1. Recall that ACC_r is the set of languages computable by polynomial-size constant depth circuits with \land, \lor, \neg and mod_r gates. Show that for any integers $r, s \geq 2$, if all of the prime factors of r are factors of s then $\text{ACC}_r \subseteq \text{ACC}_s$.

2. A k-sunflower is a collection of sets S_1, \ldots, S_k such that for all $1 \leq i < j \leq k$, $S_i \cap S_j = S_1 \cap S_2$. Show that for any collection of $(k - 1)^r! + 1$ sets of size at most r there is a subcollection of k sets that form a sunflower.

3. A function $f : \{0, 1\}^n \to \{0, 1\}$ is a slice function if there is an k such that there are no x with less than k ones and $f(x) = 1$ and no x with more than k ones with $f(x) = 0$.

Show that if a slice function f has polynomial-size circuits then f has polynomial-size monotone circuits.

Hint: You will need that there are polynomial-size monotone circuits for majority. Create a sorting network and convert that to a monotone circuit.

4. Show that for any constant c, there is a language L in Σ_1^n such that L does not have circuits of size n^c. Can you put L in Σ_2^p?