1. Let A be in P and p be a polynomial. Define

$$\text{Leaf}_A(x) = a_1 a_2 \ldots a_{2^p(|x|)}$$

where $a_i = 1$ if $(x, i) \in A$ and 0 otherwise.

Show that L is in PSPACE if and only if there is a regular language R, a set A in P and a polynomial p such that

$$x \in L \Leftrightarrow \text{Leaf}_A(x) \in R.$$

Hint: Use Barrington’s Theorem.

2. Show that L is in $C_P \cap \text{coC}_P$ iff there exist GapP functions f and g such that for all x, $g(x) \neq 0$ and

- If x is in L then $f(x) = g(x)$, and
- If x is not in L then $f(x) = 0$.

3. Show that L is in PP iff there exist GapP functions f and g such that for all x, $g(x) \neq 0$ and

- If x is in L then $2g(x)/3 \leq f(x) \leq g(x)$, and
- If x is not in L then $0 \leq f(x) \leq g(x)/3$.

4. Show that the decision tree complexity of a Boolean function f is bounded by the product of its certificate complexity and block sensitivity. Show that this implies that the decision tree complexity of f is bounded by $O(d^6)$ where d is the degree of the approximating polynomial of f. This is the best known upper bound.