FLASH code proved efficient and accurate in modeling the shock-cylinder interaction problem. We find good overall agreement between the experiment and numerical model (both morphology and dynamics). The shock-cylinder interaction problem is genuinely 3-dimensional. The magnitude of vertical motions is similar to that of horizontal motions in the cylinder’s frame of reference.
- Modeling of the initial conditions clearly indicates strong vertical stratification. We identified a one-parameter family of initial conditions which is consistent with the experimental data.
- Triangular mixing occurs due to shock-induced horizontal shear as well as due to stratification-induced vertical shear. We use tracer particles to study the interaction between the two processes.
- Development of additional diagnostics (initial conditions, vertical plane) is highly desirable and will enable critical evaluation of our predictive results.

This work is supported by the Department of Energy under Contract No. B523820 to the Center for Astrophysical Thermonuclear Flashes at the University of Chicago.